Newer
Older
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/adapted/boost_tuple.hpp>
#include <boost/geometry/geometries/box.hpp>
#include <boost/geometry/geometries/polygon.hpp>
#include "clipper/clipper.hpp"
#define CLIPPER_SCALE 10000
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
#ifndef NDEBUG
#endif
namespace bg = boost::geometry;
namespace trans = bg::strategy::transform;
BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(bg::cs::cartesian)
//=========================================================================
// Geometry stuff.
//=========================================================================
void polygonCenter(const BoostPolygon &polygon, BoostPoint ¢er) {
using namespace mapbox;
if (polygon.outer().empty())
geometry::polygon<double> p;
geometry::linear_ring<double> lr1;
for (size_t i = 0; i < polygon.outer().size(); ++i) {
geometry::point<double> vertex(polygon.outer()[i].get<0>(),
polygon.outer()[i].get<1>());
}
p.push_back(lr1);
geometry::point<double> c = polylabel(p);
center.set<0>(c.x);
center.set<1>(c.y);
bool minimalBoundingBox(const BoostPolygon &polygon, BoundingBox &minBBox) {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/*
Find the minimum-area bounding box of a set of 2D points
The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates.
The first and last points points must be the same, making a closed polygon.
This program finds the rotation angles of each edge of the convex polygon,
then tests the area of a bounding box aligned with the unique angles in
90 degrees of the 1st Quadrant.
Returns the
Tested with Python 2.6.5 on Ubuntu 10.04.4 (original version)
Results verified using Matlab
Copyright (c) 2013, David Butterworth, University of Queensland
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Willow Garage, Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
if (polygon.outer().empty() || polygon.outer().size() < 3)
return false;
BoostPolygon convex_hull;
bg::convex_hull(polygon, convex_hull);
// cout << "Convex hull: " << bg::wkt<BoostPolygon2D>(convex_hull) << endl;
//# Compute edges (x2-x1,y2-y1)
std::vector<BoostPoint> edges;
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
for (long i = 0; i < long(convex_hull_outer.size()) - 1; ++i) {
BoostPoint p1 = convex_hull_outer.at(i);
BoostPoint p2 = convex_hull_outer.at(i + 1);
double edge_x = p2.get<0>() - p1.get<0>();
double edge_y = p2.get<1>() - p1.get<1>();
edges.push_back(BoostPoint{edge_x, edge_y});
}
// cout << "Edges: ";
// for (auto e : edges)
// cout << e.get<0>() << " " << e.get<1>() << ",";
// cout << endl;
// Calculate unique edge angles atan2(y/x)
double angle_scale = 1e3;
std::set<long> angles_long;
for (auto vertex : edges) {
double angle = std::fmod(atan2(vertex.get<1>(), vertex.get<0>()), M_PI / 2);
angle =
angle < 0 ? angle + M_PI / 2 : angle; // want strictly positive answers
angles_long.insert(long(round(angle * angle_scale)));
}
std::vector<double> edge_angles;
for (auto a : angles_long)
edge_angles.push_back(double(a) / angle_scale);
// cout << "Unique angles: ";
// for (auto e : edge_angles)
// cout << e*180/M_PI << ",";
// cout << endl;
double min_area = std::numeric_limits<double>::infinity();
// Test each angle to find bounding box with smallest area
// print "Testing", len(edge_angles), "possible rotations for bounding box...
// \n"
for (double angle : edge_angles) {
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle * 180 /
M_PI);
BoostPolygon hull_rotated;
bg::transform(convex_hull, hull_rotated, rotate);
// cout << "Convex hull rotated: " << bg::wkt<BoostPolygon2D>(hull_rotated)
// << endl;
bg::model::box<BoostPoint> box;
bg::envelope(hull_rotated, box);
// cout << "Bounding box: " <<
// bg::wkt<bg::model::box<BoostPoint2D>>(box) << endl;
//# print "Rotated hull points are \n", rot_points
BoostPoint min_corner = box.min_corner();
BoostPoint max_corner = box.max_corner();
double min_x = min_corner.get<0>();
double max_x = max_corner.get<0>();
double min_y = min_corner.get<1>();
double max_y = max_corner.get<1>();
// cout << "min_x: " << min_x << endl;
// cout << "max_x: " << max_x << endl;
// cout << "min_y: " << min_y << endl;
// cout << "max_y: " << max_y << endl;
// Calculate height/width/area of this bounding rectangle
double width = max_x - min_x;
double height = max_y - min_y;
double area = width * height;
// cout << "Width: " << width << endl;
// cout << "Height: " << height << endl;
// cout << "area: " << area << endl;
// cout << "angle: " << angle*180/M_PI << endl;
// Store the smallest rect found first (a simple convex hull might have 2
// answers with same area)
if (area < min_area) {
min_area = area;
minBBox.angle = angle;
minBBox.width = width;
minBBox.height = height;
minBBox.corners.clear();
minBBox.corners.outer().push_back(BoostPoint{min_x, min_y});
minBBox.corners.outer().push_back(BoostPoint{min_x, max_y});
minBBox.corners.outer().push_back(BoostPoint{max_x, max_y});
minBBox.corners.outer().push_back(BoostPoint{max_x, min_y});
minBBox.corners.outer().push_back(BoostPoint{min_x, min_y});
}
// cout << endl << endl;
}
// Transform corners of minimal bounding box.
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(-minBBox.angle *
180 / M_PI);
BoostPolygon rotated_polygon;
bg::transform(minBBox.corners, rotated_polygon, rotate);
minBBox.corners = rotated_polygon;
void offsetPolygon(const BoostPolygon &polygon, BoostPolygon &polygonOffset,
double offset) {
bg::strategy::buffer::distance_symmetric<double> distance_strategy(offset);
bg::strategy::buffer::join_miter join_strategy(3);
bg::strategy::buffer::end_flat end_strategy;
bg::strategy::buffer::point_square point_strategy;
bg::strategy::buffer::side_straight side_strategy;
bg::model::multi_polygon<BoostPolygon> result;
bg::buffer(polygon, result, distance_strategy, side_strategy, join_strategy,
end_strategy, point_strategy);
if (result.size() > 0)
polygonOffset = result[0];
void graphFromPolygon(const BoostPolygon &polygon,
const BoostLineString &vertices, Matrix<double> &graph) {
size_t n = graph.getN();
for (size_t i = 0; i < n; ++i) {
BoostPoint v1 = vertices[i];
for (size_t j = i + 1; j < n; ++j) {
BoostPoint v2 = vertices[j];
BoostLineString path{v1, v2};
double distance = 0;
if (!bg::within(path, polygon))
distance = std::numeric_limits<double>::infinity();
else
distance = bg::length(path);
graph.set(i, j, distance);
graph.set(j, i, distance);
}
}
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
bool dijkstraAlgorithm(
const size_t numElements, size_t startIndex, size_t endIndex,
std::vector<size_t> &elementPath,
std::function<double(const size_t, const size_t)> distanceDij) {
if (startIndex >= numElements || endIndex >= numElements ||
endIndex == startIndex) {
return false;
}
// Node struct
// predecessorIndex is the index of the predecessor node
// (nodeList[predecessorIndex]) distance is the distance between the node and
// the start node node number is stored by the position in nodeList
struct Node {
int predecessorIndex = -1;
double distance = std::numeric_limits<double>::infinity();
};
// The list with all Nodes (elements)
std::vector<Node> nodeList(numElements);
// This list will be initalized with indices referring to the elements of
// nodeList. Elements will be successively remove during the execution of the
// Dijkstra Algorithm.
std::vector<size_t> workingSet(numElements);
// append elements to node list
for (size_t i = 0; i < numElements; ++i)
workingSet[i] = i;
nodeList[startIndex].distance = 0;
// Dijkstra Algorithm
// https://de.wikipedia.org/wiki/Dijkstra-Algorithmus
while (workingSet.size() > 0) {
// serach Node with minimal distance
double minDist = std::numeric_limits<double>::infinity();
int minDistIndex_WS = -1; // WS = workinSet
for (size_t i = 0; i < workingSet.size(); ++i) {
const int nodeIndex = workingSet.at(i);
const double dist = nodeList.at(nodeIndex).distance;
if (dist < minDist) {
minDist = dist;
minDistIndex_WS = i;
}
}
if (minDistIndex_WS == -1)
return false;
size_t indexU_NL = workingSet.at(minDistIndex_WS); // NL = nodeList
workingSet.erase(workingSet.begin() + minDistIndex_WS);
if (indexU_NL == endIndex) // shortest path found
break;
const double distanceU = nodeList.at(indexU_NL).distance;
// update distance
for (size_t i = 0; i < workingSet.size(); ++i) {
int indexV_NL = workingSet[i]; // NL = nodeList
Node *v = &nodeList[indexV_NL];
double dist = distanceDij(indexU_NL, indexV_NL);
// is ther an alternative path which is shorter?
double alternative = distanceU + dist;
if (alternative < v->distance) {
v->distance = alternative;
v->predecessorIndex = indexU_NL;
}
}
}
// end Djikstra Algorithm
// reverse assemble path
int e = endIndex;
while (1) {
if (e == -1) {
if (elementPath[0] == startIndex) // check if starting point was reached
break;
return false;
}
elementPath.insert(elementPath.begin(), e);
// Update Node
e = nodeList[e].predecessorIndex;
}
return true;
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
void toDistanceMatrix(Matrix<double> &graph) {
size_t n = graph.getN();
auto distance = [graph](size_t i, size_t j) { return graph.get(i, j); };
std::vector<size_t> path;
for (size_t i = 0; i < n; ++i) {
for (size_t j = i + 1; j < n; ++j) {
double d = graph.get(i, j);
if (!std::isinf(d))
continue;
path.clear();
bool ret = dijkstraAlgorithm(n, i, j, path, distance);
assert(ret);
(void)ret;
// cout << "(" << i << "," << j << ") d: " << d << endl;
// cout << "Path size: " << path.size() << endl;
// for (auto idx : path)
// cout << idx << " ";
// cout << endl;
d = 0;
for (long k = 0; k < long(path.size()) - 1; ++k) {
size_t idx0 = path[k];
size_t idx1 = path[k + 1];
double d0 = graph.get(idx0, idx1);
assert(std::isinf(d0) == false);
d += d0;
}
graph.set(i, j, d);
graph.set(j, i, d);
}
}
}
void shortestPathFromGraph(const Matrix<double> &graph, size_t startIndex,
size_t endIndex, std::vector<size_t> &pathIdx) {
if (!std::isinf(graph.get(startIndex, endIndex))) {
pathIdx.push_back(startIndex);
pathIdx.push_back(endIndex);
} else {
auto distance = [graph](size_t i, size_t j) { return graph.get(i, j); };
bool ret = dijkstraAlgorithm(graph.getN(), startIndex, endIndex, pathIdx,
distance);
assert(ret);
(void)ret;
}
//=========================================================================
// Scenario calculation.
//=========================================================================
Scenario::Scenario()
: _tileWidth(5 * bu::si::meter), _tileHeight(5 * bu::si::meter),
_minTileArea(0 * bu::si::meter * bu::si::meter), _needsUpdate(true) {}
void Scenario::setMeasurementArea(const BoostPolygon &area) {
_needsUpdate = true;
_mArea = area;
void Scenario::setServiceArea(const BoostPolygon &area) {
_needsUpdate = true;
_sArea = area;
void Scenario::setCorridor(const BoostPolygon &area) {
_needsUpdate = true;
_corridor = area;
}
BoostPolygon &Scenario::measurementArea() {
_needsUpdate = true;
return _mArea;
_needsUpdate = true;
return _sArea;
_needsUpdate = true;
return _corridor;
const BoundingBox &Scenario::mAreaBoundingBox() const {
return _mAreaBoundingBox;
const BoostPolygon &Scenario::measurementArea() const { return _mArea; }
const BoostPolygon &Scenario::serviceArea() const { return _sArea; }
const BoostPolygon &Scenario::corridor() const { return _corridor; }
const BoostPolygon &Scenario::joinedArea() const { return _jArea; }
const vector<BoostPolygon> &Scenario::tiles() const { return _tiles; }
const BoostLineString &Scenario::tileCenterPoints() const {
return _tileCenterPoints;
const BoundingBox &Scenario::measurementAreaBBox() const {
return _mAreaBoundingBox;
const BoostPoint &Scenario::homePositon() const { return _homePosition; }
bool Scenario::update() {
if (!_needsUpdate)
bg::correct(_mArea);
bg::correct(_sArea);
bg::correct(_corridor);
if (!_calculateJoinedArea())
return false;
if (!_calculateBoundingBox())
return false;
if (!_calculateTiles())
return false;
_needsUpdate = false;
return true;
* Devides the (measurement area) bounding box into tiles and clips it to the
* measurement area.
* Devides the (measurement area) bounding box into tiles of width \p tileWidth
* and height \p tileHeight. Clips the resulting tiles to the measurement area.
* Tiles are rejected, if their area is smaller than \p minTileArea. The
* function assumes that \a _mArea and \a _mAreaBoundingBox have correct values.
* \see \ref Scenario::_areas2enu() and \ref Scenario::_calculateBoundingBox().
*
* @param tileWidth The width (>0) of a tile.
* @param tileHeight The heigth (>0) of a tile.
* @param minTileArea The minimal area (>0) of a tile.
*
* @return Returns true if successful.
*/
_tiles.clear();
_tileCenterPoints.clear();
if (_tileWidth <= 0 * bu::si::meter || _tileHeight <= 0 * bu::si::meter ||
_minTileArea < 0 * bu::si::meter * bu::si::meter) {
std::stringstream ss;
ss << "Parameters tileWidth (" << _tileWidth << "), tileHeight ("
<< _tileHeight << "), minTileArea (" << _minTileArea
<< ") must be positive.";
errorString = ss.str();
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
return false;
}
double bboxWidth = _mAreaBoundingBox.width;
double bboxHeight = _mAreaBoundingBox.height;
BoostPoint origin = _mAreaBoundingBox.corners.outer()[0];
// cout << "Origin: " << origin[0] << " " << origin[1] << endl;
// Transform _mArea polygon to bounding box coordinate system.
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate(
_mAreaBoundingBox.angle * 180 / M_PI);
trans::translate_transformer<double, 2, 2> translate(-origin.get<0>(),
-origin.get<1>());
BoostPolygon translated_polygon;
BoostPolygon rotated_polygon;
boost::geometry::transform(_mArea, translated_polygon, translate);
boost::geometry::transform(translated_polygon, rotated_polygon, rotate);
bg::correct(rotated_polygon);
// cout << bg::wkt<BoostPolygon2D>(rotated_polygon) << endl;
size_t iMax = ceil(bboxWidth / _tileWidth.value());
size_t jMax = ceil(bboxHeight / _tileHeight.value());
if (iMax < 1 || jMax < 1) {
std::stringstream ss;
ss << "Tile width (" << _tileWidth << ") or tile height (" << _tileHeight
<< ") to large for measurement area.";
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
errorString = ss.str();
return false;
}
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(
-_mAreaBoundingBox.angle * 180 / M_PI);
trans::translate_transformer<double, 2, 2> translate_back(origin.get<0>(),
origin.get<1>());
for (size_t i = 0; i < iMax; ++i) {
double x_min = _tileWidth.value() * i;
double x_max = x_min + _tileWidth.value();
for (size_t j = 0; j < jMax; ++j) {
double y_min = _tileHeight.value() * j;
double y_max = y_min + _tileHeight.value();
BoostPolygon tile_unclipped;
tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});
tile_unclipped.outer().push_back(BoostPoint{x_min, y_max});
tile_unclipped.outer().push_back(BoostPoint{x_max, y_max});
tile_unclipped.outer().push_back(BoostPoint{x_max, y_min});
tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});
std::deque<BoostPolygon> boost_tiles;
if (!boost::geometry::intersection(tile_unclipped, rotated_polygon,
boost_tiles))
continue;
for (BoostPolygon t : boost_tiles) {
if (bg::area(t) > _minTileArea.value()) {
// Transform boost_tile to world coordinate system.
BoostPolygon rotated_tile;
BoostPolygon translated_tile;
boost::geometry::transform(t, rotated_tile, rotate_back);
boost::geometry::transform(rotated_tile, translated_tile,
translate_back);
// Store tile and calculate center point.
_tiles.push_back(translated_tile);
BoostPoint tile_center;
polygonCenter(translated_tile, tile_center);
_tileCenterPoints.push_back(tile_center);
std::stringstream ss;
ss << "No tiles calculated. Is the minTileArea (" << _minTileArea
<< ") parameter large enough?";
errorString = ss.str();
_jArea.clear();
// Measurement area and service area overlapping?
bool overlapingSerMeas = bg::intersects(_mArea, _sArea) ? true : false;
bool corridorValid = _corridor.outer().size() > 0 ? true : false;
// Check if corridor is connecting measurement area and service area.
bool corridor_is_connection = false;
if (corridorValid) {
// Corridor overlaping with measurement area?
if (bg::intersects(_corridor, _mArea)) {
// Corridor overlaping with service area?
if (bg::intersects(_corridor, _sArea)) {
corridor_is_connection = true;
}
}
// Are areas joinable?
std::deque<BoostPolygon> sol;
BoostPolygon partialArea = _mArea;
if (overlapingSerMeas) {
if (corridor_is_connection) {
bg::union_(partialArea, _corridor, sol);
} else if (corridor_is_connection) {
bg::union_(partialArea, _corridor, sol);
} else {
std::stringstream ss;
auto printPoint = [&ss](const BoostPoint &p) {
ss << " (" << p.get<0>() << ", " << p.get<1>() << ")";
};
ss << "Areas are not overlapping." << std::endl;
ss << "Measurement area:";
bg::for_each_point(_mArea, printPoint);
ss << std::endl;
ss << "Service area:";
bg::for_each_point(_sArea, printPoint);
ss << std::endl;
ss << "Corridor:";
bg::for_each_point(_corridor, printPoint);
ss << std::endl;
errorString = ss.str();
return false;
}
if (sol.size() > 0) {
partialArea = sol[0];
sol.clear();
}
// Join areas.
bg::union_(partialArea, _sArea, sol);
if (sol.size() > 0) {
_jArea = sol[0];
} else {
return false;
}
return true;
Area Scenario::minTileArea() const { return _minTileArea; }
void Scenario::setMinTileArea(Area minTileArea) {
if (minTileArea >= 0 * bu::si::meter * bu::si::meter) {
_needsUpdate = true;
_minTileArea = minTileArea;
}
Length Scenario::tileHeight() const { return _tileHeight; }
void Scenario::setTileHeight(Length tileHeight) {
if (tileHeight > 0 * bu::si::meter) {
_needsUpdate = true;
_tileHeight = tileHeight;
}
Length Scenario::tileWidth() const { return _tileWidth; }
void Scenario::setTileWidth(Length tileWidth) {
if (tileWidth > 0 * bu::si::meter) {
_needsUpdate = true;
_tileWidth = tileWidth;
}
}
//=========================================================================
// Tile calculation.
//=========================================================================
bool joinAreas(const std::vector<BoostPolygon> &areas,
BoostPolygon &joinedArea) {
if (areas.size() < 1)
return false;
std::deque<std::size_t> idxList;
for (size_t i = 1; i < areas.size(); ++i)
idxList.push_back(i);
joinedArea = areas[0];
std::deque<BoostPolygon> sol;
while (idxList.size() > 0) {
bool success = false;
for (auto it = idxList.begin(); it != idxList.end(); ++it) {
bg::union_(joinedArea, areas[*it], sol);
if (sol.size() > 0) {
joinedArea = sol[0];
sol.clear();
idxList.erase(it);
success = true;
break;
}
if (!success)
return false;
}
BoundingBox::BoundingBox() : width(0), height(0), angle(0) {}
void BoundingBox::clear() {
width = 0;
height = 0;
angle = 0;
corners.clear();
bool flight_plan::transectsFromScenario(Length distance, Length minLength,
Angle angle, const Scenario &scenario,
string &errorString) {
// Rotate measurement area by angle and calculate bounding box.
auto &mArea = scenario.measurementArea();
BoostPolygon mAreaRotated;
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle.value() *
180 / M_PI);
bg::transform(mArea, mAreaRotated, rotate);
BoostBox box;
boost::geometry::envelope(mAreaRotated, box);
double x0 = box.min_corner().get<0>();
double y0 = box.min_corner().get<1>();
double x1 = box.max_corner().get<0>();
double y1 = box.max_corner().get<1>();
// Generate transects and convert them to clipper path.
size_t num_t = int(ceil((y1 - y0) / distance.value())); // number of transects
vector<ClipperLib::Path> transectsClipper;
transectsClipper.reserve(num_t);
for (size_t i = 0; i < num_t; ++i) {
// calculate transect
BoostPoint v1{x0, y0 + i * distance.value()};
BoostPoint v2{x1, y0 + i * distance.value()};
BoostLineString transect;
transect.push_back(v1);
transect.push_back(v2);
// transform back
BoostLineString temp_transect;
trans::rotate_transformer<bg::degree, double, 2, 2> rotate_back(
-angle.value() * 180 / M_PI);
bg::transform(transect, temp_transect, rotate_back);
// to clipper
ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(
temp_transect[0].get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(
temp_transect[0].get<1>() * CLIPPER_SCALE)};
ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(
temp_transect[1].get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(
temp_transect[1].get<1>() * CLIPPER_SCALE)};
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
ClipperLib::Path path{c1, c2};
transectsClipper.push_back(path);
}
if (transectsClipper.size() == 0) {
std::stringstream ss;
ss << "Not able to generate transects. Parameter: distance = " << distance
<< std::endl;
errorString = ss.str();
return false;
}
// Convert measurement area to clipper path.
ClipperLib::Path mAreaClipper;
for (auto vertex : mArea.outer()) {
mAreaClipper.push_back(ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
}
// Perform clipping.
// Clip transects to measurement area.
ClipperLib::Clipper clipper;
clipper.AddPath(mAreaClipper, ClipperLib::ptClip, true);
clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
ClipperLib::PolyTree clippedTransecs;
clipper.Execute(ClipperLib::ctIntersection, clippedTransecs,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
bool ignoreProgress = p.size() != scenario.tiles().size();
ClipperLib::PolyTree clippedTransecs2;
if (!ignoreProgress) {
// Calculate processed tiles (_progress[i] == 100) and subtract them from
// measurement area.
size_t numTiles = p.size();
vector<BoostPolygon> processedTiles;
const auto &tiles = scenario.tiles();
for (size_t i = 0; i < numTiles; ++i) {
if (p[i] == 100) {
processedTiles.push_back(tiles[i]);
}
if (processedTiles.size() != numTiles) {
vector<ClipperLib::Path> processedTilesClipper;
path.push_back(ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
processedTilesClipper.push_back(path);
}
// Subtract holes (tiles with measurement_progress == 100) from transects.
clipper.Clear();
clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
clipper.AddPaths(processedTilesClipper, ClipperLib::ptClip, true);
clipper.Execute(ClipperLib::ctDifference, clippedTransecs2,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
transects = &clippedTransecs2;
} else {
// All tiles processed (t.size() not changed).
return true;
}
// Extract transects from PolyTree and convert them to BoostLineString
for (const auto &child : transects->Childs) {
const auto &clipperTransect = child->Contour;
BoostPoint v1{static_cast<double>(clipperTransect[0].X) / CLIPPER_SCALE,
static_cast<double>(clipperTransect[0].Y) / CLIPPER_SCALE};
BoostPoint v2{static_cast<double>(clipperTransect[1].X) / CLIPPER_SCALE,
static_cast<double>(clipperTransect[1].Y) / CLIPPER_SCALE};
BoostLineString transect{v1, v2};
}
if (t.size() == 0) {
std::stringstream ss;
ss << "Not able to generate transects. Parameter: minLength = " << minLength
<< std::endl;
errorString = ss.str();
return false;
}
return true;
struct RoutingDataModel {
Matrix<int64_t> distanceMatrix;
long numVehicles;
RoutingIndexManager::NodeIndex depot;
void generateRoutingModel(const BoostLineString &vertices,
const BoostPolygon &polygonOffset, size_t n0,
RoutingDataModel &dataModel, Matrix<double> &graph) {
auto start = std::chrono::high_resolution_clock::now();
#endif
graphFromPolygon(polygonOffset, vertices, graph);
auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - start);
cout << "Execution time graphFromPolygon(): " << delta.count() << " ms"
<< endl;
Matrix<double> distanceMatrix(graph);
start = std::chrono::high_resolution_clock::now();
delta = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - start);
cout << "Execution time toDistanceMatrix(): " << delta.count() << " ms"
<< endl;
#endif
dataModel.distanceMatrix.setDimension(n0, n0);
for (size_t i = 0; i < n0; ++i) {
dataModel.distanceMatrix.set(i, i, 0);
for (size_t j = i + 1; j < n0; ++j) {
dataModel.distanceMatrix.set(
i, j, int64_t(distanceMatrix.get(i, j) * CLIPPER_SCALE));
dataModel.distanceMatrix.set(
j, i, int64_t(distanceMatrix.get(i, j) * CLIPPER_SCALE));
}
dataModel.numVehicles = 1;
dataModel.depot = 0;
}
bool flight_plan::route(const BoostPolygon &area,
const flight_plan::Transects &transects,
Transects &transectsRouted, flight_plan::Route &route,
string &errorString) {
//=======================================
// Route Transects using Google or-tools.
//=======================================
// Create vertex list;
BoostLineString vertices;
size_t n0 = 0;
for (const auto &t : transects) {
struct TransectInfo {
TransectInfo(size_t n, bool f) : index(n), front(f) {}
size_t index;
bool front;
};
std::vector<TransectInfo> transectInfoList;
for (size_t i = 0; i < transects.size(); ++i) {
const auto &t = transects[i];
vertices.push_back(t.front());
transectInfoList.push_back(TransectInfo{i, true});
if (t.size() >= 2) {
vertices.push_back(t.back());
transectInfoList.push_back(TransectInfo{i, false});
}
for (long i = 0; i < long(area.outer().size()) - 1; ++i) {
vertices.push_back(area.outer()[i]);
}
for (auto &ring : area.inners()) {
for (auto &vertex : ring)
vertices.push_back(vertex);
}
size_t n1 = vertices.size();
// Generate routing model.
RoutingDataModel dataModel;
Matrix<double> connectionGraph(n1, n1);
// Offset joined area.
BoostPolygon areaOffset;
offsetPolygon(area, areaOffset, detail::offsetConstant);
#ifdef SNAKE_SHOW_TIME
auto start = std::chrono::high_resolution_clock::now();
#endif
generateRoutingModel(vertices, areaOffset, n0, dataModel, connectionGraph);
#ifdef SNAKE_SHOW_TIME
auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - start);
cout << "Execution time _generateRoutingModel(): " << delta.count() << " ms"
<< endl;
#endif
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
// Create Routing Index Manager.
RoutingIndexManager manager(dataModel.distanceMatrix.getN(),
dataModel.numVehicles, dataModel.depot);
// Create Routing Model.
RoutingModel routing(manager);
// Create and register a transit callback.
const int transitCallbackIndex = routing.RegisterTransitCallback(
[&dataModel, &manager](int64 from_index, int64 to_index) -> int64 {
// Convert from routing variable Index to distance matrix NodeIndex.
auto from_node = manager.IndexToNode(from_index).value();
auto to_node = manager.IndexToNode(to_index).value();
return dataModel.distanceMatrix.get(from_node, to_node);
});
// Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
// Define Constraints (this constraints have a huge impact on the
// solving time, improvments could be done, e.g. SearchFilter).
Solver *solver = routing.solver();
size_t index = 0;
for (size_t i = 0; i < transects.size(); ++i) {
const auto &t = transects[i];
if (t.size() >= 2) {
auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(index));
auto idx1 =
manager.NodeToIndex(RoutingIndexManager::NodeIndex(index + 1));
auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
vector<IntVar *> conds{cond0, cond1};
auto c = solver->MakeAllDifferent(conds);
solver->MakeRejectFilter();
solver->AddConstraint(c);
index += 2;
} else {
index += 1;
}
// Setting first solution heuristic.
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
FirstSolutionStrategy::PATH_CHEAPEST_ARC);
google::protobuf::Duration *tMax =
new google::protobuf::Duration(); // seconds
tMax->set_seconds(10);
searchParameters.set_allocated_time_limit(tMax);
// Solve the problem.
start = std::chrono::high_resolution_clock::now();