Newer
Older
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/adapted/boost_tuple.hpp>
#include <boost/geometry/geometries/box.hpp>
#include <boost/geometry/geometries/polygon.hpp>
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
#ifndef NDEBUG
#endif
namespace bg = boost::geometry;
namespace trans = bg::strategy::transform;
BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(bg::cs::cartesian)
static const IntType stdScale = 1000000;
//=========================================================================
// Geometry stuff.
//=========================================================================
void polygonCenter(const FPolygon &polygon, FPoint ¢er) {
using namespace mapbox;
if (polygon.outer().empty())
geometry::polygon<double> p;
geometry::linear_ring<double> lr1;
for (size_t i = 0; i < polygon.outer().size(); ++i) {
geometry::point<double> vertex(polygon.outer()[i].get<0>(),
polygon.outer()[i].get<1>());
}
p.push_back(lr1);
geometry::point<double> c = polylabel(p);
center.set<0>(c.x);
center.set<1>(c.y);
bool minimalBoundingBox(const FPolygon &polygon, BoundingBox &minBBox) {
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
/*
Find the minimum-area bounding box of a set of 2D points
The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates.
The first and last points points must be the same, making a closed polygon.
This program finds the rotation angles of each edge of the convex polygon,
then tests the area of a bounding box aligned with the unique angles in
90 degrees of the 1st Quadrant.
Returns the
Tested with Python 2.6.5 on Ubuntu 10.04.4 (original version)
Results verified using Matlab
Copyright (c) 2013, David Butterworth, University of Queensland
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Willow Garage, Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
if (polygon.outer().empty() || polygon.outer().size() < 3)
return false;
bg::convex_hull(polygon, convex_hull);
// cout << "Convex hull: " << bg::wkt<BoostPolygon2D>(convex_hull) << endl;
//# Compute edges (x2-x1,y2-y1)
for (long i = 0; i < long(convex_hull_outer.size()) - 1; ++i) {
FPoint p1 = convex_hull_outer.at(i);
FPoint p2 = convex_hull_outer.at(i + 1);
double edge_x = p2.get<0>() - p1.get<0>();
double edge_y = p2.get<1>() - p1.get<1>();
edges.push_back(FPoint{edge_x, edge_y});
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
}
// cout << "Edges: ";
// for (auto e : edges)
// cout << e.get<0>() << " " << e.get<1>() << ",";
// cout << endl;
// Calculate unique edge angles atan2(y/x)
double angle_scale = 1e3;
std::set<long> angles_long;
for (auto vertex : edges) {
double angle = std::fmod(atan2(vertex.get<1>(), vertex.get<0>()), M_PI / 2);
angle =
angle < 0 ? angle + M_PI / 2 : angle; // want strictly positive answers
angles_long.insert(long(round(angle * angle_scale)));
}
std::vector<double> edge_angles;
for (auto a : angles_long)
edge_angles.push_back(double(a) / angle_scale);
// cout << "Unique angles: ";
// for (auto e : edge_angles)
// cout << e*180/M_PI << ",";
// cout << endl;
double min_area = std::numeric_limits<double>::infinity();
// Test each angle to find bounding box with smallest area
// print "Testing", len(edge_angles), "possible rotations for bounding box...
// \n"
for (double angle : edge_angles) {
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle * 180 /
M_PI);
bg::transform(convex_hull, hull_rotated, rotate);
// cout << "Convex hull rotated: " << bg::wkt<BoostPolygon2D>(hull_rotated)
// << endl;
bg::envelope(hull_rotated, box);
// cout << "Bounding box: " <<
// bg::wkt<bg::model::box<BoostPoint2D>>(box) << endl;
//# print "Rotated hull points are \n", rot_points
FPoint min_corner = box.min_corner();
FPoint max_corner = box.max_corner();
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
double min_x = min_corner.get<0>();
double max_x = max_corner.get<0>();
double min_y = min_corner.get<1>();
double max_y = max_corner.get<1>();
// cout << "min_x: " << min_x << endl;
// cout << "max_x: " << max_x << endl;
// cout << "min_y: " << min_y << endl;
// cout << "max_y: " << max_y << endl;
// Calculate height/width/area of this bounding rectangle
double width = max_x - min_x;
double height = max_y - min_y;
double area = width * height;
// cout << "Width: " << width << endl;
// cout << "Height: " << height << endl;
// cout << "area: " << area << endl;
// cout << "angle: " << angle*180/M_PI << endl;
// Store the smallest rect found first (a simple convex hull might have 2
// answers with same area)
if (area < min_area) {
min_area = area;
minBBox.angle = angle;
minBBox.width = width;
minBBox.height = height;
minBBox.corners.clear();
minBBox.corners.outer().push_back(FPoint{min_x, min_y});
minBBox.corners.outer().push_back(FPoint{min_x, max_y});
minBBox.corners.outer().push_back(FPoint{max_x, max_y});
minBBox.corners.outer().push_back(FPoint{max_x, min_y});
minBBox.corners.outer().push_back(FPoint{min_x, min_y});
}
// cout << endl << endl;
}
// Transform corners of minimal bounding box.
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(-minBBox.angle *
180 / M_PI);
bg::transform(minBBox.corners, rotated_polygon, rotate);
minBBox.corners = rotated_polygon;
void offsetPolygon(const FPolygon &polygon, FPolygon &polygonOffset,
double offset) {
bg::strategy::buffer::distance_symmetric<double> distance_strategy(offset);
bg::strategy::buffer::join_miter join_strategy(3);
bg::strategy::buffer::end_flat end_strategy;
bg::strategy::buffer::point_square point_strategy;
bg::strategy::buffer::side_straight side_strategy;
bg::model::multi_polygon<FPolygon> result;
bg::buffer(polygon, result, distance_strategy, side_strategy, join_strategy,
end_strategy, point_strategy);
if (result.size() > 0)
polygonOffset = result[0];
void graphFromPolygon(const FPolygon &polygon, const FLineString &vertices,
Matrix<double> &graph) {
size_t n = graph.n();
for (size_t j = i + 1; j < n; ++j) {
FPoint v2 = vertices[j];
FLineString path{v1, v2};
double distance = 0;
if (!bg::within(path, polygon))
distance = std::numeric_limits<double>::infinity();
else
distance = bg::length(path);
graph(i, j) = distance;
graph(j, i) = distance;
bool toDistanceMatrix(Matrix<double> &graph) {
auto distance = [&graph](size_t i, size_t j) -> double {
return graph(i, j);
};
for (size_t i = 0; i < n; ++i) {
for (size_t j = i + 1; j < n; ++j) {
std::vector<size_t> path;
if (!dijkstraAlgorithm(n, i, j, path, d, distance)) {
return false;
}
// cout << "(" << i << "," << j << ") d: " << d << endl;
// cout << "Path size: " << path.size() << endl;
// for (auto idx : path)
// cout << idx << " ";
// cout << endl;
graph(i, j) = d;
graph(j, i) = d;
bool tiles(const FPolygon &area, Length tileHeight, Length tileWidth,
Area minTileArea, std::vector<FPolygon> &tiles, BoundingBox &bbox,
string &errorString) {
if (area.outer().empty() || area.outer().size() < 4) {
errorString = "Area has to few vertices.";
if (tileWidth <= 0 * bu::si::meter || tileHeight <= 0 * bu::si::meter ||
minTileArea < 0 * bu::si::meter * bu::si::meter) {
ss << "Parameters tileWidth (" << tileWidth << "), tileHeight ("
<< tileHeight << "), minTileArea (" << minTileArea
if (bbox.corners.outer().size() != 5) {
bbox.corners.clear();
minimalBoundingBox(area, bbox);
}
if (bbox.corners.outer().size() < 5)
return false;
double bboxWidth = bbox.width;
double bboxHeight = bbox.height;
FPoint origin = bbox.corners.outer()[0];
// cout << "Origin: " << origin[0] << " " << origin[1] << endl;
// Transform _mArea polygon to bounding box coordinate system.
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate(
trans::translate_transformer<double, 2, 2> translate(-origin.get<0>(),
-origin.get<1>());
FPolygon translated_polygon;
FPolygon rotated_polygon;
boost::geometry::transform(area, translated_polygon, translate);
boost::geometry::transform(translated_polygon, rotated_polygon, rotate);
bg::correct(rotated_polygon);
// cout << bg::wkt<BoostPolygon2D>(rotated_polygon) << endl;
size_t iMax = ceil(bboxWidth / tileWidth.value());
size_t jMax = ceil(bboxHeight / tileHeight.value());
if (iMax < 1 || jMax < 1) {
std::stringstream ss;
ss << "Tile width (" << tileWidth << ") or tile height (" << tileHeight
errorString = ss.str();
return false;
}
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(
trans::translate_transformer<double, 2, 2> translate_back(origin.get<0>(),
origin.get<1>());
for (size_t i = 0; i < iMax; ++i) {
double x_min = tileWidth.value() * i;
double x_max = x_min + tileWidth.value();
double y_min = tileHeight.value() * j;
double y_max = y_min + tileHeight.value();
FPolygon tile_unclipped;
tile_unclipped.outer().push_back(FPoint{x_min, y_min});
tile_unclipped.outer().push_back(FPoint{x_min, y_max});
tile_unclipped.outer().push_back(FPoint{x_max, y_max});
tile_unclipped.outer().push_back(FPoint{x_max, y_min});
tile_unclipped.outer().push_back(FPoint{x_min, y_min});
std::deque<FPolygon> boost_tiles;
if (!boost::geometry::intersection(tile_unclipped, rotated_polygon,
boost_tiles))
continue;
// Transform boost_tile to world coordinate system.
FPolygon rotated_tile;
FPolygon translated_tile;
boost::geometry::transform(t, rotated_tile, rotate_back);
boost::geometry::transform(rotated_tile, translated_tile,
translate_back);
// Store tile and calculate center point.
ss << "No tiles calculated. Is the minTileArea (" << minTileArea
bool joinedArea(const FPolygon &mArea, const FPolygon &sArea,
const FPolygon &corridor, FPolygon &jArea,
// Measurement area and service area overlapping?
bool overlapingSerMeas = bg::intersects(mArea, sArea) ? true : false;
bool corridorValid = corridor.outer().size() > 0 ? true : false;
// Check if corridor is connecting measurement area and service area.
bool corridor_is_connection = false;
if (corridorValid) {
// Corridor overlaping with measurement area?
// Corridor overlaping with service area?
corridor_is_connection = true;
}
std::deque<FPolygon> sol;
FPolygon partialArea = mArea;
if (overlapingSerMeas) {
if (corridor_is_connection) {
} else if (corridor_is_connection) {
auto printPoint = [&ss](const FPoint &p) {
ss << " (" << p.get<0>() << ", " << p.get<1>() << ")";
};
ss << "Areas are not overlapping." << std::endl;
ss << "Measurement area:";
return false;
}
if (sol.size() > 0) {
partialArea = sol[0];
sol.clear();
}
// Join areas.
auto printPoint = [&ss](const FPoint &p) {
ss << " (" << p.get<0>() << ", " << p.get<1>() << ")";
};
ss << "Areas not joinable." << std::endl;
ss << "Measurement area:";
bg::for_each_point(mArea, printPoint);
ss << std::endl;
ss << "Service area:";
bg::for_each_point(sArea, printPoint);
ss << std::endl;
ss << "Corridor:";
bg::for_each_point(corridor, printPoint);
ss << std::endl;
errorString = ss.str();
return false;
}
return true;
bool joinedArea(const std::vector<FPolygon *> &areas, FPolygon &joinedArea) {
if (areas.size() < 1)
return false;
std::deque<std::size_t> idxList;
for (size_t i = 1; i < areas.size(); ++i)
idxList.push_back(i);
while (idxList.size() > 0) {
bool success = false;
for (auto it = idxList.begin(); it != idxList.end(); ++it) {
if (sol.size() > 0) {
joinedArea = sol[0];
sol.clear();
idxList.erase(it);
success = true;
break;
}
if (!success)
return false;
}
BoundingBox::BoundingBox() : width(0), height(0), angle(0) {}
void BoundingBox::clear() {
width = 0;
height = 0;
angle = 0;
corners.clear();
bool transectsFromScenario(Length distance, Length minLength, Angle angle,
const FPolygon &mArea,
const std::vector<FPolygon> &tiles,
// Rotate measurement area by angle and calculate bounding box.
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle.value() *
180 / M_PI);
bg::transform(mArea, mAreaRotated, rotate);
boost::geometry::envelope(mAreaRotated, box);
double x0 = box.min_corner().get<0>();
double y0 = box.min_corner().get<1>();
double x1 = box.max_corner().get<0>();
double y1 = box.max_corner().get<1>();
// Generate transects and convert them to clipper path.
size_t num_t = int(ceil((y1 - y0) / distance.value())); // number of transects
vector<ClipperLib::Path> transectsClipper;
transectsClipper.reserve(num_t);
for (size_t i = 0; i < num_t; ++i) {
// calculate transect
FPoint v1{x0, y0 + i * distance.value()};
FPoint v2{x1, y0 + i * distance.value()};
FLineString transect;
transect.push_back(v1);
transect.push_back(v2);
// transform back
trans::rotate_transformer<bg::degree, double, 2, 2> rotate_back(
-angle.value() * 180 / M_PI);
bg::transform(transect, temp_transect, rotate_back);
// to clipper
ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(
temp_transect[0].get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(
temp_transect[0].get<1>() * CLIPPER_SCALE)};
ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(
temp_transect[1].get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(
temp_transect[1].get<1>() * CLIPPER_SCALE)};
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
ClipperLib::Path path{c1, c2};
transectsClipper.push_back(path);
}
if (transectsClipper.size() == 0) {
std::stringstream ss;
ss << "Not able to generate transects. Parameter: distance = " << distance
<< std::endl;
errorString = ss.str();
return false;
}
// Convert measurement area to clipper path.
ClipperLib::Path mAreaClipper;
for (auto vertex : mArea.outer()) {
mAreaClipper.push_back(ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
}
// Perform clipping.
// Clip transects to measurement area.
ClipperLib::Clipper clipper;
clipper.AddPath(mAreaClipper, ClipperLib::ptClip, true);
clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
ClipperLib::PolyTree clippedTransecs;
clipper.Execute(ClipperLib::ctIntersection, clippedTransecs,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
ClipperLib::PolyTree clippedTransecs2;
if (!ignoreProgress) {
// Calculate processed tiles (_progress[i] == 100) and subtract them from
// measurement area.
size_t numTiles = p.size();
for (size_t i = 0; i < numTiles; ++i) {
if (p[i] == 100) {
processedTiles.push_back(tiles[i]);
}
if (processedTiles.size() != numTiles) {
vector<ClipperLib::Path> processedTilesClipper;
path.push_back(ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
processedTilesClipper.push_back(path);
}
// Subtract holes (tiles with measurement_progress == 100) from transects.
clipper.Clear();
clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
clipper.AddPaths(processedTilesClipper, ClipperLib::ptClip, true);
clipper.Execute(ClipperLib::ctDifference, clippedTransecs2,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
transects = &clippedTransecs2;
} else {
// All tiles processed (t.size() not changed).
return true;
}
// Extract transects from PolyTree and convert them to BoostLineString
for (const auto &child : transects->Childs) {
const auto &clipperTransect = child->Contour;
FPoint v1{static_cast<double>(clipperTransect[0].X) / CLIPPER_SCALE,
static_cast<double>(clipperTransect[0].Y) / CLIPPER_SCALE};
FPoint v2{static_cast<double>(clipperTransect[1].X) / CLIPPER_SCALE,
static_cast<double>(clipperTransect[1].Y) / CLIPPER_SCALE};
}
if (t.size() == 0) {
std::stringstream ss;
ss << "Not able to generate transects. Parameter: minLength = " << minLength
<< std::endl;
errorString = ss.str();
return false;
}
return true;
bool route(const FPolygon &area, const Transects &transects,
std::vector<RouteInfo> &routeInfoVector,
std::vector<Route> &routeVector, const RouteParameter &par) {
auto start = std::chrono::high_resolution_clock::now();
#endif
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
//================================================================
// Create routing model.
//================================================================
// Use integer polygons to increase numerical robustness.
// Convert area;
IPolygon intArea;
for (const auto &v : area.outer()) {
auto p = float2Int(v);
intArea.outer().push_back(p);
}
for (const auto &ring : area.inners()) {
IRing intRing;
for (const auto &v : ring) {
auto p = float2Int(v);
intRing.push_back(p);
}
intArea.inners().push_back(std::move(intRing));
}
// Helper classes.
struct VirtualNode {
VirtualNode(std::size_t f, std::size_t t) : fromIndex(f), toIndex(t) {}
std::size_t fromIndex; // index for leaving node
std::size_t toIndex; // index for entering node
};
struct NodeToTransect {
NodeToTransect(std::size_t i, bool r) : transectsIndex(i), reversed(r) {}
std::size_t transectsIndex; // transects index
bool reversed; // transect reversed?
};
// Create vertex and node list
std::vector<IPoint> vertices;
std::vector<std::pair<std::size_t, std::size_t>> disjointNodes;
std::vector<VirtualNode> nodeList;
std::vector<NodeToTransect> nodeToTransectList;
for (std::size_t i = 0; i < transects.size(); ++i) {
const auto &t = transects[i];
// Copy line edges only.
if (t.size() == 1 || i == 0) {
auto p = float2Int(t.back());
vertices.push_back(p);
nodeToTransectList.emplace_back(i, false);
auto idx = vertices.size() - 1;
nodeList.emplace_back(idx, idx);
} else if (t.size() > 1) {
auto p1 = float2Int(t.front());
auto p2 = float2Int(t.back());
vertices.push_back(p1);
vertices.push_back(p2);
nodeToTransectList.emplace_back(i, false);
nodeToTransectList.emplace_back(i, true);
auto fromIdx = vertices.size() - 1;
auto toIdx = fromIdx - 1;
nodeList.emplace_back(fromIdx, toIdx);
nodeList.emplace_back(toIdx, fromIdx);
disjointNodes.emplace_back(toIdx, fromIdx);
} else { // transect empty
std::cout << "ignoring empty transect with index " << i << std::endl;
}
}
#ifdef SNAKE_DEBUG
// Print.
std::cout << "nodeToTransectList:" << std::endl;
std::cout << "node:transectIndex:reversed" << std::endl;
std::size_t c = 0;
for (const auto &n2t : nodeToTransectList) {
std::cout << c++ << ":" << n2t.transectsIndex << ":" << n2t.reversed
<< std::endl;
}
std::cout << "nodeList:" << std::endl;
std::cout << "node:fromIndex:toIndex" << std::endl;
c = 0;
for (const auto &n : nodeList) {
std::cout << c++ << ":" << n.fromIndex << ":" << n.toIndex << std::endl;
}
std::cout << "disjoint nodes:" << std::endl;
std::cout << "number:nodes" << std::endl;
c = 0;
for (const auto &d : disjointNodes) {
std::cout << c++ << ":" << d.first << "," << d.second << std::endl;
}
#endif
// Add polygon vertices.
for (auto &v : intArea.outer()) {
vertices.push_back(v);
}
for (auto &ring : intArea.inners()) {
for (auto &v : ring) {
vertices.push_back(v);
}
}
// Create connection graph (inf == no connection between vertices).
// Note: graph is not symmetric.
auto n = vertices.size();
// Matrix must be double since integers don't have infinity and nan
Matrix<double> connectionGraph(n, n);
for (std::size_t i = 0; i < n; ++i) {
auto &fromVertex = vertices[i];
for (std::size_t j = 0; j < n; ++j) {
auto &toVertex = vertices[j];
ILineString line{fromVertex, toVertex};
if (bg::covered_by(line, intArea)) {
connectionGraph(i, j) = bg::length(line);
} else {
connectionGraph(i, j) = std::numeric_limits<double>::infinity();
}
}
}
#ifdef SNAKE_DEBUG
std::cout << "connection grah:" << std::endl;
std::cout << connectionGraph << std::endl;
#endif
// Create distance matrix.
auto distLambda = [&connectionGraph](std::size_t i, std::size_t j) -> double {
return connectionGraph(i, j);
};
auto nNodes = nodeList.size();
Matrix<IntType> distanceMatrix(nNodes, nNodes);
for (std::size_t i = 0; i < nNodes; ++i) {
distanceMatrix(i, i) = 0;
for (std::size_t j = i + 1; j < nNodes; ++j) {
auto dist = connectionGraph(i, j);
if (std::isinf(dist)) {
std::vector<std::size_t> route;
if (!dijkstraAlgorithm(n, i, j, route, dist, distLambda)) {
par.errorString = "Distance matrix calculation failed.";
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
return false;
}
(void)route;
}
distanceMatrix(i, j) = dist;
distanceMatrix(j, i) = dist;
}
}
#ifdef SNAKE_DEBUG
std::cout << "distance matrix:" << std::endl;
std::cout << distanceMatrix << std::endl;
#endif
// Create (asymmetric) routing matrix.
Matrix<IntType> routingMatrix(nNodes, nNodes);
for (std::size_t i = 0; i < nNodes; ++i) {
auto fromNode = nodeList[i];
for (std::size_t j = 0; j < nNodes; ++j) {
auto toNode = nodeList[j];
routingMatrix(i, j) = distanceMatrix(fromNode.fromIndex, toNode.toIndex);
}
}
// Insert max for disjoint nodes.
for (const auto &d : disjointNodes) {
auto i = d.first;
auto j = d.second;
routingMatrix(i, j) = std::numeric_limits<IntType>::max();
routingMatrix(j, i) = std::numeric_limits<IntType>::max();
}
#ifdef SNAKE_DEBUG
std::cout << "routing matrix:" << std::endl;
std::cout << routingMatrix << std::endl;
#endif
// Create Routing Index Manager.
long numVehicles = 1;
RoutingIndexManager::NodeIndex depot(0);
RoutingIndexManager manager(nNodes, numVehicles, depot);
// Create Routing Model.
RoutingModel routing(manager);
// Create and register a transit callback.
const int transitCallbackIndex = routing.RegisterTransitCallback(
[&routingMatrix, &manager](int64 from_index, int64 to_index) -> int64 {
// Convert from routing variable Index to distance matrix NodeIndex.
auto from_node = manager.IndexToNode(from_index).value();
auto to_node = manager.IndexToNode(to_index).value();
return routingMatrix(from_node, to_node);
});
// Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
// Define disjunctions.
#ifdef SNAKE_DEBUG
std::cout << "disjunctions:" << std::endl;
#endif
for (const auto &d : disjointNodes) {
auto i = d.first;
auto j = d.second;
#ifdef SNAKE_DEBUG
std::cout << i << "," << j << std::endl;
#endif
auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(j));
std::vector<int64> disj{idx0, idx1};
routing.AddDisjunction(disj, -1 /*force cardinality*/, 1 /*cardinality*/);
}
// Set first solution heuristic.
auto searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
FirstSolutionStrategy::PATH_CHEAPEST_ARC);
// Number of solutions.
searchParameters.set_number_of_solutions_to_collect(par.numSolutionsPerRun);
// Set costume limit.
auto *solver = routing.solver();
auto *limit = solver->MakeCustomLimit(par.stop);
auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - start);
cout << "create routing model: " << delta.count() << " ms" << endl;
//================================================================
// Solve model.
//================================================================
start = std::chrono::high_resolution_clock::now();
auto pSolutions = std::make_unique<std::vector<const Assignment *>>();
(void)routing.SolveWithParameters(searchParameters, pSolutions.get());
#ifdef SNAKE_SHOW_TIME
delta = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - start);
cout << "solve routing model: " << delta.count() << " ms" << endl;
#endif
if (par.stop()) {
par.errorString = "User terminated.";
return false;
}
#ifdef SNAKE_SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
long long counter = -1;
// Note: route number 0 corresponds to the best route which is the last entry
// of *pSolutions.
for (auto solution = pSolutions->end() - 1; solution >= pSolutions->begin();
--solution) {
++counter;
if (!*solution || (*solution)->Size() <= 1) {
std::stringstream ss;
ss << par.errorString << "Solution " << counter << "invalid."
<< std::endl;
par.errorString = ss.str();
continue;
}
//================================================================
// Construc route.
//================================================================
// Create index list.
auto index = routing.Start(0);
std::vector<size_t> route_idx;
route_idx.push_back(manager.IndexToNode(index).value());
while (!routing.IsEnd(index)) {
index = (*solution)->Value(routing.NextVar(index));
route_idx.push_back(manager.IndexToNode(index).value());
}
// Print route.
std::cout << "route " << counter
<< " route_idx.size() = " << route_idx.size() << std::endl;
std::cout << "route: ";
for (const auto &idx : route_idx) {
std::cout << idx << ", ";
}
std::cout << std::endl;
if (route_idx.size() < 2) {
std::stringstream ss;
ss << par.errorString << "Error while assembling route " << counter << "."
<< std::endl;
par.errorString = ss.str();
continue;
}
// Construct route.
Route r;
RouteInfo routeInfo;
for (size_t i = 0; i < route_idx.size() - 1; ++i) {
size_t nodeIndex0 = route_idx[i];
size_t nodeIndex1 = route_idx[i + 1];
const auto &n2t0 = nodeToTransectList[nodeIndex0];
routeInfo.emplace_back(n2t0.transectsIndex, n2t0.reversed);
// Copy transect to route.
const auto &t = transects[n2t0.transectsIndex];
if (n2t0.reversed) { // transect reversal needed?
for (auto it = t.end() - 1; it > t.begin(); --it) {
r.push_back(*it);
}
} else {
for (auto it = t.begin(); it < t.end() - 1; ++it) {
r.push_back(*it);
}
// Connect transects.
std::vector<size_t> idxList;
if (!shortestPathFromGraph(connectionGraph,
nodeList[nodeIndex0].fromIndex,
nodeList[nodeIndex1].toIndex, idxList)) {
std::stringstream ss;
ss << par.errorString << "Error while assembling route " << counter
<< "." << std::endl;
par.errorString = ss.str();
continue;
}
if (i != route_idx.size() - 2) {
idxList.pop_back();
}
for (auto idx : idxList) {
auto p = int2Float(vertices[idx]);
r.push_back(p);
// Append last transect info.
const auto &n2t0 = nodeToTransectList.back();
routeInfo.emplace_back(n2t0.transectsIndex, n2t0.reversed);
if (r.size() < 2 || routeInfo.size() < 2) {
std::stringstream ss;
ss << par.errorString << "Route " << counter << " empty." << std::endl;
par.errorString = ss.str();
continue;
routeVector.push_back(std::move(r));
routeInfoVector.push_back(std::move(routeInfo));
delta = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - start);
cout << "reconstruct route: " << delta.count() << " ms" << endl;
#endif
if (routeVector.size() > 0 && routeVector.size() == routeInfoVector.size()) {
return true;
} else {
bool route_old(const FPolygon &area, const Transects &transects,
std::vector<TransectInfo> &transectInfo, Route &r,
std::function<bool()> stop, string &errorString) {
//=======================================
// Route Transects using Google or-tools.
//=======================================
// Create vertex list;
size_t n0 = 0;
for (const auto &t : transects) {
struct LocalInfo {
LocalInfo(size_t n, bool f) : index(n), front(f) {}
size_t index;
bool front;
};
for (size_t i = 0; i < transects.size(); ++i) {
const auto &t = transects[i];