/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /* */ /* This file is part of the program and library */ /* SCIP --- Solving Constraint Integer Programs */ /* */ /* Copyright (C) 2002-2020 Konrad-Zuse-Zentrum */ /* fuer Informationstechnik Berlin */ /* */ /* SCIP is distributed under the terms of the ZIB Academic License. */ /* */ /* You should have received a copy of the ZIB Academic License */ /* along with SCIP; see the file COPYING. If not visit scipopt.org. */ /* */ /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /**@file benderscut_feas.h * @ingroup BENDERSCUTS * @brief Standard feasibility cuts for Benders' decomposition * @author Stephen J. Maher * * The classical Benders' decomposition feasibility cuts arise from an infeasible instance of the Benders' decomposition * subproblem. * Consider the linear Benders' decomposition subproblem that takes the master problem solution \f$\bar{x}\f$ as input: * \f[ * z(\bar{x}) = \min\{d^{T}y : Ty \geq h - H\bar{x}, y \geq 0\} * \f] * If the subproblem is infeasible as a result of the solution \f$\bar{x}\f$, then the Benders' decomposition * feasibility cut can be generated from the dual ray. Let \f$w\f$ be the vector corresponding to the dual ray of the * Benders' decomposition subproblem. The resulting cut is: * \f[ * 0 \geq w^{T}(h - Hx) * \f] * * Next, consider the nonlinear Benders' decomposition subproblem that takes the master problem solution \f$\bar{x}\f$ as input: * \f[ * z(\bar{x}) = \min\{d^{T}y : g(\bar{x}, y) \leq 0, y \geq 0\} * \f] * If the subproblem is infeasible as a result of the solution \f$\bar{x}\f$, then the Benders' decomposition * feasibility cut can be generated from a minimal infeasible solution, i.e., a solution of the NLP * \f[ * \min\left\{\sum_i u_i : g(\bar{x}, y) \leq u, y \geq 0, u \geq 0\right\} * \f] * Let \f$\bar{y}\f$, \f$w\f$ be the vectors corresponding to the primal and dual solution of this auxiliary NLP. * The resulting cut is: * \f[ * 0 \geq w^{T}\left(g(\bar{x},\bar{y}) + \nabla_x g(\bar{x},\bar{y}) (x - \bar{x})\right) * \f] * Note, that usually NLP solvers already provide a minimal infeasible solution when declaring the Benders' * decomposition subproblem as infeasible. */ /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/ #ifndef __SCIP_BENDERSCUT_FEAS_H__ #define __SCIP_BENDERSCUT_FEAS_H__ #include "scip/def.h" #include "scip/type_benders.h" #include "scip/type_retcode.h" #include "scip/type_scip.h" #ifdef __cplusplus extern "C" { #endif /** creates the Standard Feasibility Benders' decomposition cuts and includes it in SCIP * * @ingroup BenderscutIncludes */ SCIP_EXPORT SCIP_RETCODE SCIPincludeBenderscutFeas( SCIP* scip, /**< SCIP data structure */ SCIP_BENDERS* benders /**< Benders' decomposition */ ); #ifdef __cplusplus } #endif #endif