coordinateconversions.cpp 7.38 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/**
 ******************************************************************************
 *
 * @file       coordinateconversions.cpp
 * @author     The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
 * @brief      General conversions with different coordinate systems.
 *             - all angles in deg
 *             - distances in meters
 *             - altitude above WGS-84 elipsoid
 *
 * @see        The GNU Public License (GPL) Version 3
 *
 *****************************************************************************/
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include "coordinateconversions.h"
#include <stdint.h>
#include <QDebug>
#include <math.h>
34
#include <qmath.h>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

#define RAD2DEG (180.0/M_PI)
#define DEG2RAD (M_PI/180.0)

namespace Utils {

CoordinateConversions::CoordinateConversions()
{

}

/**
  * Get rotation matrix from ECEF to NED for that LLA
  * @param[in] LLA Longitude latitude altitude for this location
  * @param[out] Rne[3][3] Rotation matrix
  */
void CoordinateConversions::RneFromLLA(double LLA[3], double Rne[3][3]){
    float sinLat, sinLon, cosLat, cosLon;

    sinLat=(float)sin(DEG2RAD*LLA[0]);
    sinLon=(float)sin(DEG2RAD*LLA[1]);
    cosLat=(float)cos(DEG2RAD*LLA[0]);
    cosLon=(float)cos(DEG2RAD*LLA[1]);

    Rne[0][0] = -sinLat*cosLon; Rne[0][1] = -sinLat*sinLon; Rne[0][2] = cosLat;
    Rne[1][0] = -sinLon;        Rne[1][1] = cosLon;         Rne[1][2] = 0;
    Rne[2][0] = -cosLat*cosLon; Rne[2][1] = -cosLat*sinLon; Rne[2][2] = -sinLat;
}

/**
  * Convert from LLA coordinates to ECEF coordinates
  * @param[in] LLA[3] latitude longitude alititude coordinates in
  * @param[out] ECEF[3] location in ECEF coordinates
  */
void CoordinateConversions::LLA2ECEF(double LLA[3], double ECEF[3]){
  const double a = 6378137.0;           // Equatorial Radius
  const double e = 8.1819190842622e-2;  // Eccentricity
  double sinLat, sinLon, cosLat, cosLon;
  double N;

        sinLat=sin(DEG2RAD*LLA[0]);
        sinLon=sin(DEG2RAD*LLA[1]);
        cosLat=cos(DEG2RAD*LLA[0]);
        cosLon=cos(DEG2RAD*LLA[1]);

        N = a / sqrt(1.0 - e*e*sinLat*sinLat);  //prime vertical radius of curvature

        ECEF[0] = (N+LLA[2])*cosLat*cosLon;
        ECEF[1] = (N+LLA[2])*cosLat*sinLon;
        ECEF[2] = ((1-e*e)*N + LLA[2]) * sinLat;
}

/**
  * Convert from ECEF coordinates to LLA coordinates
  * @param[in] ECEF[3] location in ECEF coordinates
  * @param[out] LLA[3] latitude longitude alititude coordinates
  */
int CoordinateConversions::ECEF2LLA(double ECEF[3], double LLA[3])
{
    const double a = 6378137.0;           // Equatorial Radius
    const double e = 8.1819190842622e-2;  // Eccentricity
    double x=ECEF[0], y=ECEF[1], z=ECEF[2];
    double Lat, N, NplusH, delta, esLat;
    uint16_t iter;

    LLA[1] = RAD2DEG*atan2(y,x);
    N = a;
    NplusH = N;
    delta = 1;
    Lat = 1;
    iter=0;

    while (((delta > 1.0e-14)||(delta < -1.0e-14)) && (iter < 100))
    {
        delta = Lat - atan(z / (sqrt(x*x + y*y)*(1-(N*e*e/NplusH))));
        Lat = Lat-delta;
        esLat = e*sin(Lat);
        N = a / sqrt(1 - esLat*esLat);
        NplusH = sqrt(x*x + y*y)/cos(Lat);
        iter += 1;
    }

    LLA[0] = RAD2DEG*Lat;
    LLA[2] = NplusH - N;

    if (iter==500) return (0);
    else return (1);
}

/**
  * Get the current location in Longitude, Latitude Altitude (above WSG-48 ellipsoid)
  * @param[in] BaseECEF the ECEF of the home location (in cm)
  * @param[in] NED the offset from the home location (in m)
  * @param[out] position three element double for position in degrees and meters
  * @returns
  *  @arg 0 success
  *  @arg -1 for failure
  */
int CoordinateConversions::GetLLA(double BaseECEFcm[3], double NED[3], double position[3])
{
    int i;
    // stored value is in cm, convert to m
    double BaseECEFm[3] = {BaseECEFcm[0], BaseECEFcm[1], BaseECEFcm[2]};
    double BaseLLA[3];
    double ECEF[3];
    double Rne [3][3];

    // Get LLA address to compute conversion matrix
    ECEF2LLA(BaseECEFm, BaseLLA);
    RneFromLLA(BaseLLA, Rne);

    /* P = ECEF + Rne' * NED */
    for(i = 0; i < 3; i++)
        ECEF[i] = BaseECEFm[i] + Rne[0][i]*NED[0] + Rne[1][i]*NED[1] + Rne[2][i]*NED[2];

    ECEF2LLA(ECEF,position);

    return 0;
}

void CoordinateConversions::LLA2Base(double LLA[3], double BaseECEF[3], float Rne[3][3], float NED[3])
{
        double ECEF[3];
        float diff[3];

        LLA2ECEF(LLA, ECEF);

        diff[0] = (float)(ECEF[0] - BaseECEF[0]);
        diff[1] = (float)(ECEF[1] - BaseECEF[1]);
        diff[2] = (float)(ECEF[2] - BaseECEF[2]);

        NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2];
        NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2];
        NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2];
}

// ****** find roll, pitch, yaw from quaternion ********
void CoordinateConversions::Quaternion2RPY(const float q[4], float rpy[3])
{
	float R13, R11, R12, R23, R33;
	float q0s = q[0] * q[0];
	float q1s = q[1] * q[1];
	float q2s = q[2] * q[2];
	float q3s = q[3] * q[3];

	R13 = 2 * (q[1] * q[3] - q[0] * q[2]);
	R11 = q0s + q1s - q2s - q3s;
	R12 = 2 * (q[1] * q[2] + q[0] * q[3]);
	R23 = 2 * (q[2] * q[3] + q[0] * q[1]);
	R33 = q0s - q1s - q2s + q3s;

	rpy[1] = RAD2DEG * asinf(-R13);	// pitch always between -pi/2 to pi/2
	rpy[2] = RAD2DEG * atan2f(R12, R11);
	rpy[0] = RAD2DEG * atan2f(R23, R33);

	//TODO: consider the cases where |R13| ~= 1, |pitch| ~= pi/2
}

// ****** find quaternion from roll, pitch, yaw ********
void CoordinateConversions::RPY2Quaternion(const float rpy[3], float q[4])
{
	float phi, theta, psi;
	float cphi, sphi, ctheta, stheta, cpsi, spsi;

	phi = DEG2RAD * rpy[0] / 2;
	theta = DEG2RAD * rpy[1] / 2;
	psi = DEG2RAD * rpy[2] / 2;
	cphi = cosf(phi);
	sphi = sinf(phi);
	ctheta = cosf(theta);
	stheta = sinf(theta);
	cpsi = cosf(psi);
	spsi = sinf(psi);

	q[0] = cphi * ctheta * cpsi + sphi * stheta * spsi;
	q[1] = sphi * ctheta * cpsi - cphi * stheta * spsi;
	q[2] = cphi * stheta * cpsi + sphi * ctheta * spsi;
	q[3] = cphi * ctheta * spsi - sphi * stheta * cpsi;

	if (q[0] < 0) {		// q0 always positive for uniqueness
		q[0] = -q[0];
		q[1] = -q[1];
		q[2] = -q[2];
		q[3] = -q[3];
	}
}

//** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
void CoordinateConversions::Quaternion2R(const float q[4], float Rbe[3][3])
{

	float q0s = q[0] * q[0], q1s = q[1] * q[1], q2s = q[2] * q[2], q3s = q[3] * q[3];

	Rbe[0][0] = q0s + q1s - q2s - q3s;
	Rbe[0][1] = 2 * (q[1] * q[2] + q[0] * q[3]);
	Rbe[0][2] = 2 * (q[1] * q[3] - q[0] * q[2]);
	Rbe[1][0] = 2 * (q[1] * q[2] - q[0] * q[3]);
	Rbe[1][1] = q0s - q1s + q2s - q3s;
	Rbe[1][2] = 2 * (q[2] * q[3] + q[0] * q[1]);
	Rbe[2][0] = 2 * (q[1] * q[3] + q[0] * q[2]);
	Rbe[2][1] = 2 * (q[2] * q[3] - q[0] * q[1]);
	Rbe[2][2] = q0s - q1s - q2s + q3s;
}


}