Newer
Older
#include "CircularSurvey.h"
#include "RoutingThread.h"
#include "JsonHelper.h"
#include "QGCApplication.h"
#include "clipper/clipper.hpp"
#include "Geometry/GenericCircle.h"
#include <boost/units/io.hpp>
#include <boost/units/systems/si.hpp>
QGC_LOGGING_CATEGORY(CircularSurveyLog, "CircularSurveyLog")
using namespace ClipperLib;
template <> auto get<0>(const IntPoint &p) { return p.X; }
template <> auto get<1>(const IntPoint &p) { return p.Y; }
template <class Functor> class CommandRAII {
public:
CommandRAII(Functor f) : fun(f) {}
~CommandRAII() { fun(); }
private:
Functor fun;
};
template <typename T>
constexpr typename std::underlying_type<T>::type integral(T value) {
return static_cast<typename std::underlying_type<T>::type>(value);
}
bool circularTransects(const snake::FPolygon &polygon,
const std::vector<snake::FPolygon> &tiles,
snake::Length deltaR, snake::Angle deltaAlpha,
snake::Length minLength, snake::Transects &transects);
bool linearTransects(const snake::FPolygon &polygon,
const std::vector<snake::FPolygon> &tiles,
snake::Length distance, snake::Angle angle,
snake::Length minLength, snake::Transects &transects);
const char *CircularSurvey::settingsGroup = "CircularSurvey";
const char *CircularSurvey::transectDistanceName = "TransectDistance";
const char *CircularSurvey::alphaName = "Alpha";
const char *CircularSurvey::minLengthName = "MinLength";
const char *CircularSurvey::typeName = "Type";
const char *CircularSurvey::CircularSurveyName = "CircularSurvey";
const char *CircularSurvey::refPointLatitudeName = "ReferencePointLat";
const char *CircularSurvey::refPointLongitudeName = "ReferencePointLong";
const char *CircularSurvey::refPointAltitudeName = "ReferencePointAlt";
const char *CircularSurvey::variantName = "Variant";
const char *CircularSurvey::numRunsName = "NumRuns";
const char *CircularSurvey::runName = "Run";
CircularSurvey::CircularSurvey(Vehicle *vehicle, bool flyView,
const QString &kmlOrShpFile, QObject *parent)
: TransectStyleComplexItem(vehicle, flyView, settingsGroup, parent),
_referencePoint(QGeoCoordinate(0, 0, 0)),
_metaDataMap(FactMetaData::createMapFromJsonFile(
QStringLiteral(":/json/CircularSurvey.SettingsGroup.json"), this)),
_transectDistance(settingsGroup, _metaDataMap[transectDistanceName]),
_alpha(settingsGroup, _metaDataMap[alphaName]),
_minLength(settingsGroup, _metaDataMap[minLengthName]),
_type(settingsGroup, _metaDataMap[typeName]),
_variant(settingsGroup, _metaDataMap[variantName]),
_numRuns(settingsGroup, _metaDataMap[numRunsName]),
_run(settingsGroup, _metaDataMap[runName]),
_pWorker(std::make_unique<RoutingThread>()), _state(STATE::DEFAULT),
_hidePolygon(false) {
Q_UNUSED(kmlOrShpFile)
_editorQml = "qrc:/qml/CircularSurveyItemEditor.qml";
connect(&_transectDistance, &Fact::valueChanged, this,
&CircularSurvey::_rebuildTransects);
&CircularSurvey::_rebuildTransects);
connect(&_minLength, &Fact::valueChanged, this,
&CircularSurvey::_rebuildTransects);
connect(this, &CircularSurvey::refPointChanged, this,
&CircularSurvey::_rebuildTransects);
connect(this, &CircularSurvey::depotChanged, this,
&CircularSurvey::_rebuildTransects);
connect(&this->_type, &Fact::rawValueChanged, this,
&CircularSurvey::_rebuildTransects);
connect(&this->_variant, &Fact::rawValueChanged, this,
&CircularSurvey::_changeVariant);
connect(&this->_run, &Fact::rawValueChanged, this,
&CircularSurvey::_changeRun);
connect(&this->_numRuns, &Fact::rawValueChanged, this,
&CircularSurvey::_rebuildTransects);
// Areas.
connect(this, &CircularSurvey::measurementAreaChanged, this,
&CircularSurvey::_rebuildTransects);
connect(this, &CircularSurvey::joinedAreaChanged, this,
&CircularSurvey::_rebuildTransects);
connect(this->_pWorker.get(), &RoutingThread::result, this,
&CircularSurvey::_setTransects);
connect(this->_pWorker.get(), &RoutingThread::calculatingChanged, this,
&CircularSurvey::calculatingChanged);
// Altitude
connect(&_cameraCalc, &CameraCalc::distanceToSurfaceRelativeChanged, this,
&CircularSurvey::coordinateHasRelativeAltitudeChanged);
connect(&_cameraCalc, &CameraCalc::distanceToSurfaceRelativeChanged, this,
&CircularSurvey::exitCoordinateHasRelativeAltitudeChanged);
CircularSurvey::~CircularSurvey() {}
void CircularSurvey::resetReference() { setRefPoint(_mArea.center()); }
void CircularSurvey::reverse() {
this->_state = STATE::REVERSE;
this->_rebuildTransects();
}
void CircularSurvey::setRefPoint(const QGeoCoordinate &refPt) {
if (refPt != _referencePoint) {
_referencePoint = refPt;
emit refPointChanged();
}
}
QGeoCoordinate CircularSurvey::refPoint() const { return _referencePoint; }
Fact *CircularSurvey::transectDistance() { return &_transectDistance; }
Fact *CircularSurvey::alpha() { return &_alpha; }
bool CircularSurvey::hidePolygon() const { return _hidePolygon; }
QList<QString> CircularSurvey::variantNames() const { return _variantNames; }
QList<QString> CircularSurvey::runNames() const { return _runNames; }
QGeoCoordinate CircularSurvey::depot() const { return this->_depot; }
const QList<QList<QGeoCoordinate>> &CircularSurvey::rawTransects() const {
return this->_rawTransects;
}
void CircularSurvey::setHidePolygon(bool hide) {
if (this->_hidePolygon != hide) {
this->_hidePolygon = hide;
emit hidePolygonChanged();
}
}
void CircularSurvey::setMeasurementArea(const WimaMeasurementAreaData &mArea) {
if (this->_mArea != mArea) {
this->_mArea = mArea;
emit measurementAreaChanged();
}
}
void CircularSurvey::setJoinedArea(const WimaJoinedAreaData &jArea) {
if (this->_jArea != jArea) {
this->_jArea = jArea;
emit joinedAreaChanged();
void CircularSurvey::setMeasurementArea(const WimaMeasurementArea &mArea) {
if (this->_mArea != mArea) {
this->_mArea = mArea;
emit measurementAreaChanged();
}
}
void CircularSurvey::setJoinedArea(const WimaJoinedArea &jArea) {
if (this->_jArea != jArea) {
this->_jArea = jArea;
emit joinedAreaChanged();
void CircularSurvey::setDepot(const QGeoCoordinate &depot) {
if (this->_depot.latitude() != depot.latitude() ||
this->_depot.longitude() != depot.longitude()) {
this->_depot = depot;
this->_depot.setAltitude(0);
emit depotChanged();
}
}
bool CircularSurvey::load(const QJsonObject &complexObject, int sequenceNumber,
QString &errorString) {
// We need to pull version first to determine what validation/conversion
// needs to be performed
QList<JsonHelper::KeyValidateInfo> versionKeyInfoList = {
{JsonHelper::jsonVersionKey, QJsonValue::Double, true},
};
if (!JsonHelper::validateKeys(complexObject, versionKeyInfoList,
errorString)) {
return false;
}
int version = complexObject[JsonHelper::jsonVersionKey].toInt();
if (version != 1) {
errorString = tr("Survey items do not support version %1").arg(version);
return false;
}
QList<JsonHelper::KeyValidateInfo> keyInfoList = {
{VisualMissionItem::jsonTypeKey, QJsonValue::String, true},
{ComplexMissionItem::jsonComplexItemTypeKey, QJsonValue::String, true},
{transectDistanceName, QJsonValue::Double, true},
{alphaName, QJsonValue::Double, true},
{minLengthName, QJsonValue::Double, true},
{typeName, QJsonValue::Double, true},
{variantName, QJsonValue::Double, false},
{numRunsName, QJsonValue::Double, false},
{runName, QJsonValue::Double, false},
{refPointLatitudeName, QJsonValue::Double, true},
{refPointLongitudeName, QJsonValue::Double, true},
{refPointAltitudeName, QJsonValue::Double, true},
};
if (!JsonHelper::validateKeys(complexObject, keyInfoList, errorString)) {
return false;
}
QString itemType = complexObject[VisualMissionItem::jsonTypeKey].toString();
QString complexType =
complexObject[ComplexMissionItem::jsonComplexItemTypeKey].toString();
if (itemType != VisualMissionItem::jsonTypeComplexItemValue ||
complexType != CircularSurveyName) {
errorString = tr("%1 does not support loading this complex mission item "
"type: %2:%3")
.arg(qgcApp()->applicationName())
.arg(itemType)
.arg(complexType);
return false;
}
_ignoreRecalc = true;
setSequenceNumber(sequenceNumber);
if (!_surveyAreaPolygon.loadFromJson(complexObject, true /* required */,
errorString)) {
_surveyAreaPolygon.clear();
return false;
}
if (!_load(complexObject, errorString)) {
_ignoreRecalc = false;
return false;
}
_transectDistance.setRawValue(complexObject[transectDistanceName].toDouble());
_alpha.setRawValue(complexObject[alphaName].toDouble());
_minLength.setRawValue(complexObject[minLengthName].toDouble());
_type.setRawValue(complexObject[typeName].toInt());
_variant.setRawValue(complexObject[variantName].toInt());
_numRuns.setRawValue(complexObject[numRunsName].toInt());
_run.setRawValue(complexObject[runName].toInt());
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
_referencePoint.setLongitude(complexObject[refPointLongitudeName].toDouble());
_referencePoint.setLatitude(complexObject[refPointLatitudeName].toDouble());
_referencePoint.setAltitude(complexObject[refPointAltitudeName].toDouble());
_ignoreRecalc = false;
_recalcComplexDistance();
if (_cameraShots == 0) {
// Shot count was possibly not available from plan file
_recalcCameraShots();
}
return true;
}
QString CircularSurvey::mapVisualQML() const {
return QStringLiteral("CircularSurveyMapVisual.qml");
}
void CircularSurvey::save(QJsonArray &planItems) {
QJsonObject saveObject;
_save(saveObject);
saveObject[JsonHelper::jsonVersionKey] = 1;
saveObject[VisualMissionItem::jsonTypeKey] =
VisualMissionItem::jsonTypeComplexItemValue;
saveObject[ComplexMissionItem::jsonComplexItemTypeKey] = CircularSurveyName;
saveObject[transectDistanceName] = _transectDistance.rawValue().toDouble();
saveObject[alphaName] = _alpha.rawValue().toDouble();
saveObject[minLengthName] = _minLength.rawValue().toDouble();
saveObject[typeName] = double(_type.rawValue().toUInt());
saveObject[variantName] = double(_variant.rawValue().toUInt());
saveObject[numRunsName] = double(_numRuns.rawValue().toUInt());
saveObject[runName] = double(_numRuns.rawValue().toUInt());
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
saveObject[refPointLongitudeName] = _referencePoint.longitude();
saveObject[refPointLatitudeName] = _referencePoint.latitude();
saveObject[refPointAltitudeName] = _referencePoint.altitude();
// Polygon shape
_surveyAreaPolygon.saveToJson(saveObject);
planItems.append(saveObject);
}
bool CircularSurvey::specifiesCoordinate() const { return true; }
void CircularSurvey::appendMissionItems(QList<MissionItem *> &items,
QObject *missionItemParent) {
if (_transectsDirty)
return;
if (_loadedMissionItems.count()) {
// We have mission items from the loaded plan, use those
_appendLoadedMissionItems(items, missionItemParent);
} else {
// Build the mission items on the fly
_buildAndAppendMissionItems(items, missionItemParent);
}
}
void CircularSurvey::_appendLoadedMissionItems(QList<MissionItem *> &items,
QObject *missionItemParent) {
if (_transectsDirty)
return;
int seqNum = _sequenceNumber;
for (const MissionItem *loadedMissionItem : _loadedMissionItems) {
MissionItem *item = new MissionItem(*loadedMissionItem, missionItemParent);
item->setSequenceNumber(seqNum++);
items.append(item);
}
}
void CircularSurvey::_buildAndAppendMissionItems(QList<MissionItem *> &items,
QObject *missionItemParent) {
if (_transectsDirty || _transects.count() == 0)
return;
MissionItem *item;
int seqNum = _sequenceNumber;
MAV_FRAME mavFrame =
followTerrain() || !_cameraCalc.distanceToSurfaceRelative()
? MAV_FRAME_GLOBAL
: MAV_FRAME_GLOBAL_RELATIVE_ALT;
for (const QList<TransectStyleComplexItem::CoordInfo_t> &transect :
_transects) {
// bool transectEntry = true;
for (const CoordInfo_t &transectCoordInfo : transect) {
item = new MissionItem(
seqNum++, MAV_CMD_NAV_WAYPOINT, mavFrame,
0, // Hold time (delay for hover and capture to settle vehicle
// before image is taken)
0.0, // No acceptance radius specified
0.0, // Pass through waypoint
std::numeric_limits<double>::quiet_NaN(), // Yaw unchanged
transectCoordInfo.coord.latitude(),
transectCoordInfo.coord.longitude(),
transectCoordInfo.coord.altitude(),
true, // autoContinue
false, // isCurrentItem
missionItemParent);
items.append(item);
}
}
}
void CircularSurvey::_changeVariant() {
this->_state = STATE::VARIANT_CHANGE;
this->_rebuildTransects();
void CircularSurvey::_changeRun() {
this->_state = STATE::RUN_CHANGE;
this->_rebuildTransects();
}
void CircularSurvey::_updateWorker() {
// Mark transects as dirty.
this->_transectsDirty = true;
// Reset data.
this->_transects.clear();
this->_rawTransects.clear();
this->_variantNames.clear();
emit variantNamesChanged();
// Prepare data.
auto ref = this->_referencePoint;
auto geoPolygon = this->_mArea.coordinateList();
for (auto &v : geoPolygon) {
auto pPolygon = std::make_shared<snake::FPolygon>();
snake::areaToEnu(ref, geoPolygon, *pPolygon);
// Progress and tiles.
const auto &progress = this->_mArea.progress();
const auto *tiles = this->_mArea.tiles();
auto pTiles = std::make_shared<std::vector<snake::FPolygon>>();
if (progress.size() == tiles->count()) {
for (int i = 0; i < tiles->count(); ++i) {
if (progress[i] == 100) {
const auto *tile = tiles->value<const SnakeTile *>(i);
if (tile != nullptr) {
snake::FPolygon tileENU;
snake::areaToEnu(ref, tile->coordinateList(), tileENU);
} else {
qCWarning(CircularSurveyLog)
<< "_updateWorker(): progress.size() != tiles->count().";
return;
}
}
}
} else {
qCWarning(CircularSurveyLog)
<< "_updateWorker(): progress.size() != tiles->count().";
return;
}
// Convert safe area.
auto geoSafeArea = this->_jArea.coordinateList();
if (!geoDepot.isValid()) {
qCWarning(CircularSurveyLog)
<< "_updateWorker(): depot invalid." << geoDepot;
return;
}
if (!(geoSafeArea.size() >= 3)) {
qCWarning(CircularSurveyLog)
<< "_updateWorker(): safe area invalid." << geoSafeArea;
return;
}
for (auto &v : geoSafeArea) {
snake::FPoint depot;
snake::toENU(ref, geoDepot, depot);
RoutingParameter par;
par.numSolutionsPerRun = 5;
if (this->_numRuns.rawValue().toUInt() < 1) {
disconnect(&this->_numRuns, &Fact::rawValueChanged, this,
&CircularSurvey::_rebuildTransects);
this->_numRuns.setCookedValue(QVariant(1));
connect(&this->_numRuns, &Fact::rawValueChanged, this,
&CircularSurvey::_rebuildTransects);
}
par.numRuns = this->_numRuns.rawValue().toUInt();
auto &safeAreaENU = par.safeArea;
snake::areaToEnu(ref, geoSafeArea, safeAreaENU);
auto distance = snake::Length(this->_transectDistance.rawValue().toDouble() *
bu::si::meter);
auto minLength =
snake::Length(this->_minLength.rawValue().toDouble() * bu::si::meter);
auto alpha =
snake::Angle(this->_alpha.rawValue().toDouble() * bu::degree::degree);
// Select survey type.
if (this->_type.rawValue().toUInt() == integral(Type::Circular)) {
// Clip angle.
if (alpha >= snake::Angle(0.3 * bu::degree::degree) &&
alpha <= snake::Angle(45 * bu::degree::degree)) {
auto generator = [depot, pPolygon, pTiles, distance, alpha,
minLength](snake::Transects &transects) -> bool {
bool value = circularTransects(*pPolygon, *pTiles, distance, alpha,
minLength, transects);
transects.insert(transects.begin(), snake::FLineString{depot});
return value;
};
// Start routing worker.
this->_pWorker->route(par, generator);
} else {
if (alpha < snake::Angle(0.3 * bu::degree::degree)) {
this->_alpha.setCookedValue(QVariant(0.3));
} else {
this->_alpha.setCookedValue(QVariant(45));
}
}
} else if (this->_type.rawValue().toUInt() == integral(Type::Linear)) {
auto generator = [depot, pPolygon, pTiles, distance, alpha,
minLength](snake::Transects &transects) -> bool {
bool value = linearTransects(*pPolygon, *pTiles, distance, alpha,
minLength, transects);
transects.insert(transects.begin(), snake::FLineString{depot});
return value;
};
// Start routing worker.
this->_pWorker->route(par, generator);
} else {
<< "CircularSurvey::rebuildTransectsPhase1(): invalid survey type:"
<< this->_type.rawValue().toUInt();
}
void CircularSurvey::_changeVariantRunWorker() {
auto variant = this->_variant.rawValue().toUInt();
auto run = this->_run.rawValue().toUInt();
// Find old variant and run. Old run corresponts with empty list.
std::size_t old_variant = std::numeric_limits<std::size_t>::max();
std::size_t old_run = std::numeric_limits<std::size_t>::max();
for (std::size_t i = 0; i < std::size_t(this->_variantVector.size()); ++i) {
const auto &solution = this->_variantVector.at(i);
for (std::size_t j = 0; j < std::size_t(solution.size()); ++j) {
const auto &r = solution[j];
if (r.isEmpty()) {
old_variant = i;
old_run = j;
// break
i = std::numeric_limits<std::size_t>::max() - 1;
j = std::numeric_limits<std::size_t>::max() - 1;
}
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
// Swap route.
if (variant != old_variant || run != old_run) {
// Swap in new variant, if condition.
if (variant < std::size_t(this->_variantVector.size()) &&
run < std::size_t(this->_variantVector.at(variant).size())) {
if (old_variant != std::numeric_limits<std::size_t>::max()) {
// this->_transects containes a route, swap it back to
// this->_solutionVector
auto &old_solution = this->_variantVector[old_variant];
auto &old_route = old_solution[old_run];
old_route.swap(this->_transects);
}
auto &solution = this->_variantVector[variant];
auto &route = solution[run];
this->_transects.swap(route);
if (variant != old_variant) {
// Add run names.
this->_runNames.clear();
for (std::size_t i = 1; i <= std::size_t(solution.size()); ++i) {
this->_runNames.append(QString::number(i));
}
emit runNamesChanged();
}
} else { // error
qCWarning(CircularSurveyLog)
<< "Variant or run out of bounds (variant = " << variant
<< ", run = " << run << ").";
qCWarning(CircularSurveyLog) << "Resetting variant and run.";
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
disconnect(&this->_variant, &Fact::rawValueChanged, this,
&CircularSurvey::_changeVariant);
disconnect(&this->_run, &Fact::rawValueChanged, this,
&CircularSurvey::_changeRun);
if (old_variant < std::size_t(this->_variantVector.size())) {
this->_variant.setCookedValue(QVariant::fromValue(old_variant));
auto &solution = this->_variantVector[old_variant];
if (old_run < std::size_t(solution.size())) {
this->_run.setCookedValue(QVariant::fromValue(old_run));
} else {
this->_run.setCookedValue(QVariant(0));
}
} else {
this->_variant.setCookedValue(QVariant(0));
this->_run.setCookedValue(QVariant(0));
}
connect(&this->_variant, &Fact::rawValueChanged, this,
&CircularSurvey::_changeVariant);
connect(&this->_run, &Fact::rawValueChanged, this,
&CircularSurvey::_changeRun);
if (this->_variantVector.size() > 0 &&
this->_variantVector.front().size() > 0) {
this->_changeVariantRunWorker();
}
}
void CircularSurvey::_reverseWorker() {
if (this->_transects.size() > 0) {
auto &t = this->_transects.front();
void CircularSurvey::_storeWorker() {
// If the transects are getting rebuilt then any previously loaded
// mission items are now invalid.
if (_loadedMissionItemsParent) {
_loadedMissionItems.clear();
_loadedMissionItemsParent->deleteLater();
_loadedMissionItemsParent = nullptr;
}
const auto &pRoutingData = this->_pRoutingData;
const auto &ori = this->_referencePoint;
const auto &transectsENU = pRoutingData->transects;
QList<QList<QGeoCoordinate>> rawTransects;
for (std::size_t i = 1; i < transectsENU.size(); ++i) {
const auto &t = transectsENU[i];
rawTransects.append(QList<QGeoCoordinate>());
auto trGeo = rawTransects.back();
for (auto &v : t) {
QGeoCoordinate c;
snake::fromENU(ori, v, c);
trGeo.append(c);
// Store solutions.
QVector<Runs> solutionVector;
const auto nSolutions = pRoutingData->solutionVector.size();
for (std::size_t j = 0; j < nSolutions; ++j) {
const auto &solution = pRoutingData->solutionVector.at(j);
const auto nRuns = solution.size();
// Store runs.
Runs runs(nRuns, Transects{QList<CoordInfo_t>()});
for (std::size_t k = 0; k < nRuns; ++k) {
const auto &route = solution.at(k);
const auto &path = route.path;
const auto &info = route.info;
if (info.size() > 1) {
// Find index of first waypoint.
std::size_t idxFirst = 0;
const auto &infoFirst = info.at(1);
const auto &firstTransect = transectsENU[infoFirst.index];
if (firstTransect.size() > 0) {
const auto &firstWaypoint =
infoFirst.reversed ? firstTransect.back() : firstTransect.front();
double th = 0.01;
for (std::size_t i = 0; i < path.size(); ++i) {
auto dist = bg::distance(path[i], firstWaypoint);
// Find index of last waypoint.
std::size_t idxLast = path.size() - 1;
const auto &infoLast = info.at(info.size() - 2);
const auto &lastTransect = transectsENU[infoLast.index];
if (lastTransect.size() > 0) {
const auto &lastWaypoint =
infoLast.reversed ? lastTransect.front() : lastTransect.back();
for (long i = path.size() - 1; i >= 0; --i) {
auto dist = bg::distance(path[i], lastWaypoint);
if (dist < th) {
idxLast = i;
break;
}
}
// Convert to geo coordinates.
auto &list = runs[k].front();
for (std::size_t i = idxFirst; i <= idxLast; ++i) {
auto &vertex = path[i];
QGeoCoordinate c;
snake::fromENU(ori, vertex, c);
list.append(CoordInfo_t{c, CoordTypeInterior});
}
} else {
}
}
// Remove empty runs.
bool error = true;
for (auto it = runs.begin(); it < runs.end();) {
if (it->size() > 0 && it->front().size() > 0) {
error = false;
++it;
} else {
it = runs.erase(it);
}
if (!error) {
solutionVector.push_back(std::move(runs));
// Remove empty solutions.
std::size_t nSol = 0;
for (auto it = solutionVector.begin(); it < solutionVector.end();) {
if (it->size() > 0 && it->front().size() > 0) {
++it;
// Assign routes if no error occured.
// Swap first route to _transects.
this->_variantVector.swap(solutionVector);
// Add route variant names.
this->_variantNames.clear();
for (std::size_t i = 1; i <= std::size_t(this->_variantVector.size());
++i) {
this->_variantNames.append(QString::number(i));
emit variantNamesChanged();
// Swap in rawTransects.
this->_rawTransects.swap(rawTransects);
disconnect(&this->_variant, &Fact::rawValueChanged, this,
&CircularSurvey::_changeVariant);
disconnect(&this->_run, &Fact::rawValueChanged, this,
&CircularSurvey::_changeRun);
this->_variant.setCookedValue(QVariant(0));
this->_run.setCookedValue(QVariant(0));
connect(&this->_variant, &Fact::rawValueChanged, this,
&CircularSurvey::_changeVariant);
connect(&this->_run, &Fact::rawValueChanged, this,
&CircularSurvey::_changeRun);
this->_changeVariantRunWorker();
// Mark transect as stored and ready.
this->_transectsDirty = false;
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
}
void CircularSurvey::applyNewAltitude(double newAltitude) {
_cameraCalc.valueSetIsDistance()->setRawValue(true);
_cameraCalc.distanceToSurface()->setRawValue(newAltitude);
_cameraCalc.setDistanceToSurfaceRelative(true);
}
double CircularSurvey::timeBetweenShots() { return 1; }
QString CircularSurvey::commandDescription() const {
return tr("Circular Survey");
}
QString CircularSurvey::commandName() const { return tr("Circular Survey"); }
QString CircularSurvey::abbreviation() const { return tr("C.S."); }
bool CircularSurvey::readyForSave() const {
return TransectStyleComplexItem::readyForSave() && !_transectsDirty;
}
double CircularSurvey::additionalTimeDelay() const { return 0; }
void CircularSurvey::_rebuildTransectsPhase1(void) {
auto start = std::chrono::high_resolution_clock::now();
switch (this->_state) {
case STATE::STORE:
qCWarning(CircularSurveyLog) << "rebuildTransectsPhase1: store.";
this->_storeWorker();
break;
case STATE::VARIANT_CHANGE:
qCWarning(CircularSurveyLog) << "rebuildTransectsPhase1: variant change.";
this->_changeVariantRunWorker();
break;
case STATE::RUN_CHANGE:
qCWarning(CircularSurveyLog) << "rebuildTransectsPhase1: run change.";
break;
case STATE::REVERSE:
qCWarning(CircularSurveyLog) << "rebuildTransectsPhase1: reverse.";
this->_reverseWorker();
break;
case STATE::DEFAULT:
qCWarning(CircularSurveyLog) << "rebuildTransectsPhase1: update.";
this->_updateWorker();
break;
this->_state = STATE::DEFAULT;
<< std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - start)
.count()
<< " ms";
}
void CircularSurvey::_recalcComplexDistance() {
_complexDistance = 0;
if (_transectsDirty)
return;
for (int i = 0; i < _visualTransectPoints.count() - 1; i++) {
_complexDistance +=
_visualTransectPoints[i].value<QGeoCoordinate>().distanceTo(
_visualTransectPoints[i + 1].value<QGeoCoordinate>());
}
emit complexDistanceChanged();
}
// no cameraShots in Circular Survey, add if desired
void CircularSurvey::_recalcCameraShots() { _cameraShots = 0; }
void CircularSurvey::_setTransects(CircularSurvey::PtrRoutingData pRoute) {
this->_state = STATE::STORE;
this->_rebuildTransects();
Fact *CircularSurvey::minLength() { return &_minLength; }
Fact *CircularSurvey::type() { return &_type; }
Fact *CircularSurvey::variant() { return &_variant; }
Fact *CircularSurvey::numRuns() { return &_numRuns; }
Fact *CircularSurvey::run() { return &_run; }
int CircularSurvey::typeCount() const { return int(integral(Type::Count)); }
bool CircularSurvey::calculating() const {
return this->_pWorker->calculating();
}
bool circularTransects(const snake::FPolygon &polygon,
const std::vector<snake::FPolygon> &tiles,
snake::Length deltaR, snake::Angle deltaAlpha,
snake::Length minLength, snake::Transects &transects) {
auto s1 = std::chrono::high_resolution_clock::now();
if (polygon.outer().size() >= 3) {
using namespace boost::units;
// Convert geo polygon to ENU polygon.
std::string error;
// Check validity.
if (!bg::is_valid(polygon, error)) {
qCWarning(CircularSurveyLog) << "circularTransects(): "
"invalid polygon.";
qCWarning(CircularSurveyLog) << error.c_str();
ss << bg::wkt(polygon);
qCWarning(CircularSurveyLog) << ss.str().c_str();
} else {
// Calculate polygon distances and angles.
std::vector<snake::Length> distances;
distances.reserve(polygon.outer().size());
std::vector<snake::Angle> angles;
angles.reserve(polygon.outer().size());
//#ifdef DEBUG_CIRCULAR_SURVEY
// qCWarning(CircularSurveyLog) << "circularTransects():";
for (const auto &p : polygon.outer()) {
snake::Length distance = bg::distance(origin, p) * si::meter;
distances.push_back(distance);
snake::Angle alpha = (std::atan2(p.get<1>(), p.get<0>())) * si::radian;
alpha = alpha < 0 * si::radian ? alpha + 2 * M_PI * si::radian : alpha;
angles.push_back(alpha);
//#ifdef DEBUG_CIRCULAR_SURVEY
// qCWarning(CircularSurveyLog) << "distances, angles,
// coordinates:"; qCWarning(CircularSurveyLog) <<
// to_string(distance).c_str(); qCWarning(CircularSurveyLog) <<
// to_string(snake::Degree(alpha)).c_str();
// qCWarning(CircularSurveyLog) << "x = " << p.get<0>() << "y = "
// << p.get<1>();
//#endif
}
auto rMin = deltaR; // minimal circle radius
snake::Angle alpha1(0 * degree::degree);
snake::Angle alpha2(360 * degree::degree);
// Determine r_min by successive approximation
if (!bg::within(origin, polygon.outer())) {
rMin = bg::distance(origin, polygon) * si::meter;
}
auto rMax = (*std::max_element(distances.begin(),
distances.end())); // maximal circle radius
// Scale parameters and coordinates.
const auto rMinScaled =
ClipperLib::cInt(std::round(rMin.value() * CLIPPER_SCALE));
const auto deltaRScaled =
ClipperLib::cInt(std::round(deltaR.value() * CLIPPER_SCALE));
auto originScaled =
ClipperLib::IntPoint{ClipperLib::cInt(std::round(origin.get<0>())),
ClipperLib::cInt(std::round(origin.get<1>()))};
// Generate circle sectors.
auto rScaled = rMinScaled;
const auto nTran = long(std::ceil(((rMax - rMin) / deltaR).value()));
vector<ClipperLib::Path> sectors(nTran, ClipperLib::Path());
const auto nSectors =
long(std::round(((alpha2 - alpha1) / deltaAlpha).value()));
//#ifdef DEBUG_CIRCULAR_SURVEY
// qCWarning(CircularSurveyLog) << "circularTransects(): sector
// parameres:"; qCWarning(CircularSurveyLog) << "alpha1: " <<
// to_string(snake::Degree(alpha1)).c_str();
// qCWarning(CircularSurveyLog) << "alpha2:
// << to_string(snake::Degree(alpha2)).c_str();
// qCWarning(CircularSurveyLog) << "n: "
// << to_string((alpha2 - alpha1) / deltaAlpha).c_str();
// qCWarning(CircularSurveyLog)
// << "nSectors: " << nSectors; qCWarning(CircularSurveyLog) <<
// "rMin: " << to_string(rMin).c_str(); qCWarning(CircularSurveyLog)
// << "rMax: " << to_string(rMax).c_str();
// qCWarning(CircularSurveyLog) << "nTran: " << nTran;
//#endif
using ClipperCircle =
GenericCircle<ClipperLib::cInt, ClipperLib::IntPoint>;
for (auto §or : sectors) {
ClipperCircle circle(rScaled, originScaled);
approximate(circle, nSectors, sector);
rScaled += deltaRScaled;
}
// Clip sectors to polygonENU.
ClipperLib::Path polygonClipper;
snake::offsetPolygon(polygon, shrinked, -0.3);
auto &outer = shrinked.outer();
for (auto it = outer.begin(); it < outer.end() - 1; ++it) {
auto x = ClipperLib::cInt(std::round(it->get<0>() * CLIPPER_SCALE));
auto y = ClipperLib::cInt(std::round(it->get<1>() * CLIPPER_SCALE));
polygonClipper.push_back(ClipperLib::IntPoint{x, y});
}
ClipperLib::Clipper clipper;
clipper.AddPath(polygonClipper, ClipperLib::ptClip, true);
clipper.AddPaths(sectors, ClipperLib::ptSubject, false);
ClipperLib::PolyTree transectsClipper;
clipper.Execute(ClipperLib::ctIntersection, transectsClipper,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
vector<ClipperLib::Path> processedTiles;
path.push_back(ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(v.get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(v.get<1>() * CLIPPER_SCALE)});
}
}
clipper.Clear();
for (const auto &child : transectsClipper.Childs) {
clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
}
clipper.AddPaths(processedTiles, ClipperLib::ptClip, true);
transectsClipper.Clear();
clipper.Execute(ClipperLib::ctDifference, transectsClipper,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
}
// Extract transects from PolyTree and convert them to
// BoostLineString
for (const auto &child : transectsClipper.Childs) {
transect.reserve(child->Contour.size());
for (const auto &vertex : child->Contour) {
auto x = static_cast<double>(vertex.X) / CLIPPER_SCALE;
auto y = static_cast<double>(vertex.Y) / CLIPPER_SCALE;
transect.push_back(snake::FPoint(x, y));
}
transects.push_back(transect);
}
// Join sectors which where slit due to clipping.
const double th = 0.01;
for (auto ito = transects.begin(); ito < transects.end(); ++ito) {
for (auto iti = ito + 1; iti < transects.end(); ++iti) {
auto dist1 = bg::distance(ito->front(), iti->front());