Newer
Older
#include <iostream>
#include "snake.h"
#include "clipper/clipper.hpp"
#define CLIPPER_SCALE 10000
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
using namespace operations_research;
#ifndef NDEBUG
//#define SHOW_TIME
#endif
using namespace snake_geometry;
using namespace std;
namespace bg = boost::geometry;
namespace trans = bg::strategy::transform;
namespace snake {
Scenario::Scenario() :
_mAreaBoundingBox(min_bbox_rt{0, 0, 0, BoostPolygon{}})
{
}
bool Scenario::addArea(Area &area)
{
if (area.geoPolygon.size() < 3){
errorString = "Area has less than three vertices.";
return false;
}
if (area.type == MeasurementArea)
return Scenario::_setMeasurementArea(area);
else if (area.type == ServiceArea)
return Scenario::_setServiceArea(area);
else if (area.type == Corridor)
return Scenario::_setCorridor(area);
return false;
}
bool Scenario::update(double tileWidth, double tileHeight, double minTileArea)
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
{
if (!_areas2enu())
return false;
if (!_calculateBoundingBox())
return false;
if (!_calculateTiles(tileWidth, tileHeight, minTileArea))
return false;
if (!_calculateJoinedArea())
return false;
return true;
}
bool Scenario::_areas2enu()
{
if (_measurementArea.geoPolygon.size() > 0){
_measurementAreaENU.clear();
for(auto vertex : _measurementArea.geoPolygon) {
Point3D ENUVertex;
toENU(_geoOrigin, Point3D{vertex[0], vertex[1], _measurementArea.altitude}, ENUVertex);
_measurementAreaENU.outer().push_back(BoostPoint{ENUVertex[0], ENUVertex[1]});
}
bg::correct(_measurementAreaENU);
_serviceAreaENU.clear();
if (_serviceArea.geoPolygon.size() > 0){
for(auto vertex : _serviceArea.geoPolygon) {
Point3D ENUVertex;
toENU(_geoOrigin, Point3D{vertex[0], vertex[1], _serviceArea.altitude}, ENUVertex);
_serviceAreaENU.outer().push_back(BoostPoint{ENUVertex[0], ENUVertex[1]});
}
} else{
errorString = "Service area has no vertices.";
return false;
}
bg::correct(_serviceAreaENU);
polygonCenter(_serviceAreaENU, _homePositionENU);
fromENU(_geoOrigin, Point3D{_homePositionENU.get<0>(), _homePositionENU.get<1>(), 0}, _homePosition);
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
_corridorENU.clear();
if (_corridor.geoPolygon.size() > 0){
for(auto vertex : _corridor.geoPolygon) {
Point3D ENUVertex;
toENU(_geoOrigin, Point3D{vertex[0], vertex[1], _corridor.altitude}, ENUVertex);
_corridorENU.outer().push_back(BoostPoint{ENUVertex[0], ENUVertex[1]});
}
}
bg::correct(_corridorENU);
return true;
}
errorString = "Measurement area has no vertices.";
return false;
}
bool Scenario::_setMeasurementArea(Area &area)
{
if (area.geoPolygon.size() <= 0)
return false;
GeoPoint2D origin2D = area.geoPolygon[0];
_geoOrigin = GeoPoint3D{origin2D[0], origin2D[1], 0};
_measurementArea = area;
_measurementAreaENU.clear();
_serviceAreaENU.clear();
_corridorENU.clear();
return true;
}
bool Scenario::_setServiceArea(Area &area)
{
if (area.geoPolygon.size() <= 0)
return false;
_serviceArea = area;
_serviceAreaENU.clear();
return true;
}
bool Scenario::_setCorridor(Area &area)
{
if (area.geoPolygon.size() <= 0)
return false;
_corridor = area;
_corridorENU.clear();
return true;
}
bool Scenario::_calculateBoundingBox()
{
minimalBoundingBox(_measurementAreaENU, _mAreaBoundingBox);
return true;
}
/**
* Devides the (measurement area) bounding box into tiles and clips it to the measurement area.
*
* Devides the (measurement area) bounding box into tiles of width \p tileWidth and height \p tileHeight.
* Clips the resulting tiles to the measurement area. Tiles are rejected, if their area is smaller than \p minTileArea.
* The function assumes that \a _measurementAreaENU and \a _mAreaBoundingBox have correct values. \see \ref Scenario::_areas2enu() and \ref
* Scenario::_calculateBoundingBox().
*
* @param tileWidth The width (>0) of a tile.
* @param tileHeight The heigth (>0) of a tile.
* @param minTileArea The minimal area (>0) of a tile.
*
* @return Returns true if successful.
*/
bool Scenario::_calculateTiles(double tileWidth, double tileHeight, double minTileArea)
{
_tilesENU.clear();
_tileCenterPointsENU.clear();
_tiles.clear();
_tileCenterPoints.clear();
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
if (tileWidth <= 0 || tileHeight <= 0 || minTileArea <= 0) {
errorString = "Parameters tileWidth, tileHeight, minTileArea must be positive.";
return false;
}
double bbox_width = _mAreaBoundingBox.width;
double bbox_height = _mAreaBoundingBox.height;
BoostPoint origin = _mAreaBoundingBox.corners.outer()[0];
//cout << "Origin: " << origin[0] << " " << origin[1] << endl;
// Transform _measurementAreaENU polygon to bounding box coordinate system.
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate(_mAreaBoundingBox.angle*180/M_PI);
trans::translate_transformer<double, 2, 2> translate(-origin.get<0>(), -origin.get<1>());
BoostPolygon translated_polygon;
BoostPolygon rotated_polygon;
boost::geometry::transform(_measurementAreaENU, translated_polygon, translate);
boost::geometry::transform(translated_polygon, rotated_polygon, rotate);
bg::correct(rotated_polygon);
//cout << bg::wkt<BoostPolygon2D>(rotated_polygon) << endl;
size_t i_max = ceil(bbox_width/tileWidth);
size_t j_max = ceil(bbox_height/tileHeight);
if (i_max < 1 || j_max < 1) {
errorString = "tileWidth or tileHeight to small.";
return false;
}
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(-_mAreaBoundingBox.angle*180/M_PI);
trans::translate_transformer<double, 2, 2> translate_back(origin.get<0>(), origin.get<1>());
for (size_t i = 0; i < i_max; ++i){
double x_min = tileWidth*i;
double x_max = x_min + tileWidth;
for (size_t j = 0; j < j_max; ++j){
double y_min = tileHeight*j;
double y_max = y_min + tileHeight;
BoostPolygon tile_unclipped;
tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});
tile_unclipped.outer().push_back(BoostPoint{x_min, y_max});
tile_unclipped.outer().push_back(BoostPoint{x_max, y_max});
tile_unclipped.outer().push_back(BoostPoint{x_max, y_min});
tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});
std::deque<BoostPolygon> boost_tiles;
if (!boost::geometry::intersection(tile_unclipped, rotated_polygon, boost_tiles))
continue;
for (BoostPolygon t : boost_tiles)
{
if (bg::area(t) > minTileArea){
// Transform boost_tile to world coordinate system.
BoostPolygon rotated_tile;
BoostPolygon translated_tile;
boost::geometry::transform(t, rotated_tile, rotate_back);
boost::geometry::transform(rotated_tile, translated_tile, translate_back);
// Store tile and calculate center point.
_tilesENU.push_back(translated_tile);
BoostPoint tile_center;
polygonCenter(translated_tile, tile_center);
_tileCenterPointsENU.push_back(tile_center);
}
}
}
}
if (_tilesENU.size() < 1){
errorString = "No tiles calculated. Is the minTileArea parameter large enough?";
return false;
}
for ( auto tile : _tilesENU){
GeoPoint3DList geoTile;
for ( int i=0; i < int(tile.outer().size())-1; ++i) {
BoostPoint vertex(tile.outer()[i]);
GeoPoint3D geoVertex;
fromENU(_geoOrigin, Point3D{vertex.get<0>(), vertex.get<1>(), 0}, geoVertex);
geoTile.push_back(geoVertex);
}
_tiles.push_back(geoTile);
}
for ( auto vertex : _tileCenterPointsENU){
GeoPoint3D geoVertex;
fromENU(_geoOrigin, Point3D{vertex.get<0>(), vertex.get<1>(), 0}, geoVertex);
_tileCenterPoints.push_back(geoVertex);
}
return true;
}
bool Scenario::_calculateJoinedArea()
{
_joinedAreaENU.clear();
// Measurement area and service area overlapping?
bool overlapingSerMeas = bg::intersects(_measurementAreaENU, _serviceAreaENU) ? true : false;
bool corridorValid = _corridorENU.outer().size() > 0 ? true : false;
// Check if corridor is connecting measurement area and service area.
bool corridor_is_connection = false;
if (corridorValid) {
// Corridor overlaping with measurement area?
if ( bg::intersects(_corridorENU, _measurementAreaENU) ) {
// Corridor overlaping with service area?
if ( bg::intersects(_corridorENU, _serviceAreaENU) ) {
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
}
}
// Are areas joinable?
std::deque<BoostPolygon> sol;
BoostPolygon partialArea = _measurementAreaENU;
if (overlapingSerMeas){
if(corridor_is_connection){
bg::union_(partialArea, _corridorENU, sol);
}
} else if (corridor_is_connection){
bg::union_(partialArea, _corridorENU, sol);
} else {
errorString = "Areas are not overlapping";
return false;
}
if (sol.size() > 0) {
partialArea = sol[0];
sol.clear();
}
// Join areas.
bg::union_(partialArea, _serviceAreaENU, sol);
if (sol.size() > 0) {
_joinedAreaENU = sol[0];
} else {
return false;
}
return true;
}
struct FlightPlan::RoutingDataModel{
Matrix<int64_t> distanceMatrix;
long numVehicles;
RoutingIndexManager::NodeIndex depot;
};
FlightPlan::FlightPlan()
{
}
bool FlightPlan::generate(double lineDistance, double minTransectLength)
{
_waypointsENU.clear();
_waypoints.clear();
_arrivalPathIdx.clear();
_returnPathIdx.clear();
#ifndef NDEBUG
_PathVertices.clear();
#endif
#ifdef SHOW_TIME
auto start = std::chrono::high_resolution_clock::now();
#endif
if (!_generateTransects(lineDistance, minTransectLength))
return false;
#ifdef SHOW_TIME
auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << endl;
cout << "Execution time _generateTransects(): " << delta.count() << " ms" << endl;
#endif
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
//=======================================
// Route Transects using Google or-tools.
//=======================================
// Offset joined area.
const BoostPolygon &jArea = _scenario.getJoineAreaENU();
BoostPolygon jAreaOffset;
offsetPolygon(jArea, jAreaOffset, detail::offsetConstant);
// Create vertex list;
BoostLineString vertices;
size_t n_t = _transects.size()*2;
size_t n0 = n_t+1;
vertices.reserve(n0);
for (auto lstring : _transects){
for (auto vertex : lstring){
vertices.push_back(vertex);
}
}
vertices.push_back(_scenario.getHomePositonENU());
for (long i=0; i<long(jArea.outer().size())-1; ++i) {
vertices.push_back(jArea.outer()[i]);
}
for (auto ring : jArea.inners()) {
for (auto vertex : ring)
vertices.push_back(vertex);
}
size_t n1 = vertices.size();
// Generate routing model.
#ifdef SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
_generateRoutingModel(vertices, jAreaOffset, n0, dataModel, connectionGraph);
#ifdef SHOW_TIME
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << "Execution time _generateRoutingModel(): " << delta.count() << " ms" << endl;
#endif
// Create Routing Index Manager.
RoutingIndexManager manager(dataModel.distanceMatrix.getN(), dataModel.numVehicles,
dataModel.depot);
// Create Routing Model.
RoutingModel routing(manager);
// Create and register a transit callback.
const int transit_callback_index = routing.RegisterTransitCallback(
[&dataModel, &manager](int64 from_index, int64 to_index) -> int64 {
// Convert from routing variable Index to distance matrix NodeIndex.
auto from_node = manager.IndexToNode(from_index).value();
auto to_node = manager.IndexToNode(to_index).value();
return dataModel.distanceMatrix.get(from_node, to_node);
});
// Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
// Define Constraints.
size_t n = _transects.size()*2;
Solver *solver = routing.solver();
for (size_t i=0; i<n; i=i+2){
// auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
// auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1));
// auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
// auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
// auto c = solver->MakeNonEquality(cond0, cond1);
// solver->AddConstraint(c);
// alternative
auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1));
auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
vector<IntVar*> conds{cond0, cond1};
auto c = solver->MakeAllDifferent(conds);
solver->MakeRejectFilter();
solver->AddConstraint(c);
}
// Setting first solution heuristic.
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
FirstSolutionStrategy::PATH_CHEAPEST_ARC);
google::protobuf::Duration *tMax = new google::protobuf::Duration(); // seconds
tMax->set_seconds(10);
searchParameters.set_allocated_time_limit(tMax);
// Solve the problem.
#ifdef SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
const Assignment* solution = routing.SolveWithParameters(searchParameters);
#ifdef SHOW_TIME
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << "Execution time routing.SolveWithParameters(): " << delta.count() << " ms" << endl;
#endif
if (!solution || solution->Size() <= 1){
errorString = "Not able to solve the routing problem.";
return false;
}
// Extract waypoints from solution.
long index = routing.Start(0);
std::vector<size_t> route;
route.push_back(manager.IndexToNode(index).value());
while (!routing.IsEnd(index)){
index = solution->Value(routing.NextVar(index));
route.push_back(manager.IndexToNode(index).value());
}
// Connect transects
#ifndef NDEBUG
_PathVertices = vertices;
#endif
{
_waypointsENU.push_back(vertices[route[0]]);
vector<size_t> pathIdx;
long arrivalPathLength = 0;
for (long i=0; i<long(route.size())-1; ++i){
size_t idx0 = route[i];
size_t idx1 = route[i+1];
pathIdx.clear();
shortestPathFromGraph(connectionGraph, idx0, idx1, pathIdx);
if ( i==0 )
arrivalPathLength = pathIdx.size();
for (size_t j=1; j<pathIdx.size(); ++j)
_waypointsENU.push_back(vertices[pathIdx[j]]);
}
long returnPathLength = pathIdx.size();
for (long i=returnPathLength; i > 0; --i)
_returnPathIdx.push_back(_waypointsENU.size()-i);
for (long i=0; i < arrivalPathLength; ++i)
_arrivalPathIdx.push_back(i);
}
// Back transform waypoints.
GeoPoint3D origin{_scenario.getOrigin()};
for (auto vertex : _waypointsENU) {
GeoPoint3D geoVertex;
fromENU(origin, Point3D{vertex.get<0>(), vertex.get<1>(), 0}, geoVertex);
_waypoints.push_back(GeoPoint2D{geoVertex[0], geoVertex[1]});
}
return true;
}
bool FlightPlan::_generateTransects(double lineDistance, double minTransectLength)
{
_transects.clear();
if (_scenario.getTilesENU().size() != _progress.size()){
ostringstream strstream;
strstream << "Number of tiles ("
<< _scenario.getTilesENU().size()
<< ") is not equal to progress array length ("
<< _progress.size()
<< ")";
errorString = strstream.str();
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
return false;
}
// Calculate processed tiles (_progress[i] == 100) and subtract them from measurement area.
size_t num_tiles = _progress.size();
vector<BoostPolygon> processedTiles;
{
const auto &tiles = _scenario.getTilesENU();
for (size_t i=0; i<num_tiles; ++i) {
if (_progress[i] == 100){
processedTiles.push_back(tiles[i]);
}
}
if (processedTiles.size() == num_tiles)
return true;
}
// Convert measurement area and tiles to clipper path.
ClipperLib::Path mAreaClipper;
for ( auto vertex : _scenario.getMeasurementAreaENU().outer() ){
mAreaClipper.push_back(ClipperLib::IntPoint{static_cast<ClipperLib::cInt>(vertex.get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>()*CLIPPER_SCALE)});
}
vector<ClipperLib::Path> processedTilesClipper;
for (auto t : processedTiles){
ClipperLib::Path path;
for (auto vertex : t.outer()){
path.push_back(ClipperLib::IntPoint{static_cast<ClipperLib::cInt>(vertex.get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>()*CLIPPER_SCALE)});
}
processedTilesClipper.push_back(path);
}
const min_bbox_rt &bbox = _scenario.getMeasurementAreaBBoxENU();
double alpha = bbox.angle;
double x0 = bbox.corners.outer()[0].get<0>();
double y0 = bbox.corners.outer()[0].get<1>();
double bboxWidth = bbox.width;
double bboxHeight = bbox.height;
double delta = detail::offsetConstant;
size_t num_t = int(ceil((bboxHeight + 2*delta)/lineDistance)); // number of transects
vector<double> yCoords;
yCoords.reserve(num_t);
double y = -delta;
for (size_t i=0; i < num_t; ++i) {
yCoords.push_back(y);
y += lineDistance;
}
// Generate transects and convert them to clipper path.
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(-alpha*180/M_PI);
trans::translate_transformer<double, 2, 2> translate_back(x0, y0);
vector<ClipperLib::Path> transectsClipper;
transectsClipper.reserve(num_t);
for (size_t i=0; i < num_t; ++i) {
// calculate transect
BoostPoint v1{-delta, yCoords[i]};
BoostPoint v2{bboxWidth+delta, yCoords[i]};
BoostLineString transect;
transect.push_back(v1);
transect.push_back(v2);
// transform back
BoostLineString temp_transect;
bg::transform(transect, temp_transect, rotate_back);
transect.clear();
bg::transform(temp_transect, transect, translate_back);
ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(transect[0].get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(transect[0].get<1>()*CLIPPER_SCALE)};
ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(transect[1].get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(transect[1].get<1>()*CLIPPER_SCALE)};
ClipperLib::Path path{c1, c2};
transectsClipper.push_back(path);
}
// Perform clipping.
// Clip transects to measurement area.
ClipperLib::Clipper clipper;
clipper.AddPath(mAreaClipper, ClipperLib::ptClip, true);
clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
ClipperLib::PolyTree clippedTransecsPolyTree1;
clipper.Execute(ClipperLib::ctIntersection, clippedTransecsPolyTree1, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
// Subtract holes (tiles with measurement_progress == 100) from transects.
clipper.Clear();
for (auto child : clippedTransecsPolyTree1.Childs)
clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
clipper.AddPaths(processedTilesClipper, ClipperLib::ptClip, true);
ClipperLib::PolyTree clippedTransecsPolyTree2;
clipper.Execute(ClipperLib::ctDifference, clippedTransecsPolyTree2, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
// Extract transects from PolyTree and convert them to BoostLineString
for (auto child : clippedTransecsPolyTree2.Childs){
ClipperLib::Path clipperTransect = child->Contour;
BoostPoint v1{static_cast<double>(clipperTransect[0].X)/CLIPPER_SCALE,
static_cast<double>(clipperTransect[0].Y)/CLIPPER_SCALE};
BoostPoint v2{static_cast<double>(clipperTransect[1].X)/CLIPPER_SCALE,
static_cast<double>(clipperTransect[1].Y)/CLIPPER_SCALE};
BoostLineString transect{v1, v2};
if (bg::length(transect) >= minTransectLength)
_transects.push_back(transect);
}
if (_transects.size() < 1)
return false;
return true;
}
void FlightPlan::_generateRoutingModel(const BoostLineString &vertices,
const BoostPolygon &polygonOffset,
size_t n0,
#ifdef SHOW_TIME
auto start = std::chrono::high_resolution_clock::now();
#endif
graphFromPolygon(polygonOffset, vertices, graph);
#ifdef SHOW_TIME
auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now()-start);
cout << "Execution time graphFromPolygon(): " << delta.count() << " ms" << endl;
#endif
// cout << endl;
// for (size_t i=0; i<graph.size(); ++i){
// vector<double> &row = graph[i];
// for (size_t j=0; j<row.size();++j){
// cout << "(" << i << "," << j << "):" << row[j] << " ";
// }
// cout << endl;
// }
// cout << endl;
Matrix<double> distanceMatrix(graph);
#ifdef SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
#ifdef SHOW_TIME
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now()-start);
cout << "Execution time toDistanceMatrix(): " << delta.count() << " ms" << endl;
#endif
dataModel.distanceMatrix.setDimension(n0, n0);
for (size_t i=0; i<n0; ++i){
dataModel.distanceMatrix.set(i, i, 0);
for (size_t j=i+1; j<n0; ++j){
dataModel.distanceMatrix.set(i, j, int64_t(distanceMatrix.get(i, j)*CLIPPER_SCALE));
dataModel.distanceMatrix.set(j, i, int64_t(distanceMatrix.get(i, j)*CLIPPER_SCALE));
}
}
dataModel.numVehicles = 1;
dataModel.depot = n0-1;
}
Area::Area() : Area(GeoPoint2DList(), 0, 1, AreaType::MeasurementArea)
{
}
Area::Area(const GeoPoint2DList &gP, AreaType tp) : Area(gP, 0, 1, tp)
{
}
Area::Area(const GeoPoint2DList &gP, double alt, size_t l, AreaType tp) :
geoPolygon(gP)
, altitude(alt)
, layers(l)
, type(tp)
{
}