snake.h 8.81 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#pragma once

#include <array>
#include <atomic>
#include <functional>
#include <memory>
#include <string>
#include <vector>

#include <boost/geometry.hpp>
#include <boost/units/systems/angle/degrees.hpp>
#include <boost/units/systems/si.hpp>
#include <boost/units/systems/si/io.hpp>
#include <boost/units/systems/si/plane_angle.hpp>
#include <boost/units/systems/si/prefixes.hpp>

namespace bg = boost::geometry;
namespace bu = boost::units;

#include <GeographicLib/Geocentric.hpp>
#include <GeographicLib/LocalCartesian.hpp>

23 24 25
#include "QGCQGeoCoordinate.h"
#include "QmlObjectListModel.h"

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
using namespace std;

namespace snake {
//=========================================================================
// Geometry stuff.
//=========================================================================

// Double geometry.
using FloatType = double;
typedef bg::model::point<double, 2, bg::cs::cartesian> FPoint;
typedef bg::model::polygon<FPoint> FPolygon;
typedef bg::model::linestring<FPoint> FLineString;
typedef bg::model::box<FPoint> FBox;

// Integer geometry.
using IntType = long long;
using IPoint = bg::model::point<IntType, 2, bg::cs::cartesian>;
using IPolygon = bg::model::polygon<IPoint>;
using IRing = bg::model::ring<IPoint>;
using ILineString = bg::model::linestring<IPoint>;

FPoint int2Float(const IPoint &ip);
FPoint int2Float(const IPoint &ip, IntType scale);
IPoint float2Int(const FPoint &ip);
IPoint float2Int(const FPoint &ip, IntType scale);

template <class T> class Matrix;

template <class DataType>
ostream &operator<<(ostream &os, const Matrix<DataType> &matrix) {
  for (std::size_t i = 0; i < matrix.m(); ++i) {
    for (std::size_t j = 0; j < matrix.n(); ++j) {
      os << "(" << i << "," << j << "):" << matrix(i, j) << std::endl;
    }
  }
  return os;
}

// Matrix
template <class DataType> class Matrix {
public:
  using value_type = DataType;
  Matrix(std::size_t m, std::size_t n) : _m(m), _n(n) { _matrix.resize(m * n); }
  Matrix(std::size_t m, std::size_t n, DataType value) : _m(m), _n(n) {
    _matrix.resize(m * n, value);
  }

  DataType &operator()(std::size_t i, std::size_t j) {
    assert(i < _m);
    assert(j < _n);
    return _matrix[i * _m + j];
  }

  const DataType &operator()(std::size_t i, std::size_t j) const {
    assert(i < _m);
    assert(j < _n);
    return _matrix[i * _m + j];
  }

  std::size_t m() const { return _n; }
  std::size_t n() const { return _n; }

  friend ostream &operator<<<>(ostream &os, const Matrix<DataType> &dt);

private:
  std::vector<DataType> _matrix;
  const std::size_t _m;
  const std::size_t _n;
}; // Matrix

struct BoundingBox {
  BoundingBox();

  void clear();

  double width;
  double height;
  double angle;
  FPolygon corners;
};

template <class GeoPoint1, class GeoPoint2>
void toENU(const GeoPoint1 &origin, const GeoPoint2 &in, FPoint &out) {
  static GeographicLib::Geocentric earth(GeographicLib::Constants::WGS84_a(),
                                         GeographicLib::Constants::WGS84_f());
111 112
  GeographicLib::LocalCartesian proj(origin.latitude(), origin.longitude(), 0,
                                     earth);
113 114

  double x = 0, y = 0, z = 0;
115
  proj.Forward(in.latitude(), in.longitude(), 0, x, y, z);
116 117 118 119 120 121 122 123 124
  out.set<0>(x);
  out.set<1>(y);
  (void)z;
}

template <class GeoPoint1, class GeoPoint2, class Point>
void toENU(const GeoPoint1 &origin, const GeoPoint2 &in, Point &out) {
  static GeographicLib::Geocentric earth(GeographicLib::Constants::WGS84_a(),
                                         GeographicLib::Constants::WGS84_f());
125 126
  GeographicLib::LocalCartesian proj(origin.latitude(), origin.longitude(), 0,
                                     earth);
127 128

  double x = 0, y = 0, z = 0;
129
  proj.Forward(in.latitude(), in.longitude(), 0, x, y, z);
130 131 132 133 134 135 136 137 138
  out.setX(x);
  out.setY(y);
  (void)z;
}

template <class GeoPoint>
void fromENU(const GeoPoint &origin, const FPoint &in, GeoPoint &out) {
  static GeographicLib::Geocentric earth(GeographicLib::Constants::WGS84_a(),
                                         GeographicLib::Constants::WGS84_f());
139 140
  GeographicLib::LocalCartesian proj(origin.latitude(), origin.longitude(), 0,
                                     earth);
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

  double lat = 0, lon = 0, alt = 0;
  proj.Reverse(in.get<0>(), in.get<1>(), 0.0, lat, lon, alt);
  out.setLatitude(lat);
  out.setLongitude(lon);
  out.setAltitude(alt);
}

template <class GeoPoint, class Container1, class Container2>
void areaToEnu(const GeoPoint &origin, const Container1 &in, Container2 &out) {
  for (auto &vertex : in) {
    typename Container2::value_type p;
    toENU(origin, vertex, p);
    out.push_back(p);
  }
}

template <class GeoPoint, class Container>
void areaToEnu(const GeoPoint &origin, const Container &in, FPolygon &out) {
  for (auto &vertex : in) {
    FPoint p;
    toENU(origin, vertex, p);
    out.outer().push_back(p);
  }
  bg::correct(out);
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
template <class GeoPoint>
void areaToEnu(const GeoPoint &origin, QmlObjectListModel &in, FPolygon &out) {
  FPolygon buffer;
  for (int i = 0; i < in.count(); ++i) {
    auto vertex = in.value<const QGCQGeoCoordinate *>(i);
    if (vertex != nullptr) {
      FPoint p;
      toENU(origin, vertex->coordinate(), p);
      buffer.outer().push_back(p);
    } else {
      return;
    }
  }
  bg::correct(buffer);
  out = std::move(buffer);
}

185
template <class GeoPoint, class Container1, class Container2>
186 187
void areaFromEnu(const GeoPoint &origin, const Container1 &in,
                 Container2 &out) {
188 189 190 191 192 193 194 195
  for (auto &vertex : in) {
    typename Container2::value_type p;
    fromENU(origin, vertex, p);
    out.push_back(p);
  }
}

template <class GeoPoint, class Container>
196
void areaFromEnu(const GeoPoint &origin, const FPolygon &in, Container &out) {
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
  for (auto &vertex : in.outer()) {
    typename Container::value_type p;
    fromENU(origin, vertex, p);
    out.push_back(p);
  }
}

void polygonCenter(const FPolygon &polygon, FPoint &center);
bool minimalBoundingBox(const FPolygon &polygon, BoundingBox &minBBox);
void offsetPolygon(const FPolygon &polygon, FPolygon &polygonOffset,
                   double offset);
void graphFromPolygon(const FPolygon &polygon, const FLineString &vertices,
                      Matrix<double> &graph);
bool toDistanceMatrix(Matrix<double> &graph);
bool dijkstraAlgorithm(size_t numElements, size_t startIndex, size_t endIndex,
                       std::vector<size_t> &elementPath, double &length,
                       std::function<double(size_t, size_t)> distanceDij);

bool shortestPathFromGraph(const Matrix<double> &graph, const size_t startIndex,
                           const size_t endIndex, std::vector<size_t> &pathIdx);

typedef bu::quantity<bu::si::length> Length;
typedef bu::quantity<bu::si::area> Area;
typedef bu::quantity<bu::si::plane_angle> Angle;
typedef bu::quantity<bu::si::plane_angle> Radian;
typedef bu::quantity<bu::degree::plane_angle> Degree;

bool joinedArea(const std::vector<FPolygon *> &areas, FPolygon &jArea);
bool joinedArea(const FPolygon &mArea, const FPolygon &sArea,
                const FPolygon &corridor, FPolygon &jArea,
                std::string &errorString);
bool tiles(const FPolygon &area, Length tileHeight, Length tileWidth,
           Area minTileArea, std::vector<FPolygon> &tiles, BoundingBox &bbox,
           std::string &errorString);

using Transects = vector<FLineString>;
using Progress = vector<int>;

bool transectsFromScenario(Length distance, Length minLength, Angle angle,
                           const FPolygon &mArea,
                           const std::vector<FPolygon> &tiles,
                           const Progress &p, Transects &t,
                           string &errorString);

struct TransectInfo {
  TransectInfo(size_t n, bool r) : index(n), reversed(r) {}
  size_t index;
  bool reversed;
};
struct Route {
  FLineString path;
  std::vector<TransectInfo> info;
};
using Solution =
    std::vector<Route>; // Every route corresponds to one run/vehicle
struct RouteParameter {
  RouteParameter()
      : numSolutionsPerRun(1), numRuns(1), minNumTransectsPerRun(5),
        stop([] { return false; }) {}
  std::size_t numSolutionsPerRun;
  std::size_t numRuns;
  std::size_t minNumTransectsPerRun;
  std::function<bool(void)> stop;
  mutable std::string errorString;
};
bool route(const FPolygon &area, const Transects &transects,
           std::vector<Solution> &solutionVector,
           const RouteParameter &par = RouteParameter());

namespace detail {
const double offsetConstant =
    0.1; // meter, polygon offset to compenstate for numerical inaccurracies.
} // namespace detail
} // namespace snake

// operator== and operator!= for boost point
namespace boost {
namespace geometry {
namespace model {

bool operator==(snake::FPoint &p1, snake::FPoint &p2);
bool operator!=(snake::FPoint &p1, snake::FPoint &p2);
bool operator==(snake::IPoint &p1, snake::IPoint &p2);
bool operator!=(snake::IPoint &p1, snake::IPoint &p2);

} // namespace model
} // namespace geometry
} // namespace boost