benderscut_feas.h 3.48 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*                                                                           */
/*                  This file is part of the program and library             */
/*         SCIP --- Solving Constraint Integer Programs                      */
/*                                                                           */
/*    Copyright (C) 2002-2020 Konrad-Zuse-Zentrum                            */
/*                            fuer Informationstechnik Berlin                */
/*                                                                           */
/*  SCIP is distributed under the terms of the ZIB Academic License.         */
/*                                                                           */
/*  You should have received a copy of the ZIB Academic License              */
/*  along with SCIP; see the file COPYING. If not visit scipopt.org.         */
/*                                                                           */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/**@file   benderscut_feas.h
 * @ingroup BENDERSCUTS
 * @brief  Standard feasibility cuts for Benders' decomposition
 * @author Stephen J. Maher
 *
 * The classical Benders' decomposition feasibility cuts arise from an infeasible instance of the Benders' decomposition
 * subproblem.
 * Consider the linear Benders' decomposition subproblem that takes the master problem solution \f$\bar{x}\f$ as input:
 * \f[
 * z(\bar{x}) = \min\{d^{T}y : Ty \geq h - H\bar{x}, y \geq 0\}
 * \f]
 * If the subproblem is infeasible as a result of the solution \f$\bar{x}\f$, then the Benders' decomposition
 * feasibility cut can be generated from the dual ray. Let \f$w\f$ be the vector corresponding to the dual ray of the
 * Benders' decomposition subproblem. The resulting cut is:
 * \f[
 * 0 \geq w^{T}(h - Hx)
 * \f]
 *
 * Next, consider the nonlinear Benders' decomposition subproblem that takes the master problem solution \f$\bar{x}\f$ as input:
 * \f[
 * z(\bar{x}) = \min\{d^{T}y : g(\bar{x}, y) \leq 0, y \geq 0\}
 * \f]
 * If the subproblem is infeasible as a result of the solution \f$\bar{x}\f$, then the Benders' decomposition
 * feasibility cut can be generated from a minimal infeasible solution, i.e., a solution of the NLP
 * \f[
 *   \min\left\{\sum_i u_i : g(\bar{x}, y) \leq u, y \geq 0, u \geq 0\right\}
 * \f]
 * Let \f$\bar{y}\f$, \f$w\f$ be the vectors corresponding to the primal and dual solution of this auxiliary NLP.
 * The resulting cut is:
 * \f[
 * 0 \geq w^{T}\left(g(\bar{x},\bar{y}) + \nabla_x g(\bar{x},\bar{y}) (x - \bar{x})\right)
 * \f]
 * Note, that usually NLP solvers already provide a minimal infeasible solution when declaring the Benders'
 * decomposition subproblem as infeasible.
 */

/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/

#ifndef __SCIP_BENDERSCUT_FEAS_H__
#define __SCIP_BENDERSCUT_FEAS_H__


#include "scip/def.h"
#include "scip/type_benders.h"
#include "scip/type_retcode.h"
#include "scip/type_scip.h"

#ifdef __cplusplus
extern "C" {
#endif

/** creates the Standard Feasibility Benders' decomposition cuts and includes it in SCIP
 *
 *  @ingroup BenderscutIncludes
 */
SCIP_EXPORT
SCIP_RETCODE SCIPincludeBenderscutFeas(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_BENDERS*         benders             /**< Benders' decomposition */
   );

#ifdef __cplusplus
}
#endif

#endif