Newer
Older
#include <mapbox/polylabel.hpp>
#include <mapbox/geometry.hpp>
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/polygon.hpp>
#include <boost/geometry/geometries/adapted/boost_tuple.hpp>
#include "clipper/clipper.hpp"
#define CLIPPER_SCALE 10000
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
#ifndef NDEBUG
//#define SHOW_TIME
#endif
namespace bg = boost::geometry;
namespace trans = bg::strategy::transform;
namespace snake {
//=========================================================================
// Geometry stuff.
//=========================================================================
BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(cs::cartesian)
void polygonCenter(const BoostPolygon &polygon, BoostPoint ¢er)
using namespace mapbox;
if (polygon.outer().empty())
return;
geometry::polygon<double> p;
geometry::linear_ring<double> lr1;
for (size_t i = 0; i < polygon.outer().size(); ++i) {
geometry::point<double> vertex(polygon.outer()[i].get<0>(), polygon.outer()[i].get<1>());
lr1.push_back(vertex);
}
p.push_back(lr1);
geometry::point<double> c = polylabel(p);
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
void minimalBoundingBox(const BoostPolygon &polygon, BoundingBox &minBBox)
{
/*
Find the minimum-area bounding box of a set of 2D points
The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates.
The first and last points points must be the same, making a closed polygon.
This program finds the rotation angles of each edge of the convex polygon,
then tests the area of a bounding box aligned with the unique angles in
90 degrees of the 1st Quadrant.
Returns the
Tested with Python 2.6.5 on Ubuntu 10.04.4 (original version)
Results verified using Matlab
Copyright (c) 2013, David Butterworth, University of Queensland
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Willow Garage, Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
if (polygon.outer().empty())
return;
BoostPolygon convex_hull;
bg::convex_hull(polygon, convex_hull);
//cout << "Convex hull: " << bg::wkt<BoostPolygon2D>(convex_hull) << endl;
//# Compute edges (x2-x1,y2-y1)
std::vector<BoostPoint> edges;
auto convex_hull_outer = convex_hull.outer();
for (long i=0; i < long(convex_hull_outer.size())-1; ++i) {
BoostPoint p1 = convex_hull_outer.at(i);
BoostPoint p2 = convex_hull_outer.at(i+1);
double edge_x = p2.get<0>() - p1.get<0>();
double edge_y = p2.get<1>() - p1.get<1>();
edges.push_back(BoostPoint{edge_x, edge_y});
}
// cout << "Edges: ";
// for (auto e : edges)
// cout << e.get<0>() << " " << e.get<1>() << ",";
// cout << endl;
// Calculate unique edge angles atan2(y/x)
double angle_scale = 1e3;
std::set<long> angles_long;
for (auto vertex : edges) {
double angle = std::fmod(atan2(vertex.get<1>(), vertex.get<0>()), M_PI / 2);
angle = angle < 0 ? angle + M_PI / 2 : angle; // want strictly positive answers
angles_long.insert(long(round(angle*angle_scale)));
}
std::vector<double> edge_angles;
for (auto a : angles_long)
edge_angles.push_back(double(a)/angle_scale);
// cout << "Unique angles: ";
// for (auto e : edge_angles)
// cout << e*180/M_PI << ",";
// cout << endl;
double min_area = std::numeric_limits<double>::infinity();
// Test each angle to find bounding box with smallest area
// print "Testing", len(edge_angles), "possible rotations for bounding box... \n"
for (double angle : edge_angles){
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle*180/M_PI);
BoostPolygon hull_rotated;
bg::transform(convex_hull, hull_rotated, rotate);
//cout << "Convex hull rotated: " << bg::wkt<BoostPolygon2D>(hull_rotated) << endl;
bg::model::box<BoostPoint> box;
bg::envelope(hull_rotated, box);
// cout << "Bounding box: " << bg::wkt<bg::model::box<BoostPoint2D>>(box) << endl;
//# print "Rotated hull points are \n", rot_points
BoostPoint min_corner = box.min_corner();
BoostPoint max_corner = box.max_corner();
double min_x = min_corner.get<0>();
double max_x = max_corner.get<0>();
double min_y = min_corner.get<1>();
double max_y = max_corner.get<1>();
// cout << "min_x: " << min_x << endl;
// cout << "max_x: " << max_x << endl;
// cout << "min_y: " << min_y << endl;
// cout << "max_y: " << max_y << endl;
// Calculate height/width/area of this bounding rectangle
double width = max_x - min_x;
double height = max_y - min_y;
double area = width * height;
// cout << "Width: " << width << endl;
// cout << "Height: " << height << endl;
// cout << "area: " << area << endl;
// cout << "angle: " << angle*180/M_PI << endl;
// Store the smallest rect found first (a simple convex hull might have 2 answers with same area)
if (area < min_area){
min_area = area;
minBBox.angle = angle;
minBBox.width = width;
minBBox.height = height;
minBBox.corners.clear();
minBBox.corners.outer().push_back(BoostPoint{min_x, min_y});
minBBox.corners.outer().push_back(BoostPoint{min_x, max_y});
minBBox.corners.outer().push_back(BoostPoint{max_x, max_y});
minBBox.corners.outer().push_back(BoostPoint{max_x, min_y});
minBBox.corners.outer().push_back(BoostPoint{min_x, min_y});
}
//cout << endl << endl;
}
// Transform corners of minimal bounding box.
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(-minBBox.angle*180/M_PI);
BoostPolygon rotated_polygon;
bg::transform(minBBox.corners, rotated_polygon, rotate);
minBBox.corners = rotated_polygon;
void offsetPolygon(const BoostPolygon &polygon, BoostPolygon &polygonOffset, double offset)
bg::strategy::buffer::distance_symmetric<double> distance_strategy(offset);
bg::strategy::buffer::join_miter join_strategy(3);
bg::strategy::buffer::end_flat end_strategy;
bg::strategy::buffer::point_square point_strategy;
bg::strategy::buffer::side_straight side_strategy;
bg::model::multi_polygon<BoostPolygon> result;
bg::buffer(polygon, result, distance_strategy, side_strategy, join_strategy, end_strategy, point_strategy);
if (result.size() > 0)
polygonOffset = result[0];
void graphFromPolygon(const BoostPolygon &polygon, const BoostLineString &vertices, Matrix<double> &graph)
size_t n = graph.getN();
for (size_t i=0; i < n; ++i) {
BoostPoint v1 = vertices[i];
for (size_t j=i+1; j < n; ++j){
BoostPoint v2 = vertices[j];
BoostLineString path{v1, v2};
double distance = 0;
if (!bg::within(path, polygon))
distance = std::numeric_limits<double>::infinity();
else
distance = bg::length(path);
graph.set(i, j, distance);
graph.set(j, i, distance);
}
}
bool dijkstraAlgorithm(const size_t numElements,
size_t startIndex,
size_t endIndex,
std::vector<size_t> &elementPath,
std::function<double (const size_t, const size_t)> distanceDij)
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
if ( startIndex >= numElements
|| endIndex >= numElements
|| endIndex == startIndex) {
return false;
}
// Node struct
// predecessorIndex is the index of the predecessor node (nodeList[predecessorIndex])
// distance is the distance between the node and the start node
// node number is stored by the position in nodeList
struct Node{
int predecessorIndex = -1;
double distance = std::numeric_limits<double>::infinity();
};
// The list with all Nodes (elements)
std::vector<Node> nodeList(numElements);
// This list will be initalized with indices referring to the elements of nodeList.
// Elements will be successively remove during the execution of the Dijkstra Algorithm.
std::vector<size_t> workingSet(numElements);
//append elements to node list
for (size_t i = 0; i < numElements; ++i) workingSet[i] = i;
nodeList[startIndex].distance = 0;
// Dijkstra Algorithm
// https://de.wikipedia.org/wiki/Dijkstra-Algorithmus
while (workingSet.size() > 0) {
// serach Node with minimal distance
double minDist = std::numeric_limits<double>::infinity();
int minDistIndex_WS = -1; // WS = workinSet
for (size_t i = 0; i < workingSet.size(); ++i) {
const int nodeIndex = workingSet.at(i);
const double dist = nodeList.at(nodeIndex).distance;
if (dist < minDist) {
minDist = dist;
minDistIndex_WS = i;
}
}
if (minDistIndex_WS == -1)
return false;
size_t indexU_NL = workingSet.at(minDistIndex_WS); // NL = nodeList
workingSet.erase(workingSet.begin()+minDistIndex_WS);
if (indexU_NL == endIndex) // shortest path found
break;
const double distanceU = nodeList.at(indexU_NL).distance;
//update distance
for (size_t i = 0; i < workingSet.size(); ++i) {
int indexV_NL = workingSet[i]; // NL = nodeList
Node* v = &nodeList[indexV_NL];
double dist = distanceDij(indexU_NL, indexV_NL);
// is ther an alternative path which is shorter?
double alternative = distanceU + dist;
if (alternative < v->distance) {
v->distance = alternative;
v->predecessorIndex = indexU_NL;
}
}
}
// end Djikstra Algorithm
// reverse assemble path
int e = endIndex;
while (1) {
if (e == -1) {
if (elementPath[0] == startIndex)// check if starting point was reached
break;
return false;
}
elementPath.insert(elementPath.begin(), e);
//Update Node
e = nodeList[e].predecessorIndex;
}
return true;
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
void toDistanceMatrix(Matrix<double> &graph)
{
size_t n = graph.getN();
auto distance = [graph](size_t i, size_t j){
return graph.get(i,j);
};
std::vector<size_t> path;
for (size_t i=0; i < n; ++i) {
for (size_t j=i+1; j < n; ++j){
double d = graph.get(i,j);
if (!std::isinf(d))
continue;
path.clear();
bool ret = dijkstraAlgorithm(n, i, j, path, distance);
assert(ret);
(void)ret;
// cout << "(" << i << "," << j << ") d: " << d << endl;
// cout << "Path size: " << path.size() << endl;
// for (auto idx : path)
// cout << idx << " ";
// cout << endl;
d = 0;
for (long k=0; k < long(path.size())-1; ++k) {
size_t idx0 = path[k];
size_t idx1 = path[k+1];
double d0 = graph.get(idx0, idx1);
assert(std::isinf(d0) == false);
d += d0;
}
graph.set(i, j, d);
graph.set(j, i, d);
}
}
}
void shortestPathFromGraph(const Matrix<double> &graph, size_t startIndex, size_t endIndex, std::vector<size_t> &pathIdx)
if (!std::isinf(graph.get(startIndex, endIndex))){
pathIdx.push_back(startIndex);
pathIdx.push_back(endIndex);
} else {
auto distance = [graph](size_t i, size_t j){
return graph.get(i, j);
};
bool ret = dijkstraAlgorithm(graph.getN(), startIndex, endIndex, pathIdx, distance);
assert(ret);
(void)ret;
}
//=========================================================================
//=========================================================================
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
}Scenario::Scenario() :
_tileWidth(5)
, _tileHeight(5)
, _minTileArea(0)
, _needsUpdate(true)
{
}
void Scenario::setMeasurementArea(const BoostPolygon &area)
{
_needsUpdate = true;
_mArea = area;
}
void Scenario::setServiceArea(const BoostPolygon &area)
{
_needsUpdate = true;
_sArea = area;
}
void Scenario::setCorridor(const BoostPolygon &area)
{
_needsUpdate = true;
_corridor = area;
}
BoostPolygon &Scenario::measurementArea() {
_needsUpdate = true;
return _mArea;
}
BoostPolygon &Scenario::serviceArea() {
_needsUpdate = true;
return _sArea;
}
BoostPolygon &Scenario::corridor() {
_needsUpdate = true;
return _corridor;
}
const BoundingBox &Scenario::mAreaBoundingBox() const
{
return _mAreaBoundingBox;
}
const BoostPolygon &Scenario::measurementArea() const
{
return _mArea;
}
const BoostPolygon &Scenario::serviceArea() const
{
return _sArea;
}
const BoostPolygon &Scenario::corridor() const
{
return _corridor;
}
BoostPolygon &Scenario::measurementArea()
{
return _mArea;
}
BoostPolygon &Scenario::serviceArea()
{
return _sArea;
}
BoostPolygon &Scenario::corridor()
{
return _corridor;
}
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
const BoostPolygon &Scenario::joinedArea() const {
return _jArea;
}
const vector<BoostPolygon> &Scenario::tiles() const{
return _tiles;
}
const BoostLineString &Scenario::tileCenterPoints() const{
return _tileCenterPoints;
}
const BoundingBox &Scenario::measurementAreaBBox() const{
return _mAreaBoundingBox;
}
const BoostPoint &Scenario::homePositon() const{
return _homePosition;
}
bool Scenario::update()
{
if ( !_needsUpdate )
return true;
if (!_calculateBoundingBox())
return false;
if (!_calculateTiles())
return false;
if (!_calculateJoinedArea())
return false;
_needsUpdate = false;
return true;
}
bool Scenario::_calculateBoundingBox()
{
minimalBoundingBox(_mArea, _mAreaBoundingBox);
return true;
}
/**
* Devides the (measurement area) bounding box into tiles and clips it to the measurement area.
*
* Devides the (measurement area) bounding box into tiles of width \p tileWidth and height \p tileHeight.
* Clips the resulting tiles to the measurement area. Tiles are rejected, if their area is smaller than \p minTileArea.
* The function assumes that \a _mArea and \a _mAreaBoundingBox have correct values. \see \ref Scenario::_areas2enu() and \ref
* Scenario::_calculateBoundingBox().
*
* @param tileWidth The width (>0) of a tile.
* @param tileHeight The heigth (>0) of a tile.
* @param minTileArea The minimal area (>0) of a tile.
*
* @return Returns true if successful.
*/
bool Scenario::_calculateTiles()
{
_tiles.clear();
_tileCenterPoints.clear();
if (_tileWidth <= 0 || _tileHeight <= 0 || _minTileArea < 0) {
errorString = "Parameters tileWidth, tileHeight, minTileArea must be positive.";
return false;
}
double bbox_width = _mAreaBoundingBox.width;
double bbox_height = _mAreaBoundingBox.height;
BoostPoint origin = _mAreaBoundingBox.corners.outer()[0];
//cout << "Origin: " << origin[0] << " " << origin[1] << endl;
// Transform _mArea polygon to bounding box coordinate system.
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate(_mAreaBoundingBox.angle*180/M_PI);
trans::translate_transformer<double, 2, 2> translate(-origin.get<0>(), -origin.get<1>());
BoostPolygon translated_polygon;
BoostPolygon rotated_polygon;
boost::geometry::transform(_mArea, translated_polygon, translate);
boost::geometry::transform(translated_polygon, rotated_polygon, rotate);
bg::correct(rotated_polygon);
//cout << bg::wkt<BoostPolygon2D>(rotated_polygon) << endl;
size_t i_max = ceil(bbox_width/tileWidth);
size_t j_max = ceil(bbox_height/tileHeight);
if (i_max < 1 || j_max < 1) {
errorString = "Tile width or Tile height to large.";
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(-_mAreaBoundingBox.angle*180/M_PI);
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
trans::translate_transformer<double, 2, 2> translate_back(origin.get<0>(), origin.get<1>());
for (size_t i = 0; i < i_max; ++i){
double x_min = tileWidth*i;
double x_max = x_min + tileWidth;
for (size_t j = 0; j < j_max; ++j){
double y_min = tileHeight*j;
double y_max = y_min + tileHeight;
BoostPolygon tile_unclipped;
tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});
tile_unclipped.outer().push_back(BoostPoint{x_min, y_max});
tile_unclipped.outer().push_back(BoostPoint{x_max, y_max});
tile_unclipped.outer().push_back(BoostPoint{x_max, y_min});
tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});
std::deque<BoostPolygon> boost_tiles;
if (!boost::geometry::intersection(tile_unclipped, rotated_polygon, boost_tiles))
continue;
for (BoostPolygon t : boost_tiles)
{
if (bg::area(t) > minTileArea){
// Transform boost_tile to world coordinate system.
BoostPolygon rotated_tile;
BoostPolygon translated_tile;
boost::geometry::transform(t, rotated_tile, rotate_back);
boost::geometry::transform(rotated_tile, translated_tile, translate_back);
// Store tile and calculate center point.
_tiles.push_back(translated_tile);
BoostPoint tile_center;
polygonCenter(translated_tile, tile_center);
_tileCenterPoints.push_back(tile_center);
errorString = "No tiles calculated. Is the minTileArea parameter large enough?";
return false;
}
return true;
}
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
bool Scenario::_calculateJoinedArea()
{
_jArea.clear();
// Measurement area and service area overlapping?
bool overlapingSerMeas = bg::intersects(_mArea, _sArea) ? true : false;
bool corridorValid = _corridor.outer().size() > 0 ? true : false;
// Check if corridor is connecting measurement area and service area.
bool corridor_is_connection = false;
if (corridorValid) {
// Corridor overlaping with measurement area?
if ( bg::intersects(_corridior, _mArea) ) {
// Corridor overlaping with service area?
if ( bg::intersects(_corridior, _sArea) ) {
corridor_is_connection = true;
}
}
}
// Are areas joinable?
std::deque<BoostPolygon> sol;
BoostPolygon partialArea = _mArea;
if (overlapingSerMeas){
if(corridor_is_connection){
bg::union_(partialArea, _corridior, sol);
}
} else if (corridor_is_connection){
bg::union_(partialArea, _corridior, sol);
} else {
errorString = "Areas are not overlapping";
return false;
}
if (sol.size() > 0) {
partialArea = sol[0];
sol.clear();
}
// Join areas.
bg::union_(partialArea, _sArea, sol);
if (sol.size() > 0) {
_jArea = sol[0];
} else {
return false;
}
return true;
}
double Scenario::minTileArea() const
{
return _minTileArea;
}
void Scenario::setMinTileArea(double minTileArea)
{
if ( minTileArea >= 0){
_needsUpdate = true;
_minTileArea = minTileArea;
}
}
double Scenario::tileHeight() const
{
return _tileHeight;
}
void Scenario::setTileHeight(double tileHeight)
{
if ( tileHeight > 0) {
_needsUpdate = true;
_tileHeight = tileHeight;
}
}
double Scenario::tileWidth() const
{
return _tileWidth;
}
void Scenario::setTileWidth(double tileWidth)
{
if ( tileWidth > 0 ){
_needsUpdate = true;
_tileWidth = tileWidth;
}
}
//=========================================================================
// Tile calculation.
//=========================================================================
bool joinAreas(const std::vector<BoostPolygon> &areas, BoostPolygon &joinedArea)
if (areas.size() < 1)
return false;
std::deque<std::size_t> idxList;
for(size_t i = 1; i < areas.size(); ++i)
idxList.push_back(i);
while (idxList.size() > 0){
bool success = false;
for (auto it = idxList.begin(); it != idxList.end(); ++it){
sol.clear;
idxList.erase(it);
success = true;
break;
}
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
return true;
}
BoundingBox::BoundingBox() :
width(0)
, height(0)
, angle(0)
{
}
void BoundingBox::clear()
{
width = 0;
height = 0;
angle = 0;
corners.clear();
}
Flightplan::Flightplan(ScenarioCPtr s, ProgressCPtr p)
: _scenario(s)
, _progress(p)
{
}
double Flightplan::lineDistance() const
{
return _lineDistance;
}
void Flightplan::setLineDistance(double lineDistance)
{
_lineDistance = lineDistance;
}
double Flightplan::minTransectLength() const
{
return _minTransectLength;
}
void Flightplan::setMinTransectLength(double minTransectLength)
{
_minTransectLength = minTransectLength;
}
Flightplan::ScenarioCPtr Flightplan::scenario() const
{
return _scenario;
}
void Flightplan::setScenario(ScenarioCPtr &scenario)
{
_scenario = scenario;
Flightplan::ProgressCPtr Flightplan::progress() const
return _progress;
}
void Flightplan::setProgress(ProgressCPtr &progress)
{
_progress = progress;
}
struct Flightplan::RoutingDataModel{
Matrix<int64_t> distanceMatrix;
long numVehicles;
RoutingIndexManager::NodeIndex depot;
};
bool Flightplan::update()
{
_waypoints.clear();
_arrivalPath.clear();
_returnPath.clear();
#ifdef SHOW_TIME
auto start = std::chrono::high_resolution_clock::now();
#endif
#ifdef SHOW_TIME
auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << endl;
cout << "Execution time _generateTransects(): " << delta.count() << " ms" << endl;
#endif
//=======================================
// Route Transects using Google or-tools.
//=======================================
// Offset joined area.
const BoostPolygon &jArea = _scenario->joinedArea();
BoostPolygon jAreaOffset;
offsetPolygon(jArea, jAreaOffset, detail::offsetConstant);
// Create vertex list;
BoostLineString vertices;
for (auto& lstring : _transects){
for (auto& vertex : lstring){
for (long i=0; i<long(jArea.outer().size())-1; ++i) {
vertices.push_back(jArea.outer()[i]);
}
for (auto ring : jArea.inners()) {
for (auto vertex : ring)
vertices.push_back(vertex);
}
size_t n1 = vertices.size();
// Generate routing model.
#ifdef SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
_generateRoutingModel(vertices, jAreaOffset, n0, dataModel, connectionGraph);
#ifdef SHOW_TIME
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << "Execution time _generateRoutingModel(): " << delta.count() << " ms" << endl;
#endif
RoutingIndexManager manager(dataModel.distanceMatrix.getN(), dataModel.numVehicles,
dataModel.depot);
// Create Routing Model.
RoutingModel routing(manager);
// Create and register a transit callback.
const int transit_callback_index = routing.RegisterTransitCallback(
[&dataModel, &manager](int64 from_index, int64 to_index) -> int64 {
// Convert from routing variable Index to distance matrix NodeIndex.
auto from_node = manager.IndexToNode(from_index).value();
auto to_node = manager.IndexToNode(to_index).value();
return dataModel.distanceMatrix.get(from_node, to_node);
});
// Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
// Define Constraints.
size_t n = _transects.size()*2;
Solver *solver = routing.solver();
for (size_t i=0; i<n; i=i+2){
// auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
// auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1));
// auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
// auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
// auto c = solver->MakeNonEquality(cond0, cond1);
// solver->AddConstraint(c);
// alternative
auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1));
auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
vector<IntVar*> conds{cond0, cond1};
auto c = solver->MakeAllDifferent(conds);
solver->MakeRejectFilter();
solver->AddConstraint(c);
}
// Setting first solution heuristic.
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
FirstSolutionStrategy::PATH_CHEAPEST_ARC);
google::protobuf::Duration *tMax = new google::protobuf::Duration(); // seconds
tMax->set_seconds(10);
searchParameters.set_allocated_time_limit(tMax);
// Solve the problem.
#ifdef SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
const Assignment* solution = routing.SolveWithParameters(searchParameters);
#ifdef SHOW_TIME
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << "Execution time routing.SolveWithParameters(): " << delta.count() << " ms" << endl;
#endif
if (!solution || solution->Size() <= 1){
errorString = "Not able to solve the routing problem.";
return false;
}
// Extract waypoints from solution.
long index = routing.Start(0);
std::vector<size_t> route;
route.push_back(manager.IndexToNode(index).value());
while (!routing.IsEnd(index)){
index = solution->Value(routing.NextVar(index));
route.push_back(manager.IndexToNode(index).value());
}
long sz = route.size();
// Helper Lambda.
auto fromVertices = [&vertices](const std::vector<size_t> &idxArray,
std::vector<BoostPoint> &path){
for (size_t j=1; j<idxArray.size(); ++j)
path.push_back(vertices[idxArray[j]]);
};
// Fill arrival path.
_arrivalPath.push_back(vertices[route[0]]);
size_t idx0 = route[0];
size_t idx1 = route[1];
std::vector<size_t> pathIdx;
shortestPathFromGraph(connectionGraph, idx0, idx1, pathIdx);
fromVertices(pathIdx, _arrivalPath);
if (_arrivalPath.size() < 2)
return false;
// Fill waypoints.
_waypoints.push_back(vertices[route[1]]);
for (long i=1; i<sz-2; ++i){
size_t idx0 = route[i];
size_t idx1 = route[i+1];
pathIdx.clear();
shortestPathFromGraph(connectionGraph, idx0, idx1, pathIdx);
// Fill return path.
_returnPath.push_back(vertices[route[sz-2]]);
idx0 = route[sz-2];
idx1 = route[sz-1];
pathIdx.clear();
shortestPathFromGraph(connectionGraph, idx0, idx1, pathIdx);
fromVertices(pathIdx, _returnPath);
if (_returnPath.size() < 2)
return false;
return true;
_transects.clear();
if (_scenario->tiles().size() != _progress->size()){
ostringstream strstream;
strstream << "Number of tiles ("
<< ") is not equal to progress array length ("
<< ")";
errorString = strstream.str();
return false;
}
// Calculate processed tiles (_progress[i] == 100) and subtract them from measurement area.
const auto &tiles = _scenario->tiles();
for (size_t i=0; i<num_tiles; ++i) {
if (_progress[i] == 100){
processedTiles.push_back(tiles[i]);
}
}