Skip to content
Snippets Groups Projects
CircularSurvey.cc 42.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include "CircularSurvey.h"
    
    #include "RoutingThread.h"
    
    #include "JsonHelper.h"
    #include "QGCApplication.h"
    
    #define CLIPPER_SCALE 1000000
    
    #include "clipper/clipper.hpp"
    
    template <int k> ClipperLib::cInt get(ClipperLib::IntPoint &p);
    template <> ClipperLib::cInt get<0>(ClipperLib::IntPoint &p) { return p.X; }
    template <> ClipperLib::cInt get<1>(ClipperLib::IntPoint &p) { return p.Y; }
    #include "Geometry/GenericCircle.h"
    
    #include <boost/units/io.hpp>
    #include <boost/units/systems/si.hpp>
    
    template <class Functor> class CommandRAII {
    public:
      CommandRAII(Functor f) : fun(f) {}
      ~CommandRAII() { fun(); }
    
    private:
      Functor fun;
    };
    
    
    template <typename T>
    constexpr typename std::underlying_type<T>::type integral(T value) {
      return static_cast<typename std::underlying_type<T>::type>(value);
    }
    
    
    bool circularTransects(const QGeoCoordinate &ref, const QGeoCoordinate &depot,
    
                           bool useDepot, const QList<QGeoCoordinate> &polygon,
    
                           snake::Length deltaR, snake::Angle deltaAlpha,
                           snake::Length minLength, snake::Transects &transects);
    
    
    bool linearTransects(const QGeoCoordinate &origin, const QGeoCoordinate &depot,
                         bool useDepot, const QList<QGeoCoordinate> &polygon,
                         snake::Length distance, snake::Angle angle,
                         snake::Length minLength, snake::Transects &transects);
    
    
    const char *CircularSurvey::settingsGroup = "CircularSurvey";
    
    const char *CircularSurvey::transectDistanceName = "TransectDistance";
    const char *CircularSurvey::alphaName = "Alpha";
    const char *CircularSurvey::minLengthName = "MinLength";
    const char *CircularSurvey::typeName = "Type";
    
    const char *CircularSurvey::CircularSurveyName = "CircularSurvey";
    const char *CircularSurvey::refPointLatitudeName = "ReferencePointLat";
    const char *CircularSurvey::refPointLongitudeName = "ReferencePointLong";
    const char *CircularSurvey::refPointAltitudeName = "ReferencePointAlt";
    
    const char *CircularSurvey::variantName = "Variant";
    
    const char *CircularSurvey::numRunsName = "NumRuns";
    const char *CircularSurvey::runName = "Run";
    
    
    CircularSurvey::CircularSurvey(Vehicle *vehicle, bool flyView,
                                   const QString &kmlOrShpFile, QObject *parent)
        : TransectStyleComplexItem(vehicle, flyView, settingsGroup, parent),
          _referencePoint(QGeoCoordinate(0, 0, 0)),
          _metaDataMap(FactMetaData::createMapFromJsonFile(
              QStringLiteral(":/json/CircularSurvey.SettingsGroup.json"), this)),
    
          _transectDistance(settingsGroup, _metaDataMap[transectDistanceName]),
          _alpha(settingsGroup, _metaDataMap[alphaName]),
          _minLength(settingsGroup, _metaDataMap[minLengthName]),
          _type(settingsGroup, _metaDataMap[typeName]),
    
          _variant(settingsGroup, _metaDataMap[variantName]),
    
          _numRuns(settingsGroup, _metaDataMap[numRunsName]),
          _run(settingsGroup, _metaDataMap[runName]),
    
          _pWorker(std::make_unique<RoutingThread>()), _state(STATE::DEFAULT),
          _hidePolygon(false) {
    
      Q_UNUSED(kmlOrShpFile)
      _editorQml = "qrc:/qml/CircularSurveyItemEditor.qml";
    
    
      connect(&_transectDistance, &Fact::valueChanged, this,
    
              &CircularSurvey::_rebuildTransects);
    
      connect(&_alpha, &Fact::valueChanged, this,
    
              &CircularSurvey::_rebuildTransects);
    
      connect(&_minLength, &Fact::valueChanged, this,
    
              &CircularSurvey::_rebuildTransects);
    
      connect(this, &CircularSurvey::refPointChanged, this,
    
              &CircularSurvey::_rebuildTransects);
    
      connect(this, &CircularSurvey::depotChanged, this,
              &CircularSurvey::_rebuildTransects);
      connect(this, &CircularSurvey::safeAreaChanged, this,
              &CircularSurvey::_rebuildTransects);
    
      connect(&this->_type, &Fact::rawValueChanged, this,
              &CircularSurvey::_rebuildTransects);
    
      connect(&this->_variant, &Fact::rawValueChanged, this,
              &CircularSurvey::_changeVariant);
    
      connect(&this->_run, &Fact::rawValueChanged, this,
              &CircularSurvey::_changeRun);
      connect(&this->_numRuns, &Fact::rawValueChanged, this,
              &CircularSurvey::_rebuildTransects);
    
    
      // Connect worker.
    
      connect(this->_pWorker.get(), &RoutingThread::result, this,
    
              &CircularSurvey::_setTransects);
    
      connect(this->_pWorker.get(), &RoutingThread::calculatingChanged, this,
    
              &CircularSurvey::calculatingChanged);
      this->_transectsDirty = false;
    
    CircularSurvey::~CircularSurvey() {}
    
    
    void CircularSurvey::resetReference() {
      setRefPoint(_surveyAreaPolygon.center());
    }
    
    
    void CircularSurvey::reverse() {
    
      this->_state = STATE::REVERSE;
    
      this->_rebuildTransects();
    }
    
    
    void CircularSurvey::setRefPoint(const QGeoCoordinate &refPt) {
      if (refPt != _referencePoint) {
        _referencePoint = refPt;
    
        _referencePoint.setAltitude(0);
    
    
        emit refPointChanged();
      }
    }
    
    QGeoCoordinate CircularSurvey::refPoint() const { return _referencePoint; }
    
    
    Fact *CircularSurvey::transectDistance() { return &_transectDistance; }
    
    Fact *CircularSurvey::alpha() { return &_alpha; }
    
    bool CircularSurvey::hidePolygon() const { return _hidePolygon; }
    
    
    QList<QString> CircularSurvey::variantNames() const { return _variantNames; }
    
    
    QList<QString> CircularSurvey::runNames() const { return _runNames; }
    
    
    QGeoCoordinate CircularSurvey::depot() const { return this->_depot; }
    
    QList<QGeoCoordinate> CircularSurvey::safeArea() const {
      return this->_safeArea;
    }
    
    
    const QList<QList<QGeoCoordinate>> &CircularSurvey::rawTransects() const {
      return this->_rawTransects;
    }
    
    
    void CircularSurvey::setHidePolygon(bool hide) {
      if (this->_hidePolygon != hide) {
        this->_hidePolygon = hide;
        emit hidePolygonChanged();
      }
    }
    
    void CircularSurvey::setDepot(const QGeoCoordinate &depot) {
      if (this->_depot != depot) {
        this->_depot = depot;
    
        this->_depot.setAltitude(0);
    
        emit depotChanged();
      }
    }
    
    void CircularSurvey::setSafeArea(const QList<QGeoCoordinate> &safeArea) {
      if (this->_safeArea != safeArea) {
        this->_safeArea = safeArea;
        emit safeAreaChanged();
      }
    }
    
    
    bool CircularSurvey::load(const QJsonObject &complexObject, int sequenceNumber,
                              QString &errorString) {
    
      // We need to pull version first to determine what validation/conversion
      // needs to be performed
    
      QList<JsonHelper::KeyValidateInfo> versionKeyInfoList = {
          {JsonHelper::jsonVersionKey, QJsonValue::Double, true},
      };
      if (!JsonHelper::validateKeys(complexObject, versionKeyInfoList,
                                    errorString)) {
        return false;
      }
    
      int version = complexObject[JsonHelper::jsonVersionKey].toInt();
      if (version != 1) {
        errorString = tr("Survey items do not support version %1").arg(version);
        return false;
      }
    
      QList<JsonHelper::KeyValidateInfo> keyInfoList = {
          {VisualMissionItem::jsonTypeKey, QJsonValue::String, true},
          {ComplexMissionItem::jsonComplexItemTypeKey, QJsonValue::String, true},
    
          {transectDistanceName, QJsonValue::Double, true},
          {alphaName, QJsonValue::Double, true},
          {minLengthName, QJsonValue::Double, true},
          {typeName, QJsonValue::Double, true},
    
          {variantName, QJsonValue::Double, false},
    
          {numRunsName, QJsonValue::Double, false},
          {runName, QJsonValue::Double, false},
    
          {refPointLatitudeName, QJsonValue::Double, true},
          {refPointLongitudeName, QJsonValue::Double, true},
          {refPointAltitudeName, QJsonValue::Double, true},
      };
    
      if (!JsonHelper::validateKeys(complexObject, keyInfoList, errorString)) {
        return false;
      }
    
      QString itemType = complexObject[VisualMissionItem::jsonTypeKey].toString();
      QString complexType =
          complexObject[ComplexMissionItem::jsonComplexItemTypeKey].toString();
      if (itemType != VisualMissionItem::jsonTypeComplexItemValue ||
          complexType != CircularSurveyName) {
    
        errorString = tr("%1 does not support loading this complex mission item "
                         "type: %2:%3")
                          .arg(qgcApp()->applicationName())
                          .arg(itemType)
                          .arg(complexType);
    
        return false;
      }
    
      _ignoreRecalc = true;
    
      setSequenceNumber(sequenceNumber);
    
      if (!_surveyAreaPolygon.loadFromJson(complexObject, true /* required */,
                                           errorString)) {
        _surveyAreaPolygon.clear();
        return false;
      }
    
      if (!_load(complexObject, errorString)) {
        _ignoreRecalc = false;
        return false;
      }
    
    
      _transectDistance.setRawValue(complexObject[transectDistanceName].toDouble());
      _alpha.setRawValue(complexObject[alphaName].toDouble());
      _minLength.setRawValue(complexObject[minLengthName].toDouble());
      _type.setRawValue(complexObject[typeName].toInt());
    
      _variant.setRawValue(complexObject[variantName].toInt());
    
      _numRuns.setRawValue(complexObject[numRunsName].toInt());
      _run.setRawValue(complexObject[runName].toInt());
    
      _referencePoint.setLongitude(complexObject[refPointLongitudeName].toDouble());
      _referencePoint.setLatitude(complexObject[refPointLatitudeName].toDouble());
      _referencePoint.setAltitude(complexObject[refPointAltitudeName].toDouble());
    
      _ignoreRecalc = false;
    
      _recalcComplexDistance();
      if (_cameraShots == 0) {
        // Shot count was possibly not available from plan file
        _recalcCameraShots();
      }
    
      return true;
    }
    
    QString CircularSurvey::mapVisualQML() const {
      return QStringLiteral("CircularSurveyMapVisual.qml");
    }
    
    void CircularSurvey::save(QJsonArray &planItems) {
      QJsonObject saveObject;
    
      _save(saveObject);
    
      saveObject[JsonHelper::jsonVersionKey] = 1;
      saveObject[VisualMissionItem::jsonTypeKey] =
          VisualMissionItem::jsonTypeComplexItemValue;
      saveObject[ComplexMissionItem::jsonComplexItemTypeKey] = CircularSurveyName;
    
    
      saveObject[transectDistanceName] = _transectDistance.rawValue().toDouble();
      saveObject[alphaName] = _alpha.rawValue().toDouble();
      saveObject[minLengthName] = _minLength.rawValue().toDouble();
      saveObject[typeName] = double(_type.rawValue().toUInt());
    
      saveObject[variantName] = double(_variant.rawValue().toUInt());
    
      saveObject[numRunsName] = double(_numRuns.rawValue().toUInt());
      saveObject[runName] = double(_numRuns.rawValue().toUInt());
    
      saveObject[refPointLongitudeName] = _referencePoint.longitude();
      saveObject[refPointLatitudeName] = _referencePoint.latitude();
      saveObject[refPointAltitudeName] = _referencePoint.altitude();
    
      // Polygon shape
      _surveyAreaPolygon.saveToJson(saveObject);
    
      planItems.append(saveObject);
    }
    
    bool CircularSurvey::specifiesCoordinate() const { return true; }
    
    void CircularSurvey::appendMissionItems(QList<MissionItem *> &items,
                                            QObject *missionItemParent) {
      if (_transectsDirty)
        return;
      if (_loadedMissionItems.count()) {
        // We have mission items from the loaded plan, use those
        _appendLoadedMissionItems(items, missionItemParent);
      } else {
        // Build the mission items on the fly
        _buildAndAppendMissionItems(items, missionItemParent);
      }
    }
    
    void CircularSurvey::_appendLoadedMissionItems(QList<MissionItem *> &items,
                                                   QObject *missionItemParent) {
      if (_transectsDirty)
        return;
      int seqNum = _sequenceNumber;
    
      for (const MissionItem *loadedMissionItem : _loadedMissionItems) {
        MissionItem *item = new MissionItem(*loadedMissionItem, missionItemParent);
        item->setSequenceNumber(seqNum++);
        items.append(item);
      }
    }
    
    void CircularSurvey::_buildAndAppendMissionItems(QList<MissionItem *> &items,
                                                     QObject *missionItemParent) {
    
      if (_transectsDirty || _transects.count() == 0)
    
        return;
    
      MissionItem *item;
      int seqNum = _sequenceNumber;
    
      MAV_FRAME mavFrame =
          followTerrain() || !_cameraCalc.distanceToSurfaceRelative()
              ? MAV_FRAME_GLOBAL
              : MAV_FRAME_GLOBAL_RELATIVE_ALT;
    
      for (const QList<TransectStyleComplexItem::CoordInfo_t> &transect :
           _transects) {
        // bool transectEntry = true;
    
        for (const CoordInfo_t &transectCoordInfo : transect) {
          item = new MissionItem(
              seqNum++, MAV_CMD_NAV_WAYPOINT, mavFrame,
    
              0,   // Hold time (delay for hover and capture to settle vehicle
                   // before image is taken)
    
              0.0, // No acceptance radius specified
              0.0, // Pass through waypoint
              std::numeric_limits<double>::quiet_NaN(), // Yaw unchanged
              transectCoordInfo.coord.latitude(),
              transectCoordInfo.coord.longitude(),
              transectCoordInfo.coord.altitude(),
              true,  // autoContinue
              false, // isCurrentItem
              missionItemParent);
          items.append(item);
        }
      }
    }
    
    
    void CircularSurvey::_changeVariant() {
      this->_state = STATE::VARIANT_CHANGE;
      this->_rebuildTransects();
    
    void CircularSurvey::_changeRun() {
      this->_state = STATE::RUN_CHANGE;
      this->_rebuildTransects();
    }
    
    
    void CircularSurvey::_updateWorker() {
      // Reset data.
      this->_transects.clear();
      this->_rawTransects.clear();
    
      this->_variantVector.clear();
    
      this->_variantNames.clear();
    
      this->_runNames.clear();
    
      emit variantNamesChanged();
    
      emit runNamesChanged();
    
    
      // Prepare data.
      auto ref = this->_referencePoint;
      auto polygon = this->_surveyAreaPolygon.coordinateList();
      for (auto &v : polygon) {
        v.setAltitude(0);
      }
      auto safeArea = this->_safeArea;
      for (auto &v : safeArea) {
        v.setAltitude(0);
      }
      auto depot = this->_depot;
    
      RoutingParameter par;
      par.numSolutionsPerRun = 5;
    
      if (this->_numRuns.rawValue().toUInt() < 1) {
        disconnect(&this->_numRuns, &Fact::rawValueChanged, this,
                   &CircularSurvey::_rebuildTransects);
    
        this->_numRuns.setCookedValue(QVariant(1));
    
        connect(&this->_numRuns, &Fact::rawValueChanged, this,
                &CircularSurvey::_rebuildTransects);
      }
      par.numRuns = this->_numRuns.rawValue().toUInt();
    
      // Convert safe area.
    
      auto &safeAreaENU = par.safeArea;
      bool useDepot = false;
      if (this->_depot.isValid() && this->_safeArea.size() >= 3) {
        useDepot = true;
        snake::areaToEnu(ref, safeArea, safeAreaENU);
      } else {
        snake::areaToEnu(ref, polygon, safeAreaENU);
      }
    
    
      // Fetch transect parameter.
    
      auto distance = snake::Length(this->_transectDistance.rawValue().toDouble() *
                                    bu::si::meter);
      auto minLength =
          snake::Length(this->_minLength.rawValue().toDouble() * bu::si::meter);
      auto alpha =
          snake::Angle(this->_alpha.rawValue().toDouble() * bu::degree::degree);
    
      // Select survey type.
      if (this->_type.rawValue().toUInt() == integral(Type::Circular)) {
        // Clip angle.
        if (alpha >= snake::Angle(0.3 * bu::degree::degree) &&
            alpha <= snake::Angle(45 * bu::degree::degree)) {
          auto generator = [ref, depot, useDepot, polygon, distance, alpha,
                            minLength](snake::Transects &transects) -> bool {
            return circularTransects(ref, depot, useDepot, polygon, distance, alpha,
                                     minLength, transects);
          };
          // Start routing worker.
          this->_pWorker->route(par, generator);
        } else {
          if (alpha < snake::Angle(0.3 * bu::degree::degree)) {
            this->_alpha.setCookedValue(QVariant(0.3));
          } else {
            this->_alpha.setCookedValue(QVariant(45));
          }
        }
      } else if (this->_type.rawValue().toUInt() == integral(Type::Linear)) {
        auto generator = [ref, depot, useDepot, polygon, distance, alpha,
                          minLength](snake::Transects &transects) -> bool {
          return linearTransects(ref, depot, useDepot, polygon, distance, alpha,
                                 minLength, transects);
        };
        // Start routing worker.
        this->_pWorker->route(par, generator);
      } else {
        qWarning()
            << "CircularSurvey::rebuildTransectsPhase1(): invalid survey type:"
            << this->_type.rawValue().toUInt();
      }
      // Mark transects as dirty.
      this->_transectsDirty = true;
    
    void CircularSurvey::_changeVariantRunWorker() {
    
      auto variant = this->_variant.rawValue().toUInt();
    
      auto run = this->_run.rawValue().toUInt();
    
      // Find old variant and run. Old run corresponts with empty list.
      std::size_t old_variant = std::numeric_limits<std::size_t>::max();
      std::size_t old_run = std::numeric_limits<std::size_t>::max();
      for (std::size_t i = 0; i < std::size_t(this->_variantVector.size()); ++i) {
        const auto &solution = this->_variantVector.at(i);
        for (std::size_t j = 0; j < std::size_t(solution.size()); ++j) {
          const auto &r = solution[j];
          if (r.isEmpty()) {
            old_variant = i;
            old_run = j;
            // break
            i = std::numeric_limits<std::size_t>::max() - 1;
            j = std::numeric_limits<std::size_t>::max() - 1;
          }
    
      // Swap route.
      if (variant != old_variant || run != old_run) {
        // Swap in new variant, if condition.
        if (variant < std::size_t(this->_variantVector.size()) &&
            run < std::size_t(this->_variantVector.at(variant).size())) {
          if (old_variant != std::numeric_limits<std::size_t>::max()) {
            // this->_transects containes a route, swap it back to
            // this->_solutionVector
            auto &old_solution = this->_variantVector[old_variant];
            auto &old_route = old_solution[old_run];
            old_route.swap(this->_transects);
          }
          auto &solution = this->_variantVector[variant];
          auto &route = solution[run];
          this->_transects.swap(route);
    
          if (variant != old_variant) {
            // Add run names.
            this->_runNames.clear();
            for (std::size_t i = 1; i <= std::size_t(solution.size()); ++i) {
              this->_runNames.append(QString::number(i));
            }
            emit runNamesChanged();
          }
    
        } else { // error
          qWarning() << "Variant or run out of bounds (variant = " << variant
                     << ", run = " << run << ").";
          qWarning() << "Resetting variant and run.";
    
          disconnect(&this->_variant, &Fact::rawValueChanged, this,
                     &CircularSurvey::_changeVariant);
          disconnect(&this->_run, &Fact::rawValueChanged, this,
                     &CircularSurvey::_changeRun);
          if (old_variant < std::size_t(this->_variantVector.size())) {
            this->_variant.setCookedValue(QVariant::fromValue(old_variant));
            auto &solution = this->_variantVector[old_variant];
            if (old_run < std::size_t(solution.size())) {
              this->_run.setCookedValue(QVariant::fromValue(old_run));
            } else {
              this->_run.setCookedValue(QVariant(0));
            }
          } else {
            this->_variant.setCookedValue(QVariant(0));
            this->_run.setCookedValue(QVariant(0));
          }
          connect(&this->_variant, &Fact::rawValueChanged, this,
                  &CircularSurvey::_changeVariant);
          connect(&this->_run, &Fact::rawValueChanged, this,
                  &CircularSurvey::_changeRun);
          if (this->_variantVector.size() > 0 &&
              this->_variantVector.front().size() > 0) {
            this->_changeVariantRunWorker();
          }
        }
    
    void CircularSurvey::_reverseWorker() {
      if (this->_transects.size() > 0) {
        auto &t = this->_transects.front();
        QList<QList<CoordInfo_t>> tr{QList<CoordInfo_t>()};
        auto &list = tr.front();
        list.reserve(t.size());
        for (auto it = t.end() - 1; it >= t.begin(); --it) {
          list.append(*it);
        }
        this->_transects.swap(tr);
      }
    
    void CircularSurvey::_storeWorker() {
      // If the transects are getting rebuilt then any previously loaded
      // mission items are now invalid.
      if (_loadedMissionItemsParent) {
        _loadedMissionItems.clear();
        _loadedMissionItemsParent->deleteLater();
        _loadedMissionItemsParent = nullptr;
      }
    
      // Store raw transects.
    
      const auto &pRoutingData = this->_pRoutingData;
    
      const auto &ori = this->_referencePoint;
      const auto &transectsENU = pRoutingData->transects;
      std::size_t startIdx = 0;
      bool depotValid = false;
      if (transectsENU.size() > 0 && transectsENU.front().size() == 1) {
        depotValid = true;
        startIdx = 1;
      }
      QList<QList<QGeoCoordinate>> rawTransects;
      for (std::size_t i = startIdx; i < transectsENU.size(); ++i) {
        const auto &t = transectsENU[i];
        rawTransects.append(QList<QGeoCoordinate>());
        auto trGeo = rawTransects.back();
        for (auto &v : t) {
          QGeoCoordinate c;
          snake::fromENU(ori, v, c);
          trGeo.append(c);
    
      // Store solutions.
      QVector<Runs> solutionVector;
      const auto nSolutions = pRoutingData->solutionVector.size();
      for (std::size_t j = 0; j < nSolutions; ++j) {
        const auto &solution = pRoutingData->solutionVector.at(j);
        const auto nRuns = solution.size();
        // Store runs.
        Runs runs(nRuns, Transects{QList<CoordInfo_t>()});
        for (std::size_t k = 0; k < nRuns; ++k) {
          const auto &route = solution.at(k);
          const auto &path = route.path;
          const auto &info = route.info;
          if (info.size() > 1) {
            // Find index of first waypoint.
            std::size_t idxFirst = 0;
            const auto &infoFirst = depotValid ? info.at(1) : info.at(0);
            const auto &firstTransect = transectsENU[infoFirst.index];
            if (firstTransect.size() > 0) {
              const auto &firstWaypoint =
                  infoFirst.reversed ? firstTransect.back() : firstTransect.front();
              double th = 0.01;
              for (std::size_t i = 0; i < path.size(); ++i) {
                auto dist = bg::distance(path[i], firstWaypoint);
    
                if (dist < th) {
    
                  idxFirst = i;
    
              // Find index of last waypoint.
              std::size_t idxLast = path.size() - 1;
              const auto &infoLast = info.at(info.size() - 2);
              const auto &lastTransect = transectsENU[infoLast.index];
              if (lastTransect.size() > 0) {
                const auto &lastWaypoint =
                    infoLast.reversed ? lastTransect.front() : lastTransect.back();
                for (long i = path.size() - 1; i >= 0; --i) {
                  auto dist = bg::distance(path[i], lastWaypoint);
                  if (dist < th) {
                    idxLast = i;
                    break;
                  }
                }
    
                // Convert to geo coordinates.
                auto &list = runs[k].front();
                for (std::size_t i = idxFirst; i <= idxLast; ++i) {
                  auto &vertex = path[i];
                  QGeoCoordinate c;
                  snake::fromENU(ori, vertex, c);
                  list.append(CoordInfo_t{c, CoordTypeInterior});
                }
              } else {
                qWarning() << "CS::_storeWorker(): lastTransect.size() == 0";
    
              qWarning() << "CS::_storeWorker(): firstTransect.size() == 0";
    
            qWarning() << "CS::_storeWorker(): transectsInfo.size() <= 1";
          }
        }
        // Remove empty runs.
        bool error = true;
        for (auto it = runs.begin(); it < runs.end();) {
          if (it->size() > 0 && it->front().size() > 0) {
            error = false;
            ++it;
          } else {
            it = runs.erase(it);
    
        }
        if (!error) {
          solutionVector.push_back(std::move(runs));
    
      // Remove empty solutions.
      std::size_t nSol = 0;
      for (auto it = solutionVector.begin(); it < solutionVector.end();) {
    
        if (it->size() > 0 && it->front().size() > 0) {
          ++it;
    
          it = solutionVector.erase(it);
    
    
      // Assign routes if no error occured.
    
      if (nSol > 0) {
    
        // Swap first route to _transects.
    
        this->_variantVector.swap(solutionVector);
    
    
        // Add route variant names.
    
        this->_variantNames.clear();
        for (std::size_t i = 1; i <= std::size_t(this->_variantVector.size());
             ++i) {
    
          this->_variantNames.append(QString::number(i));
    
        emit variantNamesChanged();
    
        // Swap in rawTransects.
        this->_rawTransects.swap(rawTransects);
    
    
        disconnect(&this->_variant, &Fact::rawValueChanged, this,
                   &CircularSurvey::_changeVariant);
        disconnect(&this->_run, &Fact::rawValueChanged, this,
                   &CircularSurvey::_changeRun);
        this->_variant.setCookedValue(QVariant(0));
        this->_run.setCookedValue(QVariant(0));
        connect(&this->_variant, &Fact::rawValueChanged, this,
                &CircularSurvey::_changeVariant);
        connect(&this->_run, &Fact::rawValueChanged, this,
                &CircularSurvey::_changeRun);
        this->_changeVariantRunWorker();
    
        // Mark transect as stored and ready.
        this->_transectsDirty = false;
    
    }
    
    void CircularSurvey::applyNewAltitude(double newAltitude) {
      _cameraCalc.valueSetIsDistance()->setRawValue(true);
      _cameraCalc.distanceToSurface()->setRawValue(newAltitude);
      _cameraCalc.setDistanceToSurfaceRelative(true);
    }
    
    double CircularSurvey::timeBetweenShots() { return 1; }
    
    QString CircularSurvey::commandDescription() const {
      return tr("Circular Survey");
    }
    
    QString CircularSurvey::commandName() const { return tr("Circular Survey"); }
    
    QString CircularSurvey::abbreviation() const { return tr("C.S."); }
    
    bool CircularSurvey::readyForSave() const {
      return TransectStyleComplexItem::readyForSave() && !_transectsDirty;
    }
    
    double CircularSurvey::additionalTimeDelay() const { return 0; }
    
    void CircularSurvey::_rebuildTransectsPhase1(void) {
      qWarning() << "_rebuildTransectsPhase1: TODO: remove depot valid stuff";
    
    #ifdef SHOW_CIRCULAR_SURVEY_TIME
    
      auto start = std::chrono::high_resolution_clock::now();
    
    
      switch (this->_state) {
      case STATE::STORE:
    #ifdef SHOW_CIRCULAR_SURVEY_TIME
        qWarning() << "CS::rebuildTransectsPhase1: store.";
    #endif
        this->_storeWorker();
        break;
      case STATE::VARIANT_CHANGE:
    #ifdef SHOW_CIRCULAR_SURVEY_TIME
        qWarning() << "CS::rebuildTransectsPhase1: variant change.";
    #endif
    
        this->_changeVariantRunWorker();
        break;
      case STATE::RUN_CHANGE:
    #ifdef SHOW_CIRCULAR_SURVEY_TIME
        qWarning() << "CS::rebuildTransectsPhase1: run change.";
    #endif
        this->_changeVariantRunWorker();
    
        break;
      case STATE::REVERSE:
    
    #ifdef SHOW_CIRCULAR_SURVEY_TIME
    
        qWarning() << "CS::rebuildTransectsPhase1: reverse.";
    
        this->_reverseWorker();
        break;
      case STATE::DEFAULT:
    #ifdef SHOW_CIRCULAR_SURVEY_TIME
        qWarning() << "CS::rebuildTransectsPhase1: update.";
    #endif
        this->_updateWorker();
        break;
    
      this->_state = STATE::DEFAULT;
    
    #ifdef SHOW_CIRCULAR_SURVEY_TIME
      qWarning() << "CS::rebuildTransectsPhase1(): "
                 << std::chrono::duration_cast<std::chrono::milliseconds>(
                        std::chrono::high_resolution_clock::now() - start)
                        .count()
                 << " ms";
    #endif
    
    }
    
    void CircularSurvey::_recalcComplexDistance() {
      _complexDistance = 0;
      if (_transectsDirty)
        return;
      for (int i = 0; i < _visualTransectPoints.count() - 1; i++) {
        _complexDistance +=
            _visualTransectPoints[i].value<QGeoCoordinate>().distanceTo(
                _visualTransectPoints[i + 1].value<QGeoCoordinate>());
      }
      emit complexDistanceChanged();
    }
    
    // no cameraShots in Circular Survey, add if desired
    void CircularSurvey::_recalcCameraShots() { _cameraShots = 0; }
    
    
    void CircularSurvey::_setTransects(CircularSurvey::PtrRoutingData pRoute) {
    
      this->_pRoutingData = pRoute;
    
      this->_state = STATE::STORE;
    
      this->_rebuildTransects();
    
    Fact *CircularSurvey::minLength() { return &_minLength; }
    
    Fact *CircularSurvey::type() { return &_type; }
    
    
    Fact *CircularSurvey::variant() { return &_variant; }
    
    
    Fact *CircularSurvey::numRuns() { return &_numRuns; }
    
    Fact *CircularSurvey::run() { return &_run; }
    
    
    int CircularSurvey::typeCount() const { return int(integral(Type::Count)); }
    
    bool CircularSurvey::calculating() const {
      return this->_pWorker->calculating();
    }
    
    bool circularTransects(const QGeoCoordinate &ref, const QGeoCoordinate &depot,
    
                           bool useDepot, const QList<QGeoCoordinate> &polygon,
    
                           snake::Length deltaR, snake::Angle deltaAlpha,
                           snake::Length minLength, snake::Transects &transects) {
    #ifdef SHOW_CIRCULAR_SURVEY_TIME
      auto s1 = std::chrono::high_resolution_clock::now();
    #endif
      // Check preconitions
      if (polygon.size() >= 3) {
        using namespace boost::units;
        // Convert geo polygon to ENU polygon.
    
        snake::FPolygon polygonENU;
        snake::FPoint originENU{0, 0};
        snake::FPoint depotENU{0, 0};
    
        snake::areaToEnu(ref, polygon, polygonENU);
        snake::toENU(ref, ref, originENU);
    
        snake::toENU(ref, depot, depotENU);
    
        std::string error;
        // Check validity.
        if (!bg::is_valid(polygonENU, error)) {
    #ifdef DEBUG_CIRCULAR_SURVEY
          qWarning() << "CS::circularTransects(): "
                        "invalid polygon.";
          qWarning() << error.c_str();
          std::stringstream ss;
          ss << bg::wkt(polygonENU);
          qWarning() << ss.str().c_str();
    #endif
        } else {
          // Calculate polygon distances and angles.
          std::vector<snake::Length> distances;
          distances.reserve(polygonENU.outer().size());
          std::vector<snake::Angle> angles;
          angles.reserve(polygonENU.outer().size());
          //#ifdef DEBUG_CIRCULAR_SURVEY
          //      qWarning() << "CS::circularTransects():";
          //#endif
          for (const auto &p : polygonENU.outer()) {
            snake::Length distance = bg::distance(originENU, p) * si::meter;
            distances.push_back(distance);
            snake::Angle alpha = (std::atan2(p.get<1>(), p.get<0>())) * si::radian;
            alpha = alpha < 0 * si::radian ? alpha + 2 * M_PI * si::radian : alpha;
            angles.push_back(alpha);
            //#ifdef DEBUG_CIRCULAR_SURVEY
            //        qWarning() << "distances, angles, coordinates:";
            //        qWarning() << to_string(distance).c_str();
            //        qWarning() << to_string(snake::Degree(alpha)).c_str();
            //        qWarning() << "x = " << p.get<0>() << "y = " << p.get<1>();
            //#endif
          }
    
          auto rMin = deltaR; // minimal circle radius
          snake::Angle alpha1(0 * degree::degree);
          snake::Angle alpha2(360 * degree::degree);
          // Determine r_min by successive approximation
          if (!bg::within(originENU, polygonENU)) {
            rMin = bg::distance(originENU, polygonENU) * si::meter;
          }
    
          auto rMax = (*std::max_element(distances.begin(),
                                         distances.end())); // maximal circle radius
    
          // Scale parameters and coordinates.
          const auto rMinScaled =
              ClipperLib::cInt(std::round(rMin.value() * CLIPPER_SCALE));
          const auto deltaRScaled =
              ClipperLib::cInt(std::round(deltaR.value() * CLIPPER_SCALE));
          auto originScaled = ClipperLib::IntPoint{
              ClipperLib::cInt(std::round(originENU.get<0>())),
              ClipperLib::cInt(std::round(originENU.get<1>()))};
    
          // Generate circle sectors.
          auto rScaled = rMinScaled;
          const auto nTran = long(std::ceil(((rMax - rMin) / deltaR).value()));
          vector<ClipperLib::Path> sectors(nTran, ClipperLib::Path());
          const auto nSectors =
              long(std::round(((alpha2 - alpha1) / deltaAlpha).value()));
          //#ifdef DEBUG_CIRCULAR_SURVEY
          //      qWarning() << "CS::circularTransects(): sector parameres:";
          //      qWarning() << "alpha1: " <<
    
          //      to_string(snake::Degree(alpha1)).c_str(); qWarning() << "alpha2:
          //      "
    
          //      << to_string(snake::Degree(alpha2)).c_str(); qWarning() << "n: "
          //      << to_string((alpha2 - alpha1) / deltaAlpha).c_str(); qWarning()
          //      << "nSectors: " << nSectors; qWarning() << "rMin: " <<
          //      to_string(rMin).c_str(); qWarning() << "rMax: " <<
          //      to_string(rMax).c_str(); qWarning() << "nTran: " << nTran;
          //#endif
          using ClipperCircle =
              GenericCircle<ClipperLib::cInt, ClipperLib::IntPoint>;
          for (auto &sector : sectors) {
            ClipperCircle circle(rScaled, originScaled);
            approximate(circle, nSectors, sector);
            rScaled += deltaRScaled;
          }
          // Clip sectors to polygonENU.
          ClipperLib::Path polygonClipper;
    
          snake::FPolygon shrinked;
    
          snake::offsetPolygon(polygonENU, shrinked, -0.3);
          auto &outer = shrinked.outer();
    
          polygonClipper.reserve(outer.size());
    
          for (auto it = outer.begin(); it < outer.end() - 1; ++it) {
            auto x = ClipperLib::cInt(std::round(it->get<0>() * CLIPPER_SCALE));
            auto y = ClipperLib::cInt(std::round(it->get<1>() * CLIPPER_SCALE));
            polygonClipper.push_back(ClipperLib::IntPoint{x, y});
          }
          ClipperLib::Clipper clipper;
          clipper.AddPath(polygonClipper, ClipperLib::ptClip, true);
          clipper.AddPaths(sectors, ClipperLib::ptSubject, false);
          ClipperLib::PolyTree transectsClipper;
          clipper.Execute(ClipperLib::ctIntersection, transectsClipper,
                          ClipperLib::pftNonZero, ClipperLib::pftNonZero);
    
          // Extract transects from  PolyTree and convert them to
          // BoostLineString
    
          if (useDepot) {
    
            transects.push_back(snake::FLineString{depotENU});
    
          }
          for (const auto &child : transectsClipper.Childs) {
    
            snake::FLineString transect;
    
            transect.reserve(child->Contour.size());
            for (const auto &vertex : child->Contour) {
              auto x = static_cast<double>(vertex.X) / CLIPPER_SCALE;
              auto y = static_cast<double>(vertex.Y) / CLIPPER_SCALE;
    
              transect.push_back(snake::FPoint(x, y));
    
            }
            transects.push_back(transect);
          }
          // Join sectors which where slit due to clipping.
          const double th = 0.01;
          for (auto ito = transects.begin(); ito < transects.end(); ++ito) {
            for (auto iti = ito + 1; iti < transects.end(); ++iti) {
              auto dist1 = bg::distance(ito->front(), iti->front());
              if (dist1 < th) {
    
                snake::FLineString temp;
    
                for (auto it = iti->end() - 1; it >= iti->begin(); --it) {
                  temp.push_back(*it);
                }
                temp.insert(temp.end(), ito->begin(), ito->end());
                *ito = temp;
                transects.erase(iti);
                break;
              }
              auto dist2 = bg::distance(ito->front(), iti->back());
              if (dist2 < th) {
    
                snake::FLineString temp;
    
                temp.insert(temp.end(), iti->begin(), iti->end());
                temp.insert(temp.end(), ito->begin(), ito->end());
                *ito = temp;
                transects.erase(iti);
                break;
              }
              auto dist3 = bg::distance(ito->back(), iti->front());
              if (dist3 < th) {
    
                snake::FLineString temp;
    
                temp.insert(temp.end(), ito->begin(), ito->end());
                temp.insert(temp.end(), iti->begin(), iti->end());
                *ito = temp;
                transects.erase(iti);
                break;
              }
              auto dist4 = bg::distance(ito->back(), iti->back());
              if (dist4 < th) {
    
                snake::FLineString temp;
    
                temp.insert(temp.end(), ito->begin(), ito->end());
                for (auto it = iti->end() - 1; it >= iti->begin(); --it) {
                  temp.push_back(*it);
                }
                *ito = temp;
                transects.erase(iti);
                break;
              }
            }
          }
          // Remove short transects
    
          auto begin = useDepot ? transects.begin() + 1 : transects.begin();
    
          for (auto it = begin; it < transects.end();) {
            if (bg::length(*it) < minLength.value()) {
              it = transects.erase(it);
            } else {
              ++it;
            }
          }
    
    
          if (!useDepot) {
    
            // Move transect with min. distance to the front.
            auto minDist = std::numeric_limits<double>::max();
            auto minIt = transects.begin();
            bool reverse = false;
            for (auto it = transects.begin(); it < transects.end(); ++it) {
              auto distFront = bg::distance(originENU, it->front());
              auto distBack = bg::distance(originENU, it->back());
              if (distFront < minDist) {
                minDist = distFront;
                minIt = it;
                reverse = false;
              }
              if (distBack < minDist) {
                minDist = distBack;
                minIt = it;