exception_handler.cc 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
// Copyright (c) 2010 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The ExceptionHandler object installs signal handlers for a number of
// signals. We rely on the signal handler running on the thread which crashed
// in order to identify it. This is true of the synchronous signals (SEGV etc),
// but not true of ABRT. Thus, if you send ABRT to yourself in a program which
// uses ExceptionHandler, you need to use tgkill to direct it to the current
// thread.
//
// The signal flow looks like this:
//
//   SignalHandler (uses a global stack of ExceptionHandler objects to find
//        |         one to handle the signal. If the first rejects it, try
//        |         the second etc...)
//        V
//   HandleSignal ----------------------------| (clones a new process which
//        |                                   |  shares an address space with
//   (wait for cloned                         |  the crashed process. This
//     process)                               |  allows us to ptrace the crashed
//        |                                   |  process)
//        V                                   V
//   (set signal handler to             ThreadEntry (static function to bounce
//    SIG_DFL and rethrow,                    |      back into the object)
//    killing the crashed                     |
//    process)                                V
//                                          DoDump  (writes minidump)
//                                            |
//                                            V
//                                         sys_exit
//

// This code is a little fragmented. Different functions of the ExceptionHandler
// class run in a number of different contexts. Some of them run in a normal
// context and are easy to code, others run in a compromised context and the
// restrictions at the top of minidump_writer.cc apply: no libc and use the
// alternative malloc. Each function should have comment above it detailing the
// context which it runs in.

#include "client/linux/handler/exception_handler.h"

#include <errno.h>
#include <fcntl.h>
#include <linux/limits.h>
#include <pthread.h>
#include <sched.h>
#include <signal.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/syscall.h>
#include <sys/wait.h>
#include <unistd.h>

#include <sys/signal.h>
#include <sys/ucontext.h>
#include <sys/user.h>
#include <ucontext.h>

#include <algorithm>
#include <utility>
#include <vector>

#include "common/basictypes.h"
#include "common/linux/linux_libc_support.h"
#include "common/memory.h"
#include "client/linux/log/log.h"
#include "client/linux/microdump_writer/microdump_writer.h"
#include "client/linux/minidump_writer/linux_dumper.h"
#include "client/linux/minidump_writer/minidump_writer.h"
#include "common/linux/eintr_wrapper.h"
#include "third_party/lss/linux_syscall_support.h"

#if defined(__ANDROID__)
#include "linux/sched.h"
#endif

#ifndef PR_SET_PTRACER
#define PR_SET_PTRACER 0x59616d61
#endif

// A wrapper for the tgkill syscall: send a signal to a specific thread.
static int tgkill(pid_t tgid, pid_t tid, int sig) {
  return syscall(__NR_tgkill, tgid, tid, sig);
  return 0;
}

namespace google_breakpad {

namespace {
// The list of signals which we consider to be crashes. The default action for
// all these signals must be Core (see man 7 signal) because we rethrow the
// signal after handling it and expect that it'll be fatal.
const int kExceptionSignals[] = {
  SIGSEGV, SIGABRT, SIGFPE, SIGILL, SIGBUS, SIGTRAP
};
const int kNumHandledSignals =
    sizeof(kExceptionSignals) / sizeof(kExceptionSignals[0]);
struct sigaction old_handlers[kNumHandledSignals];
bool handlers_installed = false;

// InstallAlternateStackLocked will store the newly installed stack in new_stack
// and (if it exists) the previously installed stack in old_stack.
stack_t old_stack;
stack_t new_stack;
bool stack_installed = false;

// Create an alternative stack to run the signal handlers on. This is done since
// the signal might have been caused by a stack overflow.
// Runs before crashing: normal context.
void InstallAlternateStackLocked() {
  if (stack_installed)
    return;

  memset(&old_stack, 0, sizeof(old_stack));
  memset(&new_stack, 0, sizeof(new_stack));

  // SIGSTKSZ may be too small to prevent the signal handlers from overrunning
  // the alternative stack. Ensure that the size of the alternative stack is
  // large enough.
  static const unsigned kSigStackSize = std::max(16384, SIGSTKSZ);

  // Only set an alternative stack if there isn't already one, or if the current
  // one is too small.
  if (sys_sigaltstack(NULL, &old_stack) == -1 || !old_stack.ss_sp ||
      old_stack.ss_size < kSigStackSize) {
    new_stack.ss_sp = calloc(1, kSigStackSize);
    new_stack.ss_size = kSigStackSize;

    if (sys_sigaltstack(&new_stack, NULL) == -1) {
      free(new_stack.ss_sp);
      return;
    }
    stack_installed = true;
  }
}

// Runs before crashing: normal context.
void RestoreAlternateStackLocked() {
  if (!stack_installed)
    return;

  stack_t current_stack;
  if (sys_sigaltstack(NULL, &current_stack) == -1)
    return;

  // Only restore the old_stack if the current alternative stack is the one
  // installed by the call to InstallAlternateStackLocked.
  if (current_stack.ss_sp == new_stack.ss_sp) {
    if (old_stack.ss_sp) {
      if (sys_sigaltstack(&old_stack, NULL) == -1)
        return;
    } else {
      stack_t disable_stack;
      disable_stack.ss_flags = SS_DISABLE;
      if (sys_sigaltstack(&disable_stack, NULL) == -1)
        return;
    }
  }

  free(new_stack.ss_sp);
  stack_installed = false;
}

void InstallDefaultHandler(int sig) {
#if defined(__ANDROID__)
  // Android L+ expose signal and sigaction symbols that override the system
  // ones. There is a bug in these functions where a request to set the handler
  // to SIG_DFL is ignored. In that case, an infinite loop is entered as the
  // signal is repeatedly sent to breakpad's signal handler.
  // To work around this, directly call the system's sigaction.
  struct kernel_sigaction sa;
  memset(&sa, 0, sizeof(sa));
  sys_sigemptyset(&sa.sa_mask);
  sa.sa_handler_ = SIG_DFL;
  sa.sa_flags = SA_RESTART;
  sys_rt_sigaction(sig, &sa, NULL, sizeof(kernel_sigset_t));
#else
  signal(sig, SIG_DFL);
#endif
}

// The global exception handler stack. This is needed because there may exist
// multiple ExceptionHandler instances in a process. Each will have itself
// registered in this stack.
std::vector<ExceptionHandler*>* g_handler_stack_ = NULL;
pthread_mutex_t g_handler_stack_mutex_ = PTHREAD_MUTEX_INITIALIZER;

// sizeof(CrashContext) can be too big w.r.t the size of alternatate stack
// for SignalHandler(). Keep the crash context as a .bss field. Exception
// handlers are serialized by the |g_handler_stack_mutex_| and at most one at a
// time can use |g_crash_context_|.
ExceptionHandler::CrashContext g_crash_context_;

}  // namespace

// Runs before crashing: normal context.
ExceptionHandler::ExceptionHandler(const MinidumpDescriptor& descriptor,
                                   FilterCallback filter,
                                   MinidumpCallback callback,
                                   void* callback_context,
                                   bool install_handler,
                                   const int server_fd)
    : filter_(filter),
      callback_(callback),
      callback_context_(callback_context),
      minidump_descriptor_(descriptor),
      crash_handler_(NULL) {
  if (server_fd >= 0)
    crash_generation_client_.reset(CrashGenerationClient::TryCreate(server_fd));

  if (!IsOutOfProcess() && !minidump_descriptor_.IsFD() &&
      !minidump_descriptor_.IsMicrodumpOnConsole())
    minidump_descriptor_.UpdatePath();

#if defined(__ANDROID__)
  if (minidump_descriptor_.IsMicrodumpOnConsole())
    logger::initializeCrashLogWriter();
#endif

  pthread_mutex_lock(&g_handler_stack_mutex_);

  // Pre-fault the crash context struct. This is to avoid failing due to OOM
  // if handling an exception when the process ran out of virtual memory.
  memset(&g_crash_context_, 0, sizeof(g_crash_context_));

  if (!g_handler_stack_)
    g_handler_stack_ = new std::vector<ExceptionHandler*>;
  if (install_handler) {
    InstallAlternateStackLocked();
    InstallHandlersLocked();
  }
  g_handler_stack_->push_back(this);
  pthread_mutex_unlock(&g_handler_stack_mutex_);
}

// Runs before crashing: normal context.
ExceptionHandler::~ExceptionHandler() {
  pthread_mutex_lock(&g_handler_stack_mutex_);
  std::vector<ExceptionHandler*>::iterator handler =
      std::find(g_handler_stack_->begin(), g_handler_stack_->end(), this);
  g_handler_stack_->erase(handler);
  if (g_handler_stack_->empty()) {
    delete g_handler_stack_;
    g_handler_stack_ = NULL;
    RestoreAlternateStackLocked();
    RestoreHandlersLocked();
  }
  pthread_mutex_unlock(&g_handler_stack_mutex_);
}

// Runs before crashing: normal context.
// static
bool ExceptionHandler::InstallHandlersLocked() {
  if (handlers_installed)
    return false;

  // Fail if unable to store all the old handlers.
  for (int i = 0; i < kNumHandledSignals; ++i) {
    if (sigaction(kExceptionSignals[i], NULL, &old_handlers[i]) == -1)
      return false;
  }

  struct sigaction sa;
  memset(&sa, 0, sizeof(sa));
  sigemptyset(&sa.sa_mask);

  // Mask all exception signals when we're handling one of them.
  for (int i = 0; i < kNumHandledSignals; ++i)
    sigaddset(&sa.sa_mask, kExceptionSignals[i]);

  sa.sa_sigaction = SignalHandler;
  sa.sa_flags = SA_ONSTACK | SA_SIGINFO;

  for (int i = 0; i < kNumHandledSignals; ++i) {
    if (sigaction(kExceptionSignals[i], &sa, NULL) == -1) {
      // At this point it is impractical to back out changes, and so failure to
      // install a signal is intentionally ignored.
    }
  }
  handlers_installed = true;
  return true;
}

// This function runs in a compromised context: see the top of the file.
// Runs on the crashing thread.
// static
void ExceptionHandler::RestoreHandlersLocked() {
  if (!handlers_installed)
    return;

  for (int i = 0; i < kNumHandledSignals; ++i) {
    if (sigaction(kExceptionSignals[i], &old_handlers[i], NULL) == -1) {
      InstallDefaultHandler(kExceptionSignals[i]);
    }
  }
  handlers_installed = false;
}

// void ExceptionHandler::set_crash_handler(HandlerCallback callback) {
//   crash_handler_ = callback;
// }

// This function runs in a compromised context: see the top of the file.
// Runs on the crashing thread.
// static
void ExceptionHandler::SignalHandler(int sig, siginfo_t* info, void* uc) {
  // All the exception signals are blocked at this point.
  pthread_mutex_lock(&g_handler_stack_mutex_);

  // Sometimes, Breakpad runs inside a process where some other buggy code
  // saves and restores signal handlers temporarily with 'signal'
  // instead of 'sigaction'. This loses the SA_SIGINFO flag associated
  // with this function. As a consequence, the values of 'info' and 'uc'
  // become totally bogus, generally inducing a crash.
  //
  // The following code tries to detect this case. When it does, it
  // resets the signal handlers with sigaction + SA_SIGINFO and returns.
  // This forces the signal to be thrown again, but this time the kernel
  // will call the function with the right arguments.
  struct sigaction cur_handler;
  if (sigaction(sig, NULL, &cur_handler) == 0 &&
      (cur_handler.sa_flags & SA_SIGINFO) == 0) {
    // Reset signal handler with the right flags.
    sigemptyset(&cur_handler.sa_mask);
    sigaddset(&cur_handler.sa_mask, sig);

    cur_handler.sa_sigaction = SignalHandler;
    cur_handler.sa_flags = SA_ONSTACK | SA_SIGINFO;

    if (sigaction(sig, &cur_handler, NULL) == -1) {
      // When resetting the handler fails, try to reset the
      // default one to avoid an infinite loop here.
      InstallDefaultHandler(sig);
    }
    pthread_mutex_unlock(&g_handler_stack_mutex_);
    return;
  }

  bool handled = false;
  for (int i = g_handler_stack_->size() - 1; !handled && i >= 0; --i) {
    handled = (*g_handler_stack_)[i]->HandleSignal(sig, info, uc);
  }

  // Upon returning from this signal handler, sig will become unmasked and then
  // it will be retriggered. If one of the ExceptionHandlers handled it
  // successfully, restore the default handler. Otherwise, restore the
  // previously installed handler. Then, when the signal is retriggered, it will
  // be delivered to the appropriate handler.
  if (handled) {
    InstallDefaultHandler(sig);
  } else {
    RestoreHandlersLocked();
  }

  pthread_mutex_unlock(&g_handler_stack_mutex_);

  // info->si_code <= 0 iff SI_FROMUSER (SI_FROMKERNEL otherwise).
  if (info->si_code <= 0 || sig == SIGABRT) {
    // This signal was triggered by somebody sending us the signal with kill().
    // In order to retrigger it, we have to queue a new signal by calling
    // kill() ourselves.  The special case (si_pid == 0 && sig == SIGABRT) is
    // due to the kernel sending a SIGABRT from a user request via SysRQ.
    if (tgkill(getpid(), syscall(__NR_gettid), sig) < 0) {
      // If we failed to kill ourselves (e.g. because a sandbox disallows us
      // to do so), we instead resort to terminating our process. This will
      // result in an incorrect exit code.
      _exit(1);
    }
  } else {
    // This was a synchronous signal triggered by a hard fault (e.g. SIGSEGV).
    // No need to reissue the signal. It will automatically trigger again,
    // when we return from the signal handler.
  }
}

struct ThreadArgument {
  pid_t pid;  // the crashing process
  const MinidumpDescriptor* minidump_descriptor;
  ExceptionHandler* handler;
  const void* context;  // a CrashContext structure
  size_t context_size;
};

// This is the entry function for the cloned process. We are in a compromised
// context here: see the top of the file.
// static
int ExceptionHandler::ThreadEntry(void *arg) {
  const ThreadArgument *thread_arg = reinterpret_cast<ThreadArgument*>(arg);

  // Block here until the crashing process unblocks us when
  // we're allowed to use ptrace
  thread_arg->handler->WaitForContinueSignal();

  return thread_arg->handler->DoDump(thread_arg->pid, thread_arg->context,
                                     thread_arg->context_size) == false;
}

// This function runs in a compromised context: see the top of the file.
// Runs on the crashing thread.
bool ExceptionHandler::HandleSignal(int /*sig*/, siginfo_t* info, void* uc) {
  if (filter_ && !filter_(callback_context_))
    return false;

  // Allow ourselves to be dumped if the signal is trusted.
  bool signal_trusted = info->si_code > 0;
  bool signal_pid_trusted = info->si_code == SI_USER ||
      info->si_code == SI_TKILL;
  if (signal_trusted || (signal_pid_trusted && info->si_pid == getpid())) {
    sys_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
  }

  // Fill in all the holes in the struct to make Valgrind happy.
  memset(&g_crash_context_, 0, sizeof(g_crash_context_));
  memcpy(&g_crash_context_.siginfo, info, sizeof(siginfo_t));
  memcpy(&g_crash_context_.context, uc, sizeof(struct ucontext));
#if defined(__aarch64__)
  struct ucontext* uc_ptr = (struct ucontext*)uc;
  struct fpsimd_context* fp_ptr =
      (struct fpsimd_context*)&uc_ptr->uc_mcontext.__reserved;
  if (fp_ptr->head.magic == FPSIMD_MAGIC) {
    memcpy(&g_crash_context_.float_state, fp_ptr,
           sizeof(g_crash_context_.float_state));
  }
#elif !defined(__ARM_EABI__) && !defined(__mips__)
  // FP state is not part of user ABI on ARM Linux.
  // In case of MIPS Linux FP state is already part of struct ucontext
  // and 'float_state' is not a member of CrashContext.
  struct ucontext* uc_ptr = (struct ucontext*)uc;
  if (uc_ptr->uc_mcontext.fpregs) {
    memcpy(&g_crash_context_.float_state, uc_ptr->uc_mcontext.fpregs,
           sizeof(g_crash_context_.float_state));
  }
#endif
  g_crash_context_.tid = syscall(__NR_gettid);
  if (crash_handler_ != NULL) {
    if (crash_handler_(&g_crash_context_, sizeof(g_crash_context_),
                       callback_context_)) {
      return true;
    }
  }
  return GenerateDump(&g_crash_context_);
}

// This is a public interface to HandleSignal that allows the client to
// generate a crash dump. This function may run in a compromised context.
bool ExceptionHandler::SimulateSignalDelivery(int sig) {
Gus Grubba's avatar
Gus Grubba committed
474
  siginfo_t siginfo;
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
  // Mimic a trusted signal to allow tracing the process (see
  // ExceptionHandler::HandleSignal().
  siginfo.si_code = SI_USER;
  siginfo.si_pid = getpid();
  struct ucontext context;
  getcontext(&context);
  return HandleSignal(sig, &siginfo, &context);
}

// This function may run in a compromised context: see the top of the file.
bool ExceptionHandler::GenerateDump(CrashContext *context) {
  if (IsOutOfProcess())
    return crash_generation_client_->RequestDump(context, sizeof(*context));

  // Allocating too much stack isn't a problem, and better to err on the side
  // of caution than smash it into random locations.
  static const unsigned kChildStackSize = 16000;
  PageAllocator allocator;
  uint8_t* stack = reinterpret_cast<uint8_t*>(allocator.Alloc(kChildStackSize));
  if (!stack)
    return false;
  // clone() needs the top-most address. (scrub just to be safe)
  stack += kChildStackSize;
  my_memset(stack - 16, 0, 16);

  ThreadArgument thread_arg;
  thread_arg.handler = this;
  thread_arg.minidump_descriptor = &minidump_descriptor_;
  thread_arg.pid = getpid();
  thread_arg.context = context;
  thread_arg.context_size = sizeof(*context);

  // We need to explicitly enable ptrace of parent processes on some
  // kernels, but we need to know the PID of the cloned process before we
  // can do this. Create a pipe here which we can use to block the
  // cloned process after creating it, until we have explicitly enabled ptrace
  if (sys_pipe(fdes) == -1) {
    // Creating the pipe failed. We'll log an error but carry on anyway,
    // as we'll probably still get a useful crash report. All that will happen
    // is the write() and read() calls will fail with EBADF
    static const char no_pipe_msg[] = "ExceptionHandler::GenerateDump "
                                      "sys_pipe failed:";
    logger::write(no_pipe_msg, sizeof(no_pipe_msg) - 1);
    logger::write(strerror(errno), strlen(strerror(errno)));
    logger::write("\n", 1);

    // Ensure fdes[0] and fdes[1] are invalid file descriptors.
    fdes[0] = fdes[1] = -1;
  }

  const pid_t child = sys_clone(
      ThreadEntry, stack, CLONE_FILES | CLONE_FS | CLONE_UNTRACED,
      &thread_arg, NULL, NULL, NULL);
  if (child == -1) {
    sys_close(fdes[0]);
    sys_close(fdes[1]);
    return false;
  }

  // Allow the child to ptrace us
  sys_prctl(PR_SET_PTRACER, child, 0, 0, 0);
  SendContinueSignalToChild();
  int status;
  const int r = HANDLE_EINTR(sys_waitpid(child, &status, __WALL));

  sys_close(fdes[0]);
  sys_close(fdes[1]);

  if (r == -1) {
    static const char msg[] = "ExceptionHandler::GenerateDump waitpid failed:";
    logger::write(msg, sizeof(msg) - 1);
    logger::write(strerror(errno), strlen(strerror(errno)));
    logger::write("\n", 1);
  }

  bool success = r != -1 && WIFEXITED(status) && WEXITSTATUS(status) == 0;
  if (callback_)
    success = callback_(minidump_descriptor_, callback_context_, success);
  return success;
}

// This function runs in a compromised context: see the top of the file.
void ExceptionHandler::SendContinueSignalToChild() {
  static const char okToContinueMessage = 'a';
  int r;
  r = HANDLE_EINTR(sys_write(fdes[1], &okToContinueMessage, sizeof(char)));
  if (r == -1) {
    static const char msg[] = "ExceptionHandler::SendContinueSignalToChild "
                              "sys_write failed:";
    logger::write(msg, sizeof(msg) - 1);
    logger::write(strerror(errno), strlen(strerror(errno)));
    logger::write("\n", 1);
  }
}

// This function runs in a compromised context: see the top of the file.
// Runs on the cloned process.
void ExceptionHandler::WaitForContinueSignal() {
  int r;
  char receivedMessage;
  r = HANDLE_EINTR(sys_read(fdes[0], &receivedMessage, sizeof(char)));
  if (r == -1) {
    static const char msg[] = "ExceptionHandler::WaitForContinueSignal "
                              "sys_read failed:";
    logger::write(msg, sizeof(msg) - 1);
    logger::write(strerror(errno), strlen(strerror(errno)));
    logger::write("\n", 1);
  }
}

// This function runs in a compromised context: see the top of the file.
// Runs on the cloned process.
bool ExceptionHandler::DoDump(pid_t crashing_process, const void* context,
                              size_t context_size) {
  const bool may_skip_dump =
      minidump_descriptor_.skip_dump_if_principal_mapping_not_referenced();
  const uintptr_t principal_mapping_address =
      minidump_descriptor_.address_within_principal_mapping();
  const bool sanitize_stacks = minidump_descriptor_.sanitize_stacks();
  if (minidump_descriptor_.IsMicrodumpOnConsole()) {
    return google_breakpad::WriteMicrodump(
        crashing_process,
        context,
        context_size,
        mapping_list_,
        may_skip_dump,
        principal_mapping_address,
        sanitize_stacks,
        *minidump_descriptor_.microdump_extra_info());
  }
  if (minidump_descriptor_.IsFD()) {
    return google_breakpad::WriteMinidump(minidump_descriptor_.fd(),
                                          minidump_descriptor_.size_limit(),
                                          crashing_process,
                                          context,
                                          context_size,
                                          mapping_list_,
                                          app_memory_list_,
                                          may_skip_dump,
                                          principal_mapping_address,
                                          sanitize_stacks);
  }
  return google_breakpad::WriteMinidump(minidump_descriptor_.path(),
                                        minidump_descriptor_.size_limit(),
                                        crashing_process,
                                        context,
                                        context_size,
                                        mapping_list_,
                                        app_memory_list_,
                                        may_skip_dump,
                                        principal_mapping_address,
                                        sanitize_stacks);
}

// static
bool ExceptionHandler::WriteMinidump(const string& dump_path,
                                     MinidumpCallback callback,
                                     void* callback_context) {
  MinidumpDescriptor descriptor(dump_path);
  ExceptionHandler eh(descriptor, NULL, callback, callback_context, false, -1);
  return eh.WriteMinidump();
}

// In order to making using EBP to calculate the desired value for ESP
// a valid operation, ensure that this function is compiled with a
// frame pointer using the following attribute. This attribute
// is supported on GCC but not on clang.
#if defined(__i386__) && defined(__GNUC__) && !defined(__clang__)
__attribute__((optimize("no-omit-frame-pointer")))
#endif
bool ExceptionHandler::WriteMinidump() {
  if (!IsOutOfProcess() && !minidump_descriptor_.IsFD() &&
      !minidump_descriptor_.IsMicrodumpOnConsole()) {
    // Update the path of the minidump so that this can be called multiple times
    // and new files are created for each minidump.  This is done before the
    // generation happens, as clients may want to access the MinidumpDescriptor
    // after this call to find the exact path to the minidump file.
    minidump_descriptor_.UpdatePath();
  } else if (minidump_descriptor_.IsFD()) {
    // Reposition the FD to its beginning and resize it to get rid of the
    // previous minidump info.
    lseek(minidump_descriptor_.fd(), 0, SEEK_SET);
    ignore_result(ftruncate(minidump_descriptor_.fd(), 0));
  }

  // Allow this process to be dumped.
  sys_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);

  CrashContext context;
  int getcontext_result = getcontext(&context.context);
  if (getcontext_result)
    return false;

#if defined(__i386__)
  // In CPUFillFromUContext in minidumpwriter.cc the stack pointer is retrieved
  // from REG_UESP instead of from REG_ESP. REG_UESP is the user stack pointer
  // and it only makes sense when running in kernel mode with a different stack
  // pointer. When WriteMiniDump is called during normal processing REG_UESP is
  // zero which leads to bad minidump files.
  if (!context.context.uc_mcontext.gregs[REG_UESP]) {
    // If REG_UESP is set to REG_ESP then that includes the stack space for the
    // CrashContext object in this function, which is about 128 KB. Since the
    // Linux dumper only records 32 KB of stack this would mean that nothing
    // useful would be recorded. A better option is to set REG_UESP to REG_EBP,
    // perhaps with a small negative offset in case there is any code that
    // objects to them being equal.
    context.context.uc_mcontext.gregs[REG_UESP] =
      context.context.uc_mcontext.gregs[REG_EBP] - 16;
    // The stack saving is based off of REG_ESP so it must be set to match the
    // new REG_UESP.
    context.context.uc_mcontext.gregs[REG_ESP] =
      context.context.uc_mcontext.gregs[REG_UESP];
  }
#endif

#if !defined(__ARM_EABI__) && !defined(__aarch64__) && !defined(__mips__)
  // FPU state is not part of ARM EABI ucontext_t.
  memcpy(&context.float_state, context.context.uc_mcontext.fpregs,
         sizeof(context.float_state));
#endif
  context.tid = sys_gettid();

  // Add an exception stream to the minidump for better reporting.
  memset(&context.siginfo, 0, sizeof(context.siginfo));
  context.siginfo.si_signo = MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED;
#if defined(__i386__)
  context.siginfo.si_addr =
      reinterpret_cast<void*>(context.context.uc_mcontext.gregs[REG_EIP]);
#elif defined(__x86_64__)
  context.siginfo.si_addr =
      reinterpret_cast<void*>(context.context.uc_mcontext.gregs[REG_RIP]);
#elif defined(__arm__)
  context.siginfo.si_addr =
      reinterpret_cast<void*>(context.context.uc_mcontext.arm_pc);
#elif defined(__aarch64__)
  context.siginfo.si_addr =
      reinterpret_cast<void*>(context.context.uc_mcontext.pc);
#elif defined(__mips__)
  context.siginfo.si_addr =
      reinterpret_cast<void*>(context.context.uc_mcontext.pc);
#else
#error "This code has not been ported to your platform yet."
#endif

  return GenerateDump(&context);
}

void ExceptionHandler::AddMappingInfo(const string& name,
                                      const uint8_t identifier[sizeof(MDGUID)],
                                      uintptr_t start_address,
                                      size_t mapping_size,
                                      size_t file_offset) {
  MappingInfo info;
  info.start_addr = start_address;
  info.size = mapping_size;
  info.offset = file_offset;
  strncpy(info.name, name.c_str(), sizeof(info.name) - 1);
  info.name[sizeof(info.name) - 1] = '\0';

  MappingEntry mapping;
  mapping.first = info;
  memcpy(mapping.second, identifier, sizeof(MDGUID));
  mapping_list_.push_back(mapping);
}

void ExceptionHandler::RegisterAppMemory(void* ptr, size_t length) {
  AppMemoryList::iterator iter =
    std::find(app_memory_list_.begin(), app_memory_list_.end(), ptr);
  if (iter != app_memory_list_.end()) {
    // Don't allow registering the same pointer twice.
    return;
  }

  AppMemory app_memory;
  app_memory.ptr = ptr;
  app_memory.length = length;
  app_memory_list_.push_back(app_memory);
}

void ExceptionHandler::UnregisterAppMemory(void* ptr) {
  AppMemoryList::iterator iter =
    std::find(app_memory_list_.begin(), app_memory_list_.end(), ptr);
  if (iter != app_memory_list_.end()) {
    app_memory_list_.erase(iter);
  }
}

// static
bool ExceptionHandler::WriteMinidumpForChild(pid_t child,
                                             pid_t child_blamed_thread,
                                             const string& dump_path,
                                             MinidumpCallback callback,
                                             void* callback_context) {
  // This function is not run in a compromised context.
  MinidumpDescriptor descriptor(dump_path);
  descriptor.UpdatePath();
  if (!google_breakpad::WriteMinidump(descriptor.path(),
                                      child,
                                      child_blamed_thread))
      return false;

  return callback ? callback(descriptor, callback_context, true) : true;
}

}  // namespace google_breakpad