XprHelper.h 16.8 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

#ifndef EIGEN_XPRHELPER_H
#define EIGEN_XPRHELPER_H

// just a workaround because GCC seems to not really like empty structs
// FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled
// so currently we simply disable this optimization for gcc 4.3
#if (defined __GNUG__) && !((__GNUC__==4) && (__GNUC_MINOR__==3))
  #define EIGEN_EMPTY_STRUCT_CTOR(X) \
    EIGEN_STRONG_INLINE X() {} \
    EIGEN_STRONG_INLINE X(const X& ) {}
#else
  #define EIGEN_EMPTY_STRUCT_CTOR(X)
#endif

Don Gagne's avatar
Don Gagne committed
25 26
namespace Eigen {

LM's avatar
LM committed
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;

namespace internal {

//classes inheriting no_assignment_operator don't generate a default operator=.
class no_assignment_operator
{
  private:
    no_assignment_operator& operator=(const no_assignment_operator&);
};

/** \internal return the index type with the largest number of bits */
template<typename I1, typename I2>
struct promote_index_type
{
  typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type;
};

/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that
  * can be accessed using value() and setValue().
  * Otherwise, this class is an empty structure and value() just returns the template parameter Value.
  */
template<typename T, int Value> class variable_if_dynamic
{
  public:
    EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic)
    explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); }
    static T value() { return T(Value); }
    void setValue(T) {}
};

template<typename T> class variable_if_dynamic<T, Dynamic>
{
    T m_value;
    variable_if_dynamic() { assert(false); }
  public:
    explicit variable_if_dynamic(T value) : m_value(value) {}
    T value() const { return m_value; }
    void setValue(T value) { m_value = value; }
};

Don Gagne's avatar
Don Gagne committed
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/** \internal like variable_if_dynamic but for DynamicIndex
  */
template<typename T, int Value> class variable_if_dynamicindex
{
  public:
    EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamicindex)
    explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); }
    static T value() { return T(Value); }
    void setValue(T) {}
};

template<typename T> class variable_if_dynamicindex<T, DynamicIndex>
{
    T m_value;
    variable_if_dynamicindex() { assert(false); }
  public:
    explicit variable_if_dynamicindex(T value) : m_value(value) {}
    T value() const { return m_value; }
    void setValue(T value) { m_value = value; }
};

LM's avatar
LM committed
89 90 91 92 93
template<typename T> struct functor_traits
{
  enum
  {
    Cost = 10,
Don Gagne's avatar
Don Gagne committed
94 95
    PacketAccess = false,
    IsRepeatable = false
LM's avatar
LM committed
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  };
};

template<typename T> struct packet_traits;

template<typename T> struct unpacket_traits
{
  typedef T type;
  enum {size=1};
};

template<typename _Scalar, int _Rows, int _Cols,
         int _Options = AutoAlign |
                          ( (_Rows==1 && _Cols!=1) ? RowMajor
                          : (_Cols==1 && _Rows!=1) ? ColMajor
                          : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
         int _MaxRows = _Rows,
         int _MaxCols = _Cols
> class make_proper_matrix_type
{
    enum {
      IsColVector = _Cols==1 && _Rows!=1,
      IsRowVector = _Rows==1 && _Cols!=1,
      Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
              : IsRowVector ? (_Options | RowMajor) & ~ColMajor
              : _Options
    };
  public:
    typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
};

template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
class compute_matrix_flags
{
    enum {
      row_major_bit = Options&RowMajor ? RowMajorBit : 0,
      is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic,

      aligned_bit =
      (
            ((Options&DontAlign)==0)
        && (
#if EIGEN_ALIGN_STATICALLY
Don Gagne's avatar
Don Gagne committed
139
             ((!is_dynamic_size_storage) && (((MaxCols*MaxRows*int(sizeof(Scalar))) % 16) == 0))
LM's avatar
LM committed
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
#else
             0
#endif

          ||

#if EIGEN_ALIGN
             is_dynamic_size_storage
#else
             0
#endif

          )
      ) ? AlignedBit : 0,
      packet_access_bit = packet_traits<Scalar>::Vectorizable && aligned_bit ? PacketAccessBit : 0
    };

  public:
    enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit };
};

template<int _Rows, int _Cols> struct size_at_compile_time
{
  enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
};

/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
 * whereas eval is a const reference in the case of a matrix
 */

template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type;
template<typename T, typename BaseClassType> struct plain_matrix_type_dense;
template<typename T> struct plain_matrix_type<T,Dense>
{
  typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type;
};

template<typename T> struct plain_matrix_type_dense<T,MatrixXpr>
{
  typedef Matrix<typename traits<T>::Scalar,
                traits<T>::RowsAtCompileTime,
                traits<T>::ColsAtCompileTime,
                AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
                traits<T>::MaxRowsAtCompileTime,
                traits<T>::MaxColsAtCompileTime
          > type;
};

template<typename T> struct plain_matrix_type_dense<T,ArrayXpr>
{
  typedef Array<typename traits<T>::Scalar,
                traits<T>::RowsAtCompileTime,
                traits<T>::ColsAtCompileTime,
                AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
                traits<T>::MaxRowsAtCompileTime,
                traits<T>::MaxColsAtCompileTime
          > type;
};

/* eval : the return type of eval(). For matrices, this is just a const reference
 * in order to avoid a useless copy
 */

template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval;

template<typename T> struct eval<T,Dense>
{
  typedef typename plain_matrix_type<T>::type type;
//   typedef typename T::PlainObject type;
//   typedef T::Matrix<typename traits<T>::Scalar,
//                 traits<T>::RowsAtCompileTime,
//                 traits<T>::ColsAtCompileTime,
//                 AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
//                 traits<T>::MaxRowsAtCompileTime,
//                 traits<T>::MaxColsAtCompileTime
//           > type;
};

// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
{
  typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
};

template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
{
  typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
};



/* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major
 */
template<typename T> struct plain_matrix_type_column_major
{
  enum { Rows = traits<T>::RowsAtCompileTime,
         Cols = traits<T>::ColsAtCompileTime,
         MaxRows = traits<T>::MaxRowsAtCompileTime,
         MaxCols = traits<T>::MaxColsAtCompileTime
  };
  typedef Matrix<typename traits<T>::Scalar,
                Rows,
                Cols,
                (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor,
                MaxRows,
                MaxCols
          > type;
};

/* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major
 */
template<typename T> struct plain_matrix_type_row_major
{
  enum { Rows = traits<T>::RowsAtCompileTime,
         Cols = traits<T>::ColsAtCompileTime,
         MaxRows = traits<T>::MaxRowsAtCompileTime,
         MaxCols = traits<T>::MaxColsAtCompileTime
  };
  typedef Matrix<typename traits<T>::Scalar,
                Rows,
                Cols,
                (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor,
                MaxRows,
                MaxCols
          > type;
};

// we should be able to get rid of this one too
template<typename T> struct must_nest_by_value { enum { ret = false }; };

Don Gagne's avatar
Don Gagne committed
272 273 274
/** \internal The reference selector for template expressions. The idea is that we don't
  * need to use references for expressions since they are light weight proxy
  * objects which should generate no copying overhead. */
LM's avatar
LM committed
275 276 277 278 279 280
template <typename T>
struct ref_selector
{
  typedef typename conditional<
    bool(traits<T>::Flags & NestByRefBit),
    T const&,
Don Gagne's avatar
Don Gagne committed
281 282 283 284 285 286 287 288 289 290 291 292
    const T
  >::type type;
};

/** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */
template<typename T1, typename T2>
struct transfer_constness
{
  typedef typename conditional<
    bool(internal::is_const<T1>::value),
    typename internal::add_const_on_value_type<T2>::type,
    T2
LM's avatar
LM committed
293 294 295 296 297 298 299 300 301 302 303 304 305
  >::type type;
};

/** \internal Determines how a given expression should be nested into another one.
  * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
  * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
  * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
  * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
  * many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
  *
  * \param T the type of the expression being nested
  * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
  *
Don Gagne's avatar
Don Gagne committed
306 307
  * Note that if no evaluation occur, then the constness of T is preserved.
  *
LM's avatar
LM committed
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
  * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
  * the Product expression uses: nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of
  * nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
  * since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::ret, which turns out to be
  * const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point
  * in copying it into another matrix.
  */
template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested
{
  enum {
    // for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
    // the choice of 10000 makes it larger than any practical fixed value and even most dynamic values.
    // in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues
    // (poor choice of temporaries).
    // it's important that this value can still be squared without integer overflowing.
    DynamicAsInteger = 10000,
    ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
Don Gagne's avatar
Don Gagne committed
326
    ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? int(DynamicAsInteger) : int(ScalarReadCost),
LM's avatar
LM committed
327
    CoeffReadCost = traits<T>::CoeffReadCost,
Don Gagne's avatar
Don Gagne committed
328
    CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? int(DynamicAsInteger) : int(CoeffReadCost),
LM's avatar
LM committed
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
    CostEvalAsInteger   = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
    CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger
  };

  typedef typename conditional<
      ( (int(traits<T>::Flags) & EvalBeforeNestingBit) ||
        int(CostEvalAsInteger) < int(CostNoEvalAsInteger)
      ),
      PlainObject,
      typename ref_selector<T>::type
  >::type type;
};

template<typename T>
T* const_cast_ptr(const T* ptr)
{
  return const_cast<T*>(ptr);
}

template<typename Derived, typename XprKind = typename traits<Derived>::XprKind>
struct dense_xpr_base
{
  /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */
};

template<typename Derived>
struct dense_xpr_base<Derived, MatrixXpr>
{
  typedef MatrixBase<Derived> type;
};

template<typename Derived>
struct dense_xpr_base<Derived, ArrayXpr>
{
  typedef ArrayBase<Derived> type;
};

/** \internal Helper base class to add a scalar multiple operator
  * overloads for complex types */
template<typename Derived,typename Scalar,typename OtherScalar,
         bool EnableIt = !is_same<Scalar,OtherScalar>::value >
struct special_scalar_op_base : public DenseCoeffsBase<Derived>
{
  // dummy operator* so that the
  // "using special_scalar_op_base::operator*" compiles
  void operator*() const;
};

template<typename Derived,typename Scalar,typename OtherScalar>
struct special_scalar_op_base<Derived,Scalar,OtherScalar,true>  : public DenseCoeffsBase<Derived>
{
  const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
  operator*(const OtherScalar& scalar) const
  {
    return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
      (*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar));
  }

  inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
  operator*(const OtherScalar& scalar, const Derived& matrix)
  { return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); }
};

template<typename XprType, typename CastType> struct cast_return_type
{
  typedef typename XprType::Scalar CurrentScalarType;
  typedef typename remove_all<CastType>::type _CastType;
  typedef typename _CastType::Scalar NewScalarType;
  typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value,
                              const XprType&,CastType>::type type;
};

template <typename A, typename B> struct promote_storage_type;

template <typename A> struct promote_storage_type<A,A>
{
  typedef A ret;
};

/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
  * \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
  */
template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_row_type
{
  typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime,
                 ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType;
  typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime,
                 ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType;

  typedef typename conditional<
    is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
    MatrixRowType,
    ArrayRowType 
  >::type type;
};

template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_col_type
{
  typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1,
                 ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType;
  typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1,
                 ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType;

  typedef typename conditional<
    is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
    MatrixColType,
    ArrayColType 
  >::type type;
};

template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_diag_type
{
  enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime),
         max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime)
  };
  typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType;
  typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType;

  typedef typename conditional<
    is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
    MatrixDiagType,
    ArrayDiagType 
  >::type type;
};

template<typename ExpressionType>
struct is_lvalue
{
  enum { value = !bool(is_const<ExpressionType>::value) &&
                 bool(traits<ExpressionType>::Flags & LvalueBit) };
};

} // end namespace internal

Don Gagne's avatar
Don Gagne committed
467 468
} // end namespace Eigen

LM's avatar
LM committed
469
#endif // EIGEN_XPRHELPER_H