Newer
Older
#include <mapbox/polylabel.hpp>
#include <mapbox/geometry.hpp>
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/polygon.hpp>
#include <boost/geometry/geometries/adapted/boost_tuple.hpp>
#ifndef NDEBUG
//#define SHOW_TIME
#endif
namespace bg = boost::geometry;
namespace trans = bg::strategy::transform;
namespace snake {
//=========================================================================
// Geometry stuff.
//=========================================================================
BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(cs::cartesian)
void polygonCenter(const BoostPolygon &polygon, BoostPoint ¢er)
using namespace mapbox;
if (polygon.outer().empty())
return;
geometry::polygon<double> p;
geometry::linear_ring<double> lr1;
for (size_t i = 0; i < polygon.outer().size(); ++i) {
geometry::point<double> vertex(polygon.outer()[i].get<0>(), polygon.outer()[i].get<1>());
lr1.push_back(vertex);
}
p.push_back(lr1);
geometry::point<double> c = polylabel(p);
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
void minimalBoundingBox(const BoostPolygon &polygon, BoundingBox &minBBox)
{
/*
Find the minimum-area bounding box of a set of 2D points
The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates.
The first and last points points must be the same, making a closed polygon.
This program finds the rotation angles of each edge of the convex polygon,
then tests the area of a bounding box aligned with the unique angles in
90 degrees of the 1st Quadrant.
Returns the
Tested with Python 2.6.5 on Ubuntu 10.04.4 (original version)
Results verified using Matlab
Copyright (c) 2013, David Butterworth, University of Queensland
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Willow Garage, Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
if (polygon.outer().empty())
return;
BoostPolygon convex_hull;
bg::convex_hull(polygon, convex_hull);
//cout << "Convex hull: " << bg::wkt<BoostPolygon2D>(convex_hull) << endl;
//# Compute edges (x2-x1,y2-y1)
std::vector<BoostPoint> edges;
auto convex_hull_outer = convex_hull.outer();
for (long i=0; i < long(convex_hull_outer.size())-1; ++i) {
BoostPoint p1 = convex_hull_outer.at(i);
BoostPoint p2 = convex_hull_outer.at(i+1);
double edge_x = p2.get<0>() - p1.get<0>();
double edge_y = p2.get<1>() - p1.get<1>();
edges.push_back(BoostPoint{edge_x, edge_y});
}
// cout << "Edges: ";
// for (auto e : edges)
// cout << e.get<0>() << " " << e.get<1>() << ",";
// cout << endl;
// Calculate unique edge angles atan2(y/x)
double angle_scale = 1e3;
std::set<long> angles_long;
for (auto vertex : edges) {
double angle = std::fmod(atan2(vertex.get<1>(), vertex.get<0>()), M_PI / 2);
angle = angle < 0 ? angle + M_PI / 2 : angle; // want strictly positive answers
angles_long.insert(long(round(angle*angle_scale)));
}
std::vector<double> edge_angles;
for (auto a : angles_long)
edge_angles.push_back(double(a)/angle_scale);
// cout << "Unique angles: ";
// for (auto e : edge_angles)
// cout << e*180/M_PI << ",";
// cout << endl;
double min_area = std::numeric_limits<double>::infinity();
// Test each angle to find bounding box with smallest area
// print "Testing", len(edge_angles), "possible rotations for bounding box... \n"
for (double angle : edge_angles){
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle*180/M_PI);
BoostPolygon hull_rotated;
bg::transform(convex_hull, hull_rotated, rotate);
//cout << "Convex hull rotated: " << bg::wkt<BoostPolygon2D>(hull_rotated) << endl;
bg::model::box<BoostPoint> box;
bg::envelope(hull_rotated, box);
// cout << "Bounding box: " << bg::wkt<bg::model::box<BoostPoint2D>>(box) << endl;
//# print "Rotated hull points are \n", rot_points
BoostPoint min_corner = box.min_corner();
BoostPoint max_corner = box.max_corner();
double min_x = min_corner.get<0>();
double max_x = max_corner.get<0>();
double min_y = min_corner.get<1>();
double max_y = max_corner.get<1>();
// cout << "min_x: " << min_x << endl;
// cout << "max_x: " << max_x << endl;
// cout << "min_y: " << min_y << endl;
// cout << "max_y: " << max_y << endl;
// Calculate height/width/area of this bounding rectangle
double width = max_x - min_x;
double height = max_y - min_y;
double area = width * height;
// cout << "Width: " << width << endl;
// cout << "Height: " << height << endl;
// cout << "area: " << area << endl;
// cout << "angle: " << angle*180/M_PI << endl;
// Store the smallest rect found first (a simple convex hull might have 2 answers with same area)
if (area < min_area){
min_area = area;
minBBox.angle = angle;
minBBox.width = width;
minBBox.height = height;
minBBox.corners.clear();
minBBox.corners.outer().push_back(BoostPoint{min_x, min_y});
minBBox.corners.outer().push_back(BoostPoint{min_x, max_y});
minBBox.corners.outer().push_back(BoostPoint{max_x, max_y});
minBBox.corners.outer().push_back(BoostPoint{max_x, min_y});
minBBox.corners.outer().push_back(BoostPoint{min_x, min_y});
}
//cout << endl << endl;
}
// Transform corners of minimal bounding box.
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(-minBBox.angle*180/M_PI);
BoostPolygon rotated_polygon;
bg::transform(minBBox.corners, rotated_polygon, rotate);
minBBox.corners = rotated_polygon;
boost_point.set<0>(point[0]);
boost_point.set<1>(point[1]);
}
void fromBoost(const BoostPoint &boost_point, Point2D &point)
{
point[0] = boost_point.get<0>();
point[1] = boost_point.get<1>();
void toBoost(const Point2DList &point_list, BoostPolygon &boost_polygon)
for (auto vertex : point_list) {
BoostPoint boost_vertex;
toBoost(vertex, boost_vertex);
boost_polygon.outer().push_back(boost_vertex);
}
bg::correct(boost_polygon);
}
void fromBoost(const BoostPolygon &boost_polygon, Point2DList &point_list)
{
for (auto boost_vertex : boost_polygon.outer()) {
Point2D vertex;
fromBoost(boost_vertex, vertex);
point_list.push_back(vertex);
}
}
void rotateDeg(const Point2DList &point_list, Point2DList &rotated_point_list, double degree)
{
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(degree);
BoostPolygon boost_polygon;
toBoost(point_list, boost_polygon);
BoostPolygon rotated_polygon;
bg::transform(boost_polygon, rotated_polygon, rotate);
fromBoost(rotated_polygon, rotated_point_list);
void rotateRad(const Point2DList &point_list, Point2DList &rotated_point_list, double rad)
rotateDeg(point_list, rotated_point_list, rad*180/M_PI);
}
bool isClockwise(const Point2DList &point_list)
{
double orientaion = 0;
double len = point_list.size();
for (long i=0; i < len-1; ++i){
Point2D v1 = point_list[i];
Point2D v2 = point_list[i+1];
orientaion += (v2[0]-v1[0])*(v2[1]+v1[1]);
}
Point2D v1 = point_list[len-1];
Point2D v2 = point_list[0];
orientaion += (v2[0]-v1[0])*(v2[1]+v1[1]);
return orientaion > 0 ? true : false;
void offsetPolygon(const BoostPolygon &polygon, BoostPolygon &polygonOffset, double offset)
bg::strategy::buffer::distance_symmetric<double> distance_strategy(offset);
bg::strategy::buffer::join_miter join_strategy(3);
bg::strategy::buffer::end_flat end_strategy;
bg::strategy::buffer::point_square point_strategy;
bg::strategy::buffer::side_straight side_strategy;
bg::model::multi_polygon<BoostPolygon> result;
bg::buffer(polygon, result, distance_strategy, side_strategy, join_strategy, end_strategy, point_strategy);
if (result.size() > 0)
polygonOffset = result[0];
void graphFromPolygon(const BoostPolygon &polygon, const BoostLineString &vertices, Matrix<double> &graph)
size_t n = graph.getN();
for (size_t i=0; i < n; ++i) {
BoostPoint v1 = vertices[i];
for (size_t j=i+1; j < n; ++j){
BoostPoint v2 = vertices[j];
BoostLineString path{v1, v2};
double distance = 0;
if (!bg::within(path, polygon))
distance = std::numeric_limits<double>::infinity();
else
distance = bg::length(path);
graph.set(i, j, distance);
graph.set(j, i, distance);
}
}
bool dijkstraAlgorithm(const size_t numElements,
size_t startIndex,
size_t endIndex,
std::vector<size_t> &elementPath,
std::function<double (const size_t, const size_t)> distanceDij)
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
if ( startIndex >= numElements
|| endIndex >= numElements
|| endIndex == startIndex) {
return false;
}
// Node struct
// predecessorIndex is the index of the predecessor node (nodeList[predecessorIndex])
// distance is the distance between the node and the start node
// node number is stored by the position in nodeList
struct Node{
int predecessorIndex = -1;
double distance = std::numeric_limits<double>::infinity();
};
// The list with all Nodes (elements)
std::vector<Node> nodeList(numElements);
// This list will be initalized with indices referring to the elements of nodeList.
// Elements will be successively remove during the execution of the Dijkstra Algorithm.
std::vector<size_t> workingSet(numElements);
//append elements to node list
for (size_t i = 0; i < numElements; ++i) workingSet[i] = i;
nodeList[startIndex].distance = 0;
// Dijkstra Algorithm
// https://de.wikipedia.org/wiki/Dijkstra-Algorithmus
while (workingSet.size() > 0) {
// serach Node with minimal distance
double minDist = std::numeric_limits<double>::infinity();
int minDistIndex_WS = -1; // WS = workinSet
for (size_t i = 0; i < workingSet.size(); ++i) {
const int nodeIndex = workingSet.at(i);
const double dist = nodeList.at(nodeIndex).distance;
if (dist < minDist) {
minDist = dist;
minDistIndex_WS = i;
}
}
if (minDistIndex_WS == -1)
return false;
size_t indexU_NL = workingSet.at(minDistIndex_WS); // NL = nodeList
workingSet.erase(workingSet.begin()+minDistIndex_WS);
if (indexU_NL == endIndex) // shortest path found
break;
const double distanceU = nodeList.at(indexU_NL).distance;
//update distance
for (size_t i = 0; i < workingSet.size(); ++i) {
int indexV_NL = workingSet[i]; // NL = nodeList
Node* v = &nodeList[indexV_NL];
double dist = distanceDij(indexU_NL, indexV_NL);
// is ther an alternative path which is shorter?
double alternative = distanceU + dist;
if (alternative < v->distance) {
v->distance = alternative;
v->predecessorIndex = indexU_NL;
}
}
}
// end Djikstra Algorithm
// reverse assemble path
int e = endIndex;
while (1) {
if (e == -1) {
if (elementPath[0] == startIndex)// check if starting point was reached
break;
return false;
}
elementPath.insert(elementPath.begin(), e);
//Update Node
e = nodeList[e].predecessorIndex;
}
return true;
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
void toDistanceMatrix(Matrix<double> &graph)
{
size_t n = graph.getN();
auto distance = [graph](size_t i, size_t j){
return graph.get(i,j);
};
std::vector<size_t> path;
for (size_t i=0; i < n; ++i) {
for (size_t j=i+1; j < n; ++j){
double d = graph.get(i,j);
if (!std::isinf(d))
continue;
path.clear();
bool ret = dijkstraAlgorithm(n, i, j, path, distance);
assert(ret);
(void)ret;
// cout << "(" << i << "," << j << ") d: " << d << endl;
// cout << "Path size: " << path.size() << endl;
// for (auto idx : path)
// cout << idx << " ";
// cout << endl;
d = 0;
for (long k=0; k < long(path.size())-1; ++k) {
size_t idx0 = path[k];
size_t idx1 = path[k+1];
double d0 = graph.get(idx0, idx1);
assert(std::isinf(d0) == false);
d += d0;
}
graph.set(i, j, d);
graph.set(j, i, d);
}
}
}
void shortestPathFromGraph(const Matrix<double> &graph, size_t startIndex, size_t endIndex, std::vector<size_t> &pathIdx)
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
if (!std::isinf(graph.get(startIndex, endIndex))){
pathIdx.push_back(startIndex);
pathIdx.push_back(endIndex);
} else {
auto distance = [graph](size_t i, size_t j){
return graph.get(i, j);
};
bool ret = dijkstraAlgorithm(graph.getN(), startIndex, endIndex, pathIdx, distance);
assert(ret);
(void)ret;
}
}
//=========================================================================
// Tile calculation.
//=========================================================================
bool calculateTiles(const BoostPolygon &mArea,
double tileWidth,
double tileHeight,
double minTileArea,
std::vector<BoostPolygon> &tiles,
std::string &errorString)
{
using namespace snake_geometry;
if (tileWidth <= 0 || tileHeight <= 0 || minTileArea < 0) {
errorString = "Parameters tileWidth, tileHeight, minTileArea must be positive.";
return false;
}
BoundingBox bbox;
minimalBoundingBox(mArea, bbox);
double bbox_width = bbox.width;
double bbox_height = bbox.height;
BoostPoint origin = bbox.corners.outer()[0];
//cout << "Origin: " << origin[0] << " " << origin[1] << endl;
// Transform _measurementAreaENU polygon to bounding box coordinate system.
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate(bbox.angle*180/M_PI);
trans::translate_transformer<double, 2, 2> translate(-origin.get<0>(), -origin.get<1>());
BoostPolygon translated_polygon;
BoostPolygon rotated_polygon;
boost::geometry::transform(_measurementAreaENU, translated_polygon, translate);
boost::geometry::transform(translated_polygon, rotated_polygon, rotate);
bg::correct(rotated_polygon);
//cout << bg::wkt<BoostPolygon2D>(rotated_polygon) << endl;
size_t i_max = ceil(bbox_width/tileWidth);
size_t j_max = ceil(bbox_height/tileHeight);
if (i_max < 1 || j_max < 1) {
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(-bbox.angle*180/M_PI);
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
trans::translate_transformer<double, 2, 2> translate_back(origin.get<0>(), origin.get<1>());
for (size_t i = 0; i < i_max; ++i){
double x_min = tileWidth*i;
double x_max = x_min + tileWidth;
for (size_t j = 0; j < j_max; ++j){
double y_min = tileHeight*j;
double y_max = y_min + tileHeight;
BoostPolygon tile_unclipped;
tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});
tile_unclipped.outer().push_back(BoostPoint{x_min, y_max});
tile_unclipped.outer().push_back(BoostPoint{x_max, y_max});
tile_unclipped.outer().push_back(BoostPoint{x_max, y_min});
tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});
std::deque<BoostPolygon> boost_tiles;
if (!boost::geometry::intersection(tile_unclipped, rotated_polygon, boost_tiles))
continue;
for (BoostPolygon t : boost_tiles)
{
if (bg::area(t) > minTileArea){
// Transform boost_tile to world coordinate system.
BoostPolygon rotated_tile;
BoostPolygon translated_tile;
boost::geometry::transform(t, rotated_tile, rotate_back);
boost::geometry::transform(rotated_tile, translated_tile, translate_back);
// Store tile and calculate center point.
errorString = "No tiles calculated. Is the minTileArea parameter large enough?";
return false;
}
return true;
}
bool joinAreas(const std::vector<BoostPolygon> &areas, BoostPolygon &joinedArea)
if (areas.size() < 1)
return false;
std::deque<std::size_t> idxList;
for(size_t i = 1; i < areas.size(); ++i)
idxList.push_back(i);
BoostPolygon partialArea = areas[0];
while (idxList.size() > 0){
bool success = false;
for (auto it = idxList.begin(); it != idxList.end(); ++it){
bg::union_(partialArea, areas[*it], sol);
if (sol.size() > 0) {
partialArea = sol[0];
sol.clear;
idxList.erase(it);
success = true;
break;
}
bool waypoints(const BoostPolygon &mArea,
const BoostPolygon &jArea,
std::vector<BoostPolygon> &tiles,
std::vector<long> &progress,
BoostPoint &home,
double lineDistance,
double minTransectLength,
std::vector<BoostPoint>,
size_t arrivalPathLength,
size_t returnPathLength)
#ifdef SHOW_TIME
auto start = std::chrono::high_resolution_clock::now();
#endif
if (!_generateTransects(mArea, lineDistance, minTransectLength, transects))
#ifdef SHOW_TIME
auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << endl;
cout << "Execution time _generateTransects(): " << delta.count() << " ms" << endl;
#endif
//=======================================
// Route Transects using Google or-tools.
//=======================================
// Offset joined area.
BoostPolygon jAreaOffset;
offsetPolygon(jArea, jAreaOffset, detail::offsetConstant);
// Create vertex list;
BoostLineString vertices;
for (auto vertex : lstring){
vertices.push_back(vertex);
}
}
for (long i=0; i<long(jArea.outer().size())-1; ++i) {
vertices.push_back(jArea.outer()[i]);
}
for (auto ring : jArea.inners()) {
for (auto vertex : ring)
vertices.push_back(vertex);
}
size_t n1 = vertices.size();
// Generate routing model.
#ifdef SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
_generateRoutingModel(vertices, jAreaOffset, n0, dataModel, connectionGraph);
#ifdef SHOW_TIME
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << "Execution time _generateRoutingModel(): " << delta.count() << " ms" << endl;
#endif
RoutingIndexManager manager(dataModel.distanceMatrix.getN(),
dataModel.numVehicles,
dataModel.depot);
// Create Routing Model.
RoutingModel routing(manager);
// Create and register a transit callback.
const int transit_callback_index = routing.RegisterTransitCallback(
[&dataModel, &manager](int64 from_index, int64 to_index) -> int64 {
// Convert from routing variable Index to distance matrix NodeIndex.
auto from_node = manager.IndexToNode(from_index).value();
auto to_node = manager.IndexToNode(to_index).value();
return dataModel.distanceMatrix.get(from_node, to_node);
});
// Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
// Define Constraints.
size_t n = _transects.size()*2;
Solver *solver = routing.solver();
for (size_t i=0; i<n; i=i+2){
// auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
// auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1));
// auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
// auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
// auto c = solver->MakeNonEquality(cond0, cond1);
// solver->AddConstraint(c);
// alternative
auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1));
auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
vector<IntVar*> conds{cond0, cond1};
auto c = solver->MakeAllDifferent(conds);
solver->MakeRejectFilter();
solver->AddConstraint(c);
}
// Setting first solution heuristic.
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
FirstSolutionStrategy::PATH_CHEAPEST_ARC);
google::protobuf::Duration *tMax = new google::protobuf::Duration(); // seconds
tMax->set_seconds(10);
searchParameters.set_allocated_time_limit(tMax);
// Solve the problem.
#ifdef SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
const Assignment* solution = routing.SolveWithParameters(searchParameters);
#ifdef SHOW_TIME
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << "Execution time routing.SolveWithParameters(): " << delta.count() << " ms" << endl;
#endif
if (!solution || solution->Size() <= 1){
errorString = "Not able to solve the routing problem.";
return false;
}
// Extract waypoints from solution.
long index = routing.Start(0);
std::vector<size_t> route;
route.push_back(manager.IndexToNode(index).value());
while (!routing.IsEnd(index)){
index = solution->Value(routing.NextVar(index));
route.push_back(manager.IndexToNode(index).value());
}
// Connect transects
for (long i=0; i<long(route.size())-1; ++i){
size_t idx0 = route[i];
size_t idx1 = route[i+1];
pathIdx.clear();
shortestPathFromGraph(connectionGraph, idx0, idx1, pathIdx);
if ( i==0 )
arrivalPathLength = pathIdx.size();
bool FlightPlan::_generateTransects(double lineDistance,
double minTransectLength,
const BoostPolygon mArea,
const std::vector<BoostPolygon> &tiles,
const std::vector<long> &progress,
vector<BoostLineString> &transects,
std::string &errorString)
ostringstream strstream;
strstream << "Number of tiles ("
<< _scenario.getTilesENU().size()
<< ") is not equal to progress array length ("
<< _progress.size()
<< ")";
errorString = strstream.str();
return false;
}
// Calculate processed tiles (_progress[i] == 100) and subtract them from measurement area.
for (size_t i = 0; i < num_tiles; ++i) {
if (progress[i] == 100){
processedTiles.push_back(tiles[i]);
}
}
if (processedTiles.size() == num_tiles)
return true;
}
// Convert measurement area and tiles to clipper path.
ClipperLib::Path mAreaClipper;
for ( auto vertex : mArea.outer() ){
mAreaClipper.push_back(
ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(vertex.get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>()*CLIPPER_SCALE)
}
);
}
vector<ClipperLib::Path> processedTilesClipper;
for (auto t : processedTiles){
ClipperLib::Path path;
for (auto vertex : t.outer()){
path.push_back(ClipperLib::IntPoint{static_cast<ClipperLib::cInt>(vertex.get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>()*CLIPPER_SCALE)});
}
processedTilesClipper.push_back(path);
}
const BoundingBox bbox;
minimalBoundingBox(mArea, bbox);
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
double alpha = bbox.angle;
double x0 = bbox.corners.outer()[0].get<0>();
double y0 = bbox.corners.outer()[0].get<1>();
double bboxWidth = bbox.width;
double bboxHeight = bbox.height;
double delta = detail::offsetConstant;
size_t num_t = int(ceil((bboxHeight + 2*delta)/lineDistance)); // number of transects
vector<double> yCoords;
yCoords.reserve(num_t);
double y = -delta;
for (size_t i=0; i < num_t; ++i) {
yCoords.push_back(y);
y += lineDistance;
}
// Generate transects and convert them to clipper path.
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(-alpha*180/M_PI);
trans::translate_transformer<double, 2, 2> translate_back(x0, y0);
vector<ClipperLib::Path> transectsClipper;
transectsClipper.reserve(num_t);
for (size_t i=0; i < num_t; ++i) {
// calculate transect
BoostPoint v1{-delta, yCoords[i]};
BoostPoint v2{bboxWidth+delta, yCoords[i]};
BoostLineString transect;
transect.push_back(v1);
transect.push_back(v2);
// transform back
BoostLineString temp_transect;
bg::transform(transect, temp_transect, rotate_back);
transect.clear();
bg::transform(temp_transect, transect, translate_back);
ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(transect[0].get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(transect[0].get<1>()*CLIPPER_SCALE)};
ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(transect[1].get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(transect[1].get<1>()*CLIPPER_SCALE)};
ClipperLib::Path path{c1, c2};
transectsClipper.push_back(path);
}
// Perform clipping.
// Clip transects to measurement area.
ClipperLib::Clipper clipper;
clipper.AddPath(mAreaClipper, ClipperLib::ptClip, true);
clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
ClipperLib::PolyTree clippedTransecsPolyTree1;
clipper.Execute(ClipperLib::ctIntersection, clippedTransecsPolyTree1, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
// Subtract holes (tiles with measurement_progress == 100) from transects.
clipper.Clear();
for (auto child : clippedTransecsPolyTree1.Childs)
clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
clipper.AddPaths(processedTilesClipper, ClipperLib::ptClip, true);
ClipperLib::PolyTree clippedTransecsPolyTree2;
clipper.Execute(ClipperLib::ctDifference, clippedTransecsPolyTree2, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
// Extract transects from PolyTree and convert them to BoostLineString
for (auto child : clippedTransecsPolyTree2.Childs){
ClipperLib::Path clipperTransect = child->Contour;
BoostPoint v1{static_cast<double>(clipperTransect[0].X)/CLIPPER_SCALE,
static_cast<double>(clipperTransect[0].Y)/CLIPPER_SCALE};
BoostPoint v2{static_cast<double>(clipperTransect[1].X)/CLIPPER_SCALE,
static_cast<double>(clipperTransect[1].Y)/CLIPPER_SCALE};
BoostLineString transect{v1, v2};
if (bg::length(transect) >= minTransectLength)
return false;
return true;
}
}