snake_geometry.cpp 15.7 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
#include "snake_geometry.h"
#include <mapbox/polylabel.hpp>
#include <mapbox/geometry.hpp>

#include <boost/geometry.hpp>
#include <boost/geometry/geometries/polygon.hpp>
#include <boost/geometry/geometries/adapted/boost_tuple.hpp>


#include <GeographicLib/Geocentric.hpp>
#include <GeographicLib/LocalCartesian.hpp>

using namespace mapbox;
using namespace snake_geometry;
using namespace std;

namespace bg = bg;
namespace trans = bg::strategy::transform;

BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(cs::cartesian)


namespace snake_geometry {

void toENU(const GeoPoint3D &WGS84Reference, const GeoPoint3D &WGS84Position, Point3D &ENUPosition)
{
    GeographicLib::Geocentric earth(GeographicLib::Constants::WGS84_a(), GeographicLib::Constants::WGS84_f());
    GeographicLib::LocalCartesian proj(WGS84Reference[0], WGS84Reference[1], WGS84Reference[2], earth);

    proj.Forward(WGS84Position[0], WGS84Position[1], WGS84Position[2], ENUPosition[0], ENUPosition[1], ENUPosition[2]);
}

void fromENU(const Point3D &WGS84Reference, const Point3D &CartesianPosition, GeoPoint3D &GeoPosition)
{
    GeographicLib::Geocentric earth(GeographicLib::Constants::WGS84_a(), GeographicLib::Constants::WGS84_f());
    GeographicLib::LocalCartesian proj(WGS84Reference[0], WGS84Reference[1], WGS84Reference[2], earth);

    proj.Reverse(CartesianPosition[0], CartesianPosition[1], CartesianPosition[2], GeoPosition[0], GeoPosition[1], GeoPosition[2]);
}

void polygonCenter(const BoostPolygon &polygon, BoostPoint &center)
{
   if (polygon.outer().empty())
       return;
   geometry::polygon<double> p;
   geometry::linear_ring<double> lr1;
   for (size_t i = 0; i < polygon.outer().size(); ++i) {
       geometry::point<double> vertex(polygon.outer()[i].get<0>(), polygon.outer()[i].get<1>());
       lr1.push_back(vertex);
   }
   p.push_back(lr1);
   geometry::point<double> c = polylabel(p);

   center.set<0>(c.x);
   center.set<1>(c.y);
}

void minimalBoundingBox(const BoostPolygon &polygon, min_bbox_rt &minBBox)
{
    /*
    Find the minimum-area bounding box of a set of 2D points

    The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates.
    The first and last points points must be the same, making a closed polygon.
    This program finds the rotation angles of each edge of the convex polygon,
    then tests the area of a bounding box aligned with the unique angles in
    90 degrees of the 1st Quadrant.
    Returns the

    Tested with Python 2.6.5 on Ubuntu 10.04.4 (original version)
    Results verified using Matlab

    Copyright (c) 2013, David Butterworth, University of Queensland
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are met:

        * Redistributions of source code must retain the above copyright
          notice, this list of conditions and the following disclaimer.
        * Redistributions in binary form must reproduce the above copyright
          notice, this list of conditions and the following disclaimer in the
          documentation and/or other materials provided with the distribution.
        * Neither the name of the Willow Garage, Inc. nor the names of its
          contributors may be used to endorse or promote products derived from
          this software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
    LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    POSSIBILITY OF SUCH DAMAGE.
    */

    if (polygon.outer().empty())
        return;
    BoostPolygon convex_hull;
    bg::convex_hull(polygon, convex_hull);

    //cout << "Convex hull: " << bg::wkt<BoostPolygon2D>(convex_hull) << endl;

    //# Compute edges (x2-x1,y2-y1)
    std::vector<BoostPoint> edges;
    auto convex_hull_outer = convex_hull.outer();
    for (long i=0; i < long(convex_hull_outer.size())-1; ++i) {
        BoostPoint p1      = convex_hull_outer.at(i);
        BoostPoint p2      = convex_hull_outer.at(i+1);
        double edge_x   = p2.get<0>() - p1.get<0>();
        double edge_y   = p2.get<1>() - p1.get<1>();
        edges.push_back(BoostPoint{edge_x, edge_y});
    }

//    cout << "Edges: ";
//    for (auto e : edges)
//        cout << e.get<0>() << " " << e.get<1>() << ",";
//    cout << endl;

    // Calculate unique edge angles  atan2(y/x)
    double angle_scale = 1e3;
    std::set<long> angles_long;
    for (auto vertex : edges) {
        double angle = std::fmod(atan2(vertex.get<1>(), vertex.get<0>()), M_PI / 2);
        angle = angle < 0 ? angle + M_PI / 2 : angle; // want strictly positive answers
        angles_long.insert(long(round(angle*angle_scale)));
    }
    std::vector<double> edge_angles;
    for (auto a : angles_long)
        edge_angles.push_back(double(a)/angle_scale);


//    cout << "Unique angles: ";
//    for (auto e : edge_angles)
//        cout << e*180/M_PI << ",";
//    cout << endl;

    double min_area = std::numeric_limits<double>::infinity();
    // Test each angle to find bounding box with smallest area
    // print "Testing", len(edge_angles), "possible rotations for bounding box... \n"
    for (double angle : edge_angles){

        trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle*180/M_PI);
        BoostPolygon hull_rotated;
        bg::transform(convex_hull, hull_rotated, rotate);
        //cout << "Convex hull rotated: " << bg::wkt<BoostPolygon2D>(hull_rotated) << endl;

        bg::model::box<BoostPoint> box;
        bg::envelope(hull_rotated, box);
//        cout << "Bounding box: " << bg::wkt<bg::model::box<BoostPoint2D>>(box) << endl;

        //# print "Rotated hull points are \n", rot_points
        BoostPoint min_corner = box.min_corner();
        BoostPoint max_corner = box.max_corner();
        double min_x = min_corner.get<0>();
        double max_x = max_corner.get<0>();
        double min_y = min_corner.get<1>();
        double max_y = max_corner.get<1>();
//        cout << "min_x: " << min_x << endl;
//        cout << "max_x: " << max_x << endl;
//        cout << "min_y: " << min_y << endl;
//        cout << "max_y: " << max_y << endl;

        // Calculate height/width/area of this bounding rectangle
        double width    = max_x - min_x;
        double height   = max_y - min_y;
        double area     = width * height;
//        cout << "Width: " << width << endl;
//        cout << "Height: " << height << endl;
//        cout << "area: " << area << endl;
//        cout << "angle: " << angle*180/M_PI << endl;

        // Store the smallest rect found first (a simple convex hull might have 2 answers with same area)
        if (area < min_area){
            min_area = area;
            minBBox.angle  = angle;
            minBBox.width  = width;
            minBBox.height = height;

            minBBox.corners.clear();
            minBBox.corners.outer().push_back(BoostPoint{min_x, min_y});
            minBBox.corners.outer().push_back(BoostPoint{min_x, max_y});
            minBBox.corners.outer().push_back(BoostPoint{max_x, max_y});
            minBBox.corners.outer().push_back(BoostPoint{max_x, min_y});
            minBBox.corners.outer().push_back(BoostPoint{min_x, min_y});
        }
        //cout << endl << endl;
    }


    // Transform corners of minimal bounding box.
    trans::rotate_transformer<bg::degree, double, 2, 2> rotate(-minBBox.angle*180/M_PI);
    BoostPolygon rotated_polygon;
    bg::transform(minBBox.corners, rotated_polygon, rotate);
    minBBox.corners = rotated_polygon;
}

void toBoost(const Point2D &point, BoostPoint &boost_point)
{
    boost_point.set<0>(point[0]);
    boost_point.set<1>(point[1]);
}

void fromBoost(const BoostPoint &boost_point, Point2D &point)
{
    point[0] = boost_point.get<0>();
    point[1] = boost_point.get<1>();
}

void toBoost(const Point2DList &point_list, BoostPolygon &boost_polygon)
{
    for (auto vertex : point_list) {
        BoostPoint boost_vertex;
        toBoost(vertex, boost_vertex);
        boost_polygon.outer().push_back(boost_vertex);
    }
    bg::correct(boost_polygon);
}

void fromBoost(const BoostPolygon &boost_polygon, Point2DList &point_list)
{
    for (auto boost_vertex : boost_polygon.outer()) {
        Point2D vertex;
        fromBoost(boost_vertex, vertex);
        point_list.push_back(vertex);
    }
}

void rotateDeg(const Point2DList &point_list, Point2DList &rotated_point_list, double degree)
{
    trans::rotate_transformer<bg::degree, double, 2, 2> rotate(degree);
    BoostPolygon boost_polygon;
    toBoost(point_list, boost_polygon);
    BoostPolygon rotated_polygon;
    bg::transform(boost_polygon, rotated_polygon, rotate);
    fromBoost(rotated_polygon, rotated_point_list);
}

void rotateRad(const Point2DList &point_list, Point2DList &rotated_point_list, double rad)
{
    rotateDeg(point_list, rotated_point_list, rad*180/M_PI);
}

bool isClockwise(const Point2DList &point_list)
{
    double orientaion = 0;
    double len = point_list.size();
    for (long i=0; i < len-1; ++i){
        Point2D v1 = point_list[i];
        Point2D v2 = point_list[i+1];
        orientaion += (v2[0]-v1[0])*(v2[1]+v1[1]);
    }
    Point2D v1 = point_list[len-1];
    Point2D v2 = point_list[0];
    orientaion += (v2[0]-v1[0])*(v2[1]+v1[1]);

    return orientaion > 0 ? true : false;
}

void offsetPolygon(const BoostPolygon &polygon, BoostPolygon &polygonOffset, double offset)
{
    bg::strategy::buffer::distance_symmetric<double> distance_strategy(offset);
    bg::strategy::buffer::join_miter join_strategy(3);
    bg::strategy::buffer::end_flat end_strategy;
    bg::strategy::buffer::point_square point_strategy;
    bg::strategy::buffer::side_straight side_strategy;


    bg::model::multi_polygon<BoostPolygon> result;

    bg::buffer(polygon, result, distance_strategy, side_strategy, join_strategy, end_strategy, point_strategy);

277 278
    if (result.size() > 0)
        polygonOffset = result[0];
Valentin Platzgummer's avatar
Valentin Platzgummer committed
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

}


void graphFromPolygon(const BoostPolygon &polygon, const BoostLineString &vertices, Matrix<double> &graph)
{
    size_t n = graph.getN();

    for (size_t i=0; i < n; ++i) {
        BoostPoint v1 = vertices[i];
        for (size_t j=i+1; j < n; ++j){
            BoostPoint v2 = vertices[j];
            BoostLineString path{v1, v2};

            double distance = 0;
            if (!bg::within(path, polygon))
                distance = std::numeric_limits<double>::infinity();
            else
                distance = bg::length(path);

            graph.set(i, j, distance);
            graph.set(j, i, distance);
        }
    }

}

bool dijkstraAlgorithm(const size_t numElements,
                       size_t startIndex,
                       size_t endIndex,
                       std::vector<size_t> &elementPath,
                       std::function<double (const size_t, const size_t)> distanceDij)
{
    if (    startIndex >= numElements
         || endIndex >= numElements
         || endIndex == startIndex) {
        return false;
    }
    // Node struct
    // predecessorIndex is the index of the predecessor node (nodeList[predecessorIndex])
    // distance is the distance between the node and the start node
    // node number is stored by the position in nodeList
    struct Node{
        int predecessorIndex = -1;
        double distance = std::numeric_limits<double>::infinity();
    };

    // The list with all Nodes (elements)
    std::vector<Node> nodeList(numElements);
    // This list will be initalized with indices referring to the elements of nodeList.
    // Elements will be successively remove during the execution of the Dijkstra Algorithm.
    std::vector<size_t> workingSet(numElements);

    //append elements to node list
    for (size_t i = 0; i < numElements; ++i) workingSet[i] = i;


    nodeList[startIndex].distance = 0;

    // Dijkstra Algorithm
    // https://de.wikipedia.org/wiki/Dijkstra-Algorithmus
    while (workingSet.size() > 0) {
        // serach Node with minimal distance
        double minDist = std::numeric_limits<double>::infinity();
        int minDistIndex_WS = -1; // WS = workinSet
        for (size_t i = 0; i < workingSet.size(); ++i) {
            const int nodeIndex = workingSet.at(i);
            const double dist = nodeList.at(nodeIndex).distance;
            if (dist < minDist) {
                minDist = dist;
                minDistIndex_WS = i;
            }
        }
        if (minDistIndex_WS == -1)
                return false;

        size_t indexU_NL = workingSet.at(minDistIndex_WS); // NL = nodeList
        workingSet.erase(workingSet.begin()+minDistIndex_WS);
        if (indexU_NL == endIndex) // shortest path found
            break;

        const double distanceU = nodeList.at(indexU_NL).distance;
        //update distance
        for (size_t i = 0; i < workingSet.size(); ++i) {
            int indexV_NL = workingSet[i]; // NL = nodeList
            Node* v = &nodeList[indexV_NL];
            double dist = distanceDij(indexU_NL, indexV_NL);
            // is ther an alternative path which is shorter?
            double alternative = distanceU + dist;
            if (alternative < v->distance)  {
                v->distance         = alternative;
                v->predecessorIndex = indexU_NL;
            }
        }

    }
    // end Djikstra Algorithm


    // reverse assemble path
    int e = endIndex;
    while (1) {
        if (e == -1) {
            if (elementPath[0] == startIndex)// check if starting point was reached
                break;
            return false;
        }
        elementPath.insert(elementPath.begin(), e);

        //Update Node
        e = nodeList[e].predecessorIndex;

    }
    return true;
}

void toDistanceMatrix(Matrix<double> &graph)
{
    size_t n = graph.getN();

    auto distance = [graph](size_t i, size_t j){
        return graph.get(i,j);
    };


    std::vector<size_t> path;
    for (size_t i=0; i < n; ++i) {
        for (size_t j=i+1; j < n; ++j){
            double d = graph.get(i,j);
            if (!std::isinf(d))
                continue;
            path.clear();
            bool ret = dijkstraAlgorithm(n, i, j, path, distance);
            assert(ret);
            (void)ret;
//            cout << "(" << i << "," << j << ") d: " << d << endl;
//            cout << "Path size: " << path.size() << endl;
//            for (auto idx : path)
//                cout << idx << " ";
//            cout << endl;

            d = 0;
            for (long k=0; k < long(path.size())-1; ++k) {
                size_t idx0 = path[k];
                size_t idx1 = path[k+1];
                double d0 = graph.get(idx0, idx1);
                assert(std::isinf(d0) == false);
                d += d0;
            }

            graph.set(i, j, d);
            graph.set(j, i, d);
        }
    }
}

void shortestPathFromGraph(const Matrix<double> &graph, size_t startIndex, size_t endIndex, std::vector<size_t> &pathIdx)
{

    if (!std::isinf(graph.get(startIndex, endIndex))){
        pathIdx.push_back(startIndex);
        pathIdx.push_back(endIndex);
    } else {
        auto distance = [graph](size_t i, size_t j){
            return graph.get(i, j);
        };
        bool ret = dijkstraAlgorithm(graph.getN(), startIndex, endIndex, pathIdx, distance);
        assert(ret);
        (void)ret;
    }

}

} // end namespace snake_geometry