Skip to content
snake.cpp 36 KiB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
#include <algorithm>
Valentin Platzgummer's avatar
Valentin Platzgummer committed
#include <iostream>

#include "snake.h"

Valentin Platzgummer's avatar
Valentin Platzgummer committed
#include <mapbox/geometry.hpp>
#include <mapbox/polylabel.hpp>
Valentin Platzgummer's avatar
Valentin Platzgummer committed

#include <boost/geometry.hpp>
#include <boost/geometry/geometries/adapted/boost_tuple.hpp>
#include <boost/geometry/geometries/box.hpp>
#include <boost/geometry/geometries/polygon.hpp>
Valentin Platzgummer's avatar
Valentin Platzgummer committed

Valentin Platzgummer's avatar
Valentin Platzgummer committed
#include "clipper/clipper.hpp"
#define CLIPPER_SCALE 10000

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

Valentin Platzgummer's avatar
Valentin Platzgummer committed
using namespace operations_research;

Valentin Platzgummer's avatar
Valentin Platzgummer committed
//#define SNAKE_SHOW_TIME
Valentin Platzgummer's avatar
Valentin Platzgummer committed
namespace bg = boost::geometry;
namespace trans = bg::strategy::transform;

Valentin Platzgummer's avatar
Valentin Platzgummer committed
BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(bg::cs::cartesian)

Valentin Platzgummer's avatar
Valentin Platzgummer committed
namespace snake {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
//=========================================================================
// Geometry stuff.
//=========================================================================

void polygonCenter(const BoostPolygon &polygon, BoostPoint &center) {
  using namespace mapbox;
  if (polygon.outer().empty())
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    return;
  geometry::polygon<double> p;
  geometry::linear_ring<double> lr1;
  for (size_t i = 0; i < polygon.outer().size(); ++i) {
    geometry::point<double> vertex(polygon.outer()[i].get<0>(),
                                   polygon.outer()[i].get<1>());
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    lr1.push_back(vertex);
  }
  p.push_back(lr1);
  geometry::point<double> c = polylabel(p);
  center.set<0>(c.x);
  center.set<1>(c.y);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
bool minimalBoundingBox(const BoostPolygon &polygon, BoundingBox &minBBox) {
  /*
  Find the minimum-area bounding box of a set of 2D points

  The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates.
  The first and last points points must be the same, making a closed polygon.
  This program finds the rotation angles of each edge of the convex polygon,
  then tests the area of a bounding box aligned with the unique angles in
  90 degrees of the 1st Quadrant.
  Returns the

  Tested with Python 2.6.5 on Ubuntu 10.04.4 (original version)
  Results verified using Matlab

  Copyright (c) 2013, David Butterworth, University of Queensland
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

      * Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.
      * Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in the
        documentation and/or other materials provided with the distribution.
      * Neither the name of the Willow Garage, Inc. nor the names of its
        contributors may be used to endorse or promote products derived from
        this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.
  */

Valentin Platzgummer's avatar
Valentin Platzgummer committed
  if (polygon.outer().empty() || polygon.outer().size() < 3)
    return false;
  BoostPolygon convex_hull;
  bg::convex_hull(polygon, convex_hull);

  // cout << "Convex hull: " << bg::wkt<BoostPolygon2D>(convex_hull) << endl;

  //# Compute edges (x2-x1,y2-y1)
  std::vector<BoostPoint> edges;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
  const auto &convex_hull_outer = convex_hull.outer();
  for (long i = 0; i < long(convex_hull_outer.size()) - 1; ++i) {
    BoostPoint p1 = convex_hull_outer.at(i);
    BoostPoint p2 = convex_hull_outer.at(i + 1);
    double edge_x = p2.get<0>() - p1.get<0>();
    double edge_y = p2.get<1>() - p1.get<1>();
    edges.push_back(BoostPoint{edge_x, edge_y});
  }

  //    cout << "Edges: ";
  //    for (auto e : edges)
  //        cout << e.get<0>() << " " << e.get<1>() << ",";
  //    cout << endl;

  // Calculate unique edge angles  atan2(y/x)
  double angle_scale = 1e3;
  std::set<long> angles_long;
  for (auto vertex : edges) {
    double angle = std::fmod(atan2(vertex.get<1>(), vertex.get<0>()), M_PI / 2);
    angle =
        angle < 0 ? angle + M_PI / 2 : angle; // want strictly positive answers
    angles_long.insert(long(round(angle * angle_scale)));
  }
  std::vector<double> edge_angles;
  for (auto a : angles_long)
    edge_angles.push_back(double(a) / angle_scale);

  //    cout << "Unique angles: ";
  //    for (auto e : edge_angles)
  //        cout << e*180/M_PI << ",";
  //    cout << endl;

  double min_area = std::numeric_limits<double>::infinity();
  // Test each angle to find bounding box with smallest area
  // print "Testing", len(edge_angles), "possible rotations for bounding box...
  // \n"
  for (double angle : edge_angles) {

    trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle * 180 /
                                                               M_PI);
    BoostPolygon hull_rotated;
    bg::transform(convex_hull, hull_rotated, rotate);
    // cout << "Convex hull rotated: " << bg::wkt<BoostPolygon2D>(hull_rotated)
    // << endl;

    bg::model::box<BoostPoint> box;
    bg::envelope(hull_rotated, box);
    //        cout << "Bounding box: " <<
    //        bg::wkt<bg::model::box<BoostPoint2D>>(box) << endl;

    //# print "Rotated hull points are \n", rot_points
    BoostPoint min_corner = box.min_corner();
    BoostPoint max_corner = box.max_corner();
    double min_x = min_corner.get<0>();
    double max_x = max_corner.get<0>();
    double min_y = min_corner.get<1>();
    double max_y = max_corner.get<1>();
    //        cout << "min_x: " << min_x << endl;
    //        cout << "max_x: " << max_x << endl;
    //        cout << "min_y: " << min_y << endl;
    //        cout << "max_y: " << max_y << endl;

    // Calculate height/width/area of this bounding rectangle
    double width = max_x - min_x;
    double height = max_y - min_y;
    double area = width * height;
    //        cout << "Width: " << width << endl;
    //        cout << "Height: " << height << endl;
    //        cout << "area: " << area << endl;
    //        cout << "angle: " << angle*180/M_PI << endl;

    // Store the smallest rect found first (a simple convex hull might have 2
    // answers with same area)
    if (area < min_area) {
      min_area = area;
      minBBox.angle = angle;
      minBBox.width = width;
      minBBox.height = height;

      minBBox.corners.clear();
      minBBox.corners.outer().push_back(BoostPoint{min_x, min_y});
      minBBox.corners.outer().push_back(BoostPoint{min_x, max_y});
      minBBox.corners.outer().push_back(BoostPoint{max_x, max_y});
      minBBox.corners.outer().push_back(BoostPoint{max_x, min_y});
      minBBox.corners.outer().push_back(BoostPoint{min_x, min_y});
    }
    // cout << endl << endl;
  }

  // Transform corners of minimal bounding box.
  trans::rotate_transformer<bg::degree, double, 2, 2> rotate(-minBBox.angle *
                                                             180 / M_PI);
  BoostPolygon rotated_polygon;
  bg::transform(minBBox.corners, rotated_polygon, rotate);
  minBBox.corners = rotated_polygon;
Valentin Platzgummer's avatar
Valentin Platzgummer committed

  return true;
void offsetPolygon(const BoostPolygon &polygon, BoostPolygon &polygonOffset,
                   double offset) {
  bg::strategy::buffer::distance_symmetric<double> distance_strategy(offset);
  bg::strategy::buffer::join_miter join_strategy(3);
  bg::strategy::buffer::end_flat end_strategy;
  bg::strategy::buffer::point_square point_strategy;
  bg::strategy::buffer::side_straight side_strategy;
Valentin Platzgummer's avatar
Valentin Platzgummer committed

  bg::model::multi_polygon<BoostPolygon> result;
Valentin Platzgummer's avatar
Valentin Platzgummer committed

  bg::buffer(polygon, result, distance_strategy, side_strategy, join_strategy,
             end_strategy, point_strategy);
Valentin Platzgummer's avatar
Valentin Platzgummer committed

  if (result.size() > 0)
    polygonOffset = result[0];
void graphFromPolygon(const BoostPolygon &polygon,
                      const BoostLineString &vertices, Matrix<double> &graph) {
  size_t n = graph.getN();
Valentin Platzgummer's avatar
Valentin Platzgummer committed

  for (size_t i = 0; i < n; ++i) {
    BoostPoint v1 = vertices[i];
    for (size_t j = i + 1; j < n; ++j) {
      BoostPoint v2 = vertices[j];
      BoostLineString path{v1, v2};
Valentin Platzgummer's avatar
Valentin Platzgummer committed

      double distance = 0;
      if (!bg::within(path, polygon))
        distance = std::numeric_limits<double>::infinity();
      else
        distance = bg::length(path);
Valentin Platzgummer's avatar
Valentin Platzgummer committed

      graph.set(i, j, distance);
      graph.set(j, i, distance);
    }
  }
bool dijkstraAlgorithm(
    const size_t numElements, size_t startIndex, size_t endIndex,
    std::vector<size_t> &elementPath,
    std::function<double(const size_t, const size_t)> distanceDij) {
  if (startIndex >= numElements || endIndex >= numElements ||
      endIndex == startIndex) {
    return false;
  }
  // Node struct
  // predecessorIndex is the index of the predecessor node
  // (nodeList[predecessorIndex]) distance is the distance between the node and
  // the start node node number is stored by the position in nodeList
  struct Node {
    int predecessorIndex = -1;
    double distance = std::numeric_limits<double>::infinity();
  };

  // The list with all Nodes (elements)
  std::vector<Node> nodeList(numElements);
  // This list will be initalized with indices referring to the elements of
  // nodeList. Elements will be successively remove during the execution of the
  // Dijkstra Algorithm.
  std::vector<size_t> workingSet(numElements);

  // append elements to node list
  for (size_t i = 0; i < numElements; ++i)
    workingSet[i] = i;

  nodeList[startIndex].distance = 0;

  // Dijkstra Algorithm
  // https://de.wikipedia.org/wiki/Dijkstra-Algorithmus
  while (workingSet.size() > 0) {
    // serach Node with minimal distance
    double minDist = std::numeric_limits<double>::infinity();
    int minDistIndex_WS = -1; // WS = workinSet
    for (size_t i = 0; i < workingSet.size(); ++i) {
      const int nodeIndex = workingSet.at(i);
      const double dist = nodeList.at(nodeIndex).distance;
      if (dist < minDist) {
        minDist = dist;
        minDistIndex_WS = i;
      }
    }
    if (minDistIndex_WS == -1)
      return false;

    size_t indexU_NL = workingSet.at(minDistIndex_WS); // NL = nodeList
    workingSet.erase(workingSet.begin() + minDistIndex_WS);
    if (indexU_NL == endIndex) // shortest path found
      break;

    const double distanceU = nodeList.at(indexU_NL).distance;
    // update distance
    for (size_t i = 0; i < workingSet.size(); ++i) {
      int indexV_NL = workingSet[i]; // NL = nodeList
      Node *v = &nodeList[indexV_NL];
      double dist = distanceDij(indexU_NL, indexV_NL);
      // is ther an alternative path which is shorter?
      double alternative = distanceU + dist;
      if (alternative < v->distance) {
        v->distance = alternative;
        v->predecessorIndex = indexU_NL;
      }
    }
  }
  // end Djikstra Algorithm

  // reverse assemble path
  int e = endIndex;
  while (1) {
    if (e == -1) {
      if (elementPath[0] == startIndex) // check if starting point was reached
        break;
      return false;
    }
    elementPath.insert(elementPath.begin(), e);
    // Update Node
    e = nodeList[e].predecessorIndex;
  }
  return true;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
}
void toDistanceMatrix(Matrix<double> &graph) {
  size_t n = graph.getN();

  auto distance = [graph](size_t i, size_t j) { return graph.get(i, j); };

  std::vector<size_t> path;
  for (size_t i = 0; i < n; ++i) {
    for (size_t j = i + 1; j < n; ++j) {
      double d = graph.get(i, j);
      if (!std::isinf(d))
        continue;
      path.clear();
      bool ret = dijkstraAlgorithm(n, i, j, path, distance);
      assert(ret);
      (void)ret;
      //            cout << "(" << i << "," << j << ") d: " << d << endl;
      //            cout << "Path size: " << path.size() << endl;
      //            for (auto idx : path)
      //                cout << idx << " ";
      //            cout << endl;

      d = 0;
      for (long k = 0; k < long(path.size()) - 1; ++k) {
        size_t idx0 = path[k];
        size_t idx1 = path[k + 1];
        double d0 = graph.get(idx0, idx1);
        assert(std::isinf(d0) == false);
        d += d0;
      }

      graph.set(i, j, d);
      graph.set(j, i, d);
    }
  }
}
void shortestPathFromGraph(const Matrix<double> &graph, size_t startIndex,
                           size_t endIndex, std::vector<size_t> &pathIdx) {

  if (!std::isinf(graph.get(startIndex, endIndex))) {
    pathIdx.push_back(startIndex);
    pathIdx.push_back(endIndex);
  } else {
    auto distance = [graph](size_t i, size_t j) { return graph.get(i, j); };
    bool ret = dijkstraAlgorithm(graph.getN(), startIndex, endIndex, pathIdx,
                                 distance);
    assert(ret);
    (void)ret;
  }

  //=========================================================================
  // Scenario calculation.
  //=========================================================================
Valentin Platzgummer's avatar
Valentin Platzgummer committed
}
Scenario::Scenario()
    : _tileWidth(5 * bu::si::meter), _tileHeight(5 * bu::si::meter),
      _minTileArea(0 * bu::si::meter * bu::si::meter), _needsUpdate(true) {}
void Scenario::setMeasurementArea(const BoostPolygon &area) {
  _needsUpdate = true;
  _mArea = area;
void Scenario::setServiceArea(const BoostPolygon &area) {
  _needsUpdate = true;
  _sArea = area;
void Scenario::setCorridor(const BoostPolygon &area) {
  _needsUpdate = true;
  _corridor = area;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
}

BoostPolygon &Scenario::measurementArea() {
  _needsUpdate = true;
  return _mArea;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
}

BoostPolygon &Scenario::serviceArea() {
  _needsUpdate = true;
  return _sArea;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
}

BoostPolygon &Scenario::corridor() {
  _needsUpdate = true;
  return _corridor;
const BoundingBox &Scenario::mAreaBoundingBox() const {
  return _mAreaBoundingBox;
const BoostPolygon &Scenario::measurementArea() const { return _mArea; }
const BoostPolygon &Scenario::serviceArea() const { return _sArea; }
const BoostPolygon &Scenario::corridor() const { return _corridor; }
const BoostPolygon &Scenario::joinedArea() const { return _jArea; }
const vector<BoostPolygon> &Scenario::tiles() const { return _tiles; }
const BoostLineString &Scenario::tileCenterPoints() const {
  return _tileCenterPoints;
const BoundingBox &Scenario::measurementAreaBBox() const {
  return _mAreaBoundingBox;
const BoostPoint &Scenario::homePositon() const { return _homePosition; }
bool Scenario::update() {
  if (!_needsUpdate)
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    return true;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
  bg::correct(_mArea);
  bg::correct(_sArea);
  bg::correct(_corridor);
  if (!_calculateJoinedArea())
    return false;
  if (!_calculateBoundingBox())
    return false;
  if (!_calculateTiles())
    return false;
  _needsUpdate = false;
  return true;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
bool Scenario::_calculateBoundingBox() const {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
  return minimalBoundingBox(_mArea, _mAreaBoundingBox);
 * Devides the (measurement area) bounding  box into tiles and clips it to the
 * measurement area.
Valentin Platzgummer's avatar
Valentin Platzgummer committed
 *
 * Devides the (measurement area) bounding  box into tiles of width \p tileWidth
 * and height \p tileHeight. Clips the resulting tiles to the measurement area.
 * Tiles are rejected, if their area is smaller than \p minTileArea. The
 * function assumes that \a _mArea and \a _mAreaBoundingBox have correct values.
 * \see \ref Scenario::_areas2enu() and \ref Scenario::_calculateBoundingBox().
Valentin Platzgummer's avatar
Valentin Platzgummer committed
 *
 * @param tileWidth The width (>0) of a tile.
 * @param tileHeight The heigth (>0) of a tile.
 * @param minTileArea The minimal area (>0) of a tile.
 *
 * @return Returns true if successful.
 */
Valentin Platzgummer's avatar
Valentin Platzgummer committed
bool Scenario::_calculateTiles() const {
  _tiles.clear();
  _tileCenterPoints.clear();

  if (_tileWidth <= 0 * bu::si::meter || _tileHeight <= 0 * bu::si::meter ||
Valentin Platzgummer's avatar
Valentin Platzgummer committed
      _minTileArea < 0 * bu::si::meter * bu::si::meter) {
    std::stringstream ss;
    ss << "Parameters tileWidth (" << _tileWidth << "), tileHeight ("
       << _tileHeight << "), minTileArea (" << _minTileArea
       << ") must be positive.";
    errorString = ss.str();
    return false;
  }

  double bboxWidth = _mAreaBoundingBox.width;
  double bboxHeight = _mAreaBoundingBox.height;

  BoostPoint origin = _mAreaBoundingBox.corners.outer()[0];

  // cout << "Origin: " << origin[0] << " " << origin[1] << endl;
  // Transform _mArea polygon to bounding box coordinate system.
  trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate(
      _mAreaBoundingBox.angle * 180 / M_PI);
  trans::translate_transformer<double, 2, 2> translate(-origin.get<0>(),
                                                       -origin.get<1>());
  BoostPolygon translated_polygon;
  BoostPolygon rotated_polygon;
  boost::geometry::transform(_mArea, translated_polygon, translate);
  boost::geometry::transform(translated_polygon, rotated_polygon, rotate);
  bg::correct(rotated_polygon);

  // cout << bg::wkt<BoostPolygon2D>(rotated_polygon) << endl;

  size_t iMax = ceil(bboxWidth / _tileWidth.value());
  size_t jMax = ceil(bboxHeight / _tileHeight.value());

  if (iMax < 1 || jMax < 1) {
    std::stringstream ss;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    ss << "Tile width (" << _tileWidth << ") or tile height (" << _tileHeight
       << ") to large for measurement area.";
    errorString = ss.str();
    return false;
  }

  trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(
      -_mAreaBoundingBox.angle * 180 / M_PI);
  trans::translate_transformer<double, 2, 2> translate_back(origin.get<0>(),
                                                            origin.get<1>());
  for (size_t i = 0; i < iMax; ++i) {
    double x_min = _tileWidth.value() * i;
    double x_max = x_min + _tileWidth.value();
    for (size_t j = 0; j < jMax; ++j) {
      double y_min = _tileHeight.value() * j;
      double y_max = y_min + _tileHeight.value();

      BoostPolygon tile_unclipped;
      tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});
      tile_unclipped.outer().push_back(BoostPoint{x_min, y_max});
      tile_unclipped.outer().push_back(BoostPoint{x_max, y_max});
      tile_unclipped.outer().push_back(BoostPoint{x_max, y_min});
      tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});

      std::deque<BoostPolygon> boost_tiles;
      if (!boost::geometry::intersection(tile_unclipped, rotated_polygon,
                                         boost_tiles))
        continue;

      for (BoostPolygon t : boost_tiles) {
        if (bg::area(t) > _minTileArea.value()) {
          // Transform boost_tile to world coordinate system.
          BoostPolygon rotated_tile;
          BoostPolygon translated_tile;
          boost::geometry::transform(t, rotated_tile, rotate_back);
          boost::geometry::transform(rotated_tile, translated_tile,
                                     translate_back);

          // Store tile and calculate center point.
          _tiles.push_back(translated_tile);
          BoostPoint tile_center;
          polygonCenter(translated_tile, tile_center);
          _tileCenterPoints.push_back(tile_center);
  if (_tiles.size() < 1) {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    std::stringstream ss;
    ss << "No tiles calculated. Is the minTileArea (" << _minTileArea
       << ") parameter large enough?";
    errorString = ss.str();
    return false;
  }
  return true;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
bool Scenario::_calculateJoinedArea() const {
  _jArea.clear();
  // Measurement area and service area overlapping?
  bool overlapingSerMeas = bg::intersects(_mArea, _sArea) ? true : false;
  bool corridorValid = _corridor.outer().size() > 0 ? true : false;

  // Check if corridor is connecting measurement area and service area.
  bool corridor_is_connection = false;
  if (corridorValid) {
    // Corridor overlaping with measurement area?
    if (bg::intersects(_corridor, _mArea)) {
      // Corridor overlaping with service area?
      if (bg::intersects(_corridor, _sArea)) {
        corridor_is_connection = true;
      }
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    }
  }

  // Are areas joinable?
  std::deque<BoostPolygon> sol;
  BoostPolygon partialArea = _mArea;
  if (overlapingSerMeas) {
    if (corridor_is_connection) {
      bg::union_(partialArea, _corridor, sol);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    }
  } else if (corridor_is_connection) {
    bg::union_(partialArea, _corridor, sol);
  } else {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    std::stringstream ss;
    auto printPoint = [&ss](const BoostPoint &p) {
      ss << " (" << p.get<0>() << ", " << p.get<1>() << ")";
    };
    ss << "Areas are not overlapping." << std::endl;
    ss << "Measurement area:";
    bg::for_each_point(_mArea, printPoint);
    ss << std::endl;
    ss << "Service area:";
    bg::for_each_point(_sArea, printPoint);
    ss << std::endl;
    ss << "Corridor:";
    bg::for_each_point(_corridor, printPoint);
    ss << std::endl;
    errorString = ss.str();
    return false;
  }

  if (sol.size() > 0) {
    partialArea = sol[0];
    sol.clear();
  }

  // Join areas.
  bg::union_(partialArea, _sArea, sol);

  if (sol.size() > 0) {
    _jArea = sol[0];
  } else {
    return false;
  }

  return true;
Area Scenario::minTileArea() const { return _minTileArea; }
void Scenario::setMinTileArea(Area minTileArea) {
  if (minTileArea >= 0 * bu::si::meter * bu::si::meter) {
    _needsUpdate = true;
    _minTileArea = minTileArea;
  }
Length Scenario::tileHeight() const { return _tileHeight; }
void Scenario::setTileHeight(Length tileHeight) {
  if (tileHeight > 0 * bu::si::meter) {
    _needsUpdate = true;
    _tileHeight = tileHeight;
  }
Length Scenario::tileWidth() const { return _tileWidth; }
void Scenario::setTileWidth(Length tileWidth) {
  if (tileWidth > 0 * bu::si::meter) {
    _needsUpdate = true;
    _tileWidth = tileWidth;
  }
Valentin Platzgummer's avatar
Valentin Platzgummer committed
}

//=========================================================================
// Tile calculation.
//=========================================================================

bool joinAreas(const std::vector<BoostPolygon> &areas,
               BoostPolygon &joinedArea) {
  if (areas.size() < 1)
    return false;
  std::deque<std::size_t> idxList;
  for (size_t i = 1; i < areas.size(); ++i)
    idxList.push_back(i);
  joinedArea = areas[0];

  std::deque<BoostPolygon> sol;
  while (idxList.size() > 0) {
    bool success = false;
    for (auto it = idxList.begin(); it != idxList.end(); ++it) {
      bg::union_(joinedArea, areas[*it], sol);
      if (sol.size() > 0) {
        joinedArea = sol[0];
        sol.clear();
        idxList.erase(it);
        success = true;
        break;
      }
    if (!success)
      return false;
  }
  return true;
BoundingBox::BoundingBox() : width(0), height(0), angle(0) {}
void BoundingBox::clear() {
  width = 0;
  height = 0;
  angle = 0;
  corners.clear();
bool flight_plan::transectsFromScenario(Length distance, Length minLength,
                                        Angle angle, const Scenario &scenario,
Valentin Platzgummer's avatar
Valentin Platzgummer committed
                                        const Progress &p,
                                        flight_plan::Transects &t,
                                        string &errorString) {
  // Rotate measurement area by angle and calculate bounding box.
  auto &mArea = scenario.measurementArea();
  BoostPolygon mAreaRotated;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
  trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle.value() *
                                                             180 / M_PI);
  bg::transform(mArea, mAreaRotated, rotate);

  BoostBox box;
  boost::geometry::envelope(mAreaRotated, box);
  double x0 = box.min_corner().get<0>();
  double y0 = box.min_corner().get<1>();
  double x1 = box.max_corner().get<0>();
  double y1 = box.max_corner().get<1>();

  // Generate transects and convert them to clipper path.
  size_t num_t = int(ceil((y1 - y0) / distance.value())); // number of transects
  vector<ClipperLib::Path> transectsClipper;
  transectsClipper.reserve(num_t);
  for (size_t i = 0; i < num_t; ++i) {
    // calculate transect
    BoostPoint v1{x0, y0 + i * distance.value()};
    BoostPoint v2{x1, y0 + i * distance.value()};
    BoostLineString transect;
    transect.push_back(v1);
    transect.push_back(v2);
    // transform back
    BoostLineString temp_transect;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    trans::rotate_transformer<bg::degree, double, 2, 2> rotate_back(
        -angle.value() * 180 / M_PI);
    bg::transform(transect, temp_transect, rotate_back);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    // to clipper
    ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(
                                temp_transect[0].get<0>() * CLIPPER_SCALE),
                            static_cast<ClipperLib::cInt>(
                                temp_transect[0].get<1>() * CLIPPER_SCALE)};
    ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(
                                temp_transect[1].get<0>() * CLIPPER_SCALE),
                            static_cast<ClipperLib::cInt>(
                                temp_transect[1].get<1>() * CLIPPER_SCALE)};
    ClipperLib::Path path{c1, c2};
    transectsClipper.push_back(path);
  }

  if (transectsClipper.size() == 0) {
    std::stringstream ss;
    ss << "Not able to generate transects. Parameter: distance = " << distance
       << std::endl;
    errorString = ss.str();
    return false;
  }

  // Convert measurement area to clipper path.
  ClipperLib::Path mAreaClipper;
  for (auto vertex : mArea.outer()) {
    mAreaClipper.push_back(ClipperLib::IntPoint{
        static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
        static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
  }

  // Perform clipping.
  // Clip transects to measurement area.
  ClipperLib::Clipper clipper;
  clipper.AddPath(mAreaClipper, ClipperLib::ptClip, true);
  clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
  ClipperLib::PolyTree clippedTransecs;
  clipper.Execute(ClipperLib::ctIntersection, clippedTransecs,
                  ClipperLib::pftNonZero, ClipperLib::pftNonZero);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
  const auto *transects = &clippedTransecs;

  bool ignoreProgress = p.size() != scenario.tiles().size();
  ClipperLib::PolyTree clippedTransecs2;
  if (!ignoreProgress) {
    // Calculate processed tiles (_progress[i] == 100) and subtract them from
    // measurement area.
    size_t numTiles = p.size();
    vector<BoostPolygon> processedTiles;
    const auto &tiles = scenario.tiles();
    for (size_t i = 0; i < numTiles; ++i) {
      if (p[i] == 100) {
        processedTiles.push_back(tiles[i]);
      }
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    }
    if (processedTiles.size() != numTiles) {
      vector<ClipperLib::Path> processedTilesClipper;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
      for (const auto &t : processedTiles) {
        ClipperLib::Path path;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
        for (const auto &vertex : t.outer()) {
          path.push_back(ClipperLib::IntPoint{
              static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
              static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
Valentin Platzgummer's avatar
Valentin Platzgummer committed
        }
        processedTilesClipper.push_back(path);
      }

      // Subtract holes (tiles with measurement_progress == 100) from transects.
      clipper.Clear();
Valentin Platzgummer's avatar
Valentin Platzgummer committed
      for (const auto &child : clippedTransecs.Childs) {
        clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
      }
      clipper.AddPaths(processedTilesClipper, ClipperLib::ptClip, true);
      clipper.Execute(ClipperLib::ctDifference, clippedTransecs2,
                      ClipperLib::pftNonZero, ClipperLib::pftNonZero);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
      transects = &clippedTransecs2;
    } else {
      // All tiles processed (t.size() not changed).
      return true;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    }
  }

  // Extract transects from  PolyTree and convert them to BoostLineString
Valentin Platzgummer's avatar
Valentin Platzgummer committed
  for (const auto &child : transects->Childs) {
    const auto &clipperTransect = child->Contour;
    BoostPoint v1{static_cast<double>(clipperTransect[0].X) / CLIPPER_SCALE,
                  static_cast<double>(clipperTransect[0].Y) / CLIPPER_SCALE};
    BoostPoint v2{static_cast<double>(clipperTransect[1].X) / CLIPPER_SCALE,
                  static_cast<double>(clipperTransect[1].Y) / CLIPPER_SCALE};

    BoostLineString transect{v1, v2};
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    if (bg::length(transect) >= minLength.value()) {
      t.push_back(transect);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    }
  }

  if (t.size() == 0) {
    std::stringstream ss;
    ss << "Not able to generate transects. Parameter: minLength = " << minLength
       << std::endl;
    errorString = ss.str();
    return false;
  }
  return true;
struct RoutingDataModel {
  Matrix<int64_t> distanceMatrix;
  long numVehicles;
  RoutingIndexManager::NodeIndex depot;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
void generateRoutingModel(const BoostLineString &vertices,
                          const BoostPolygon &polygonOffset, size_t n0,
                          RoutingDataModel &dataModel, Matrix<double> &graph) {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
#ifdef SNAKE_SHOW_TIME
  auto start = std::chrono::high_resolution_clock::now();
  graphFromPolygon(polygonOffset, vertices, graph);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
#ifdef SNAKE_SHOW_TIME
  auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(
      std::chrono::high_resolution_clock::now() - start);
  cout << "Execution time graphFromPolygon(): " << delta.count() << " ms"
       << endl;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
#endif
  Matrix<double> distanceMatrix(graph);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
#ifdef SNAKE_SHOW_TIME
  start = std::chrono::high_resolution_clock::now();
Valentin Platzgummer's avatar
Valentin Platzgummer committed
#endif
  toDistanceMatrix(distanceMatrix);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
#ifdef SNAKE_SHOW_TIME
  delta = std::chrono::duration_cast<std::chrono::milliseconds>(
      std::chrono::high_resolution_clock::now() - start);
  cout << "Execution time toDistanceMatrix(): " << delta.count() << " ms"
       << endl;
  dataModel.distanceMatrix.setDimension(n0, n0);
  for (size_t i = 0; i < n0; ++i) {
    dataModel.distanceMatrix.set(i, i, 0);
    for (size_t j = i + 1; j < n0; ++j) {
      dataModel.distanceMatrix.set(
          i, j, int64_t(distanceMatrix.get(i, j) * CLIPPER_SCALE));
      dataModel.distanceMatrix.set(
          j, i, int64_t(distanceMatrix.get(i, j) * CLIPPER_SCALE));
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    }
  }
  dataModel.numVehicles = 1;
  dataModel.depot = 0;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
}

bool flight_plan::route(const BoostPolygon &area,
                        const flight_plan::Transects &transects,
                        Transects &transectsRouted, flight_plan::Route &route,
                        string &errorString) {
  //=======================================
  // Route Transects using Google or-tools.
  //=======================================

  // Create vertex list;
  BoostLineString vertices;
  size_t n0 = 0;
  for (const auto &t : transects) {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
    n0 += std::min<std::size_t>(t.size(), 2);
  }
  vertices.reserve(n0);
Valentin Platzgummer's avatar
Valentin Platzgummer committed

  struct TransectInfo {
    TransectInfo(size_t n, bool f) : index(n), front(f) {}
    size_t index;
    bool front;
  };
  std::vector<TransectInfo> transectInfoList;
  for (size_t i = 0; i < transects.size(); ++i) {
    const auto &t = transects[i];
    vertices.push_back(t.front());
    transectInfoList.push_back(TransectInfo{i, true});
    if (t.size() >= 2) {
      vertices.push_back(t.back());
      transectInfoList.push_back(TransectInfo{i, false});
  }

  for (long i = 0; i < long(area.outer().size()) - 1; ++i) {
    vertices.push_back(area.outer()[i]);
  }
  for (auto &ring : area.inners()) {
    for (auto &vertex : ring)
      vertices.push_back(vertex);
  }
  size_t n1 = vertices.size();
  // Generate routing model.
  RoutingDataModel dataModel;
  Matrix<double> connectionGraph(n1, n1);
  // Offset joined area.
  BoostPolygon areaOffset;
  offsetPolygon(area, areaOffset, detail::offsetConstant);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
#ifdef SNAKE_SHOW_TIME
  auto start = std::chrono::high_resolution_clock::now();
  generateRoutingModel(vertices, areaOffset, n0, dataModel, connectionGraph);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
#ifdef SNAKE_SHOW_TIME
  auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(
      std::chrono::high_resolution_clock::now() - start);
  cout << "Execution time _generateRoutingModel(): " << delta.count() << " ms"
       << endl;
  // Create Routing Index Manager.
  RoutingIndexManager manager(dataModel.distanceMatrix.getN(),
                              dataModel.numVehicles, dataModel.depot);
  // Create Routing Model.
  RoutingModel routing(manager);

  // Create and register a transit callback.
  const int transitCallbackIndex = routing.RegisterTransitCallback(
      [&dataModel, &manager](int64 from_index, int64 to_index) -> int64 {
        // Convert from routing variable Index to distance matrix NodeIndex.
        auto from_node = manager.IndexToNode(from_index).value();
        auto to_node = manager.IndexToNode(to_index).value();
        return dataModel.distanceMatrix.get(from_node, to_node);
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

  // Define Constraints (this constraints have a huge impact on the
  // solving time, improvments could be done, e.g. SearchFilter).
  Solver *solver = routing.solver();
  size_t index = 0;
  for (size_t i = 0; i < transects.size(); ++i) {
    const auto &t = transects[i];
    if (t.size() >= 2) {
      auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(index));
      auto idx1 =
          manager.NodeToIndex(RoutingIndexManager::NodeIndex(index + 1));
      auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
      auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
      vector<IntVar *> conds{cond0, cond1};
      auto c = solver->MakeAllDifferent(conds);
      solver->MakeRejectFilter();
      solver->AddConstraint(c);
      index += 2;
    } else {
      index += 1;
  }

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);
  google::protobuf::Duration *tMax =
      new google::protobuf::Duration(); // seconds
  tMax->set_seconds(10);
  searchParameters.set_allocated_time_limit(tMax);

  // Solve the problem.
Valentin Platzgummer's avatar
Valentin Platzgummer committed
#ifdef SNAKE_SHOW_TIME
  start = std::chrono::high_resolution_clock::now();