pdptw.cc 17.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Pickup and Delivery Problem with Time Windows.
// The overall objective is to minimize the length of the routes delivering
// quantities of goods between pickup and delivery locations, taking into
// account vehicle capacities and node time windows.
// Given a set of pairs of pickup and delivery nodes, find the set of routes
// visiting all the nodes, such that
// - corresponding pickup and delivery nodes are visited on the same route,
// - the pickup node is visited before the corresponding delivery node,
// - the quantity picked up at the pickup node is the same as the quantity
//   delivered at the delivery node,
// - the total quantity carried by a vehicle at any time is less than its
//   capacity,
// - each node must be visited within its time window (time range during which
//   the node is accessible).
// The maximum number of vehicles used (i.e. the number of routes used) is
// specified in the data but can be overridden using the --pdp_force_vehicles
// flag.
//
// A further description of the problem can be found here:
// http://en.wikipedia.org/wiki/Vehicle_routing_problem
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.9965&rep=rep1&type=pdf.
// Reads data in the format defined by Li & Lim
// (https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/documentation/).

#include <utility>
#include <vector>

#include "absl/strings/str_format.h"
#include "absl/strings/str_split.h"
#include "google/protobuf/text_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/file.h"
#include "ortools/base/mathutil.h"
#include "ortools/base/timer.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
#include "ortools/constraint_solver/routing_parameters.pb.h"

DEFINE_string(pdp_file, "",
              "File containing the Pickup and Delivery Problem to solve.");
DEFINE_int32(pdp_force_vehicles, 0,
             "Force the number of vehicles used (maximum number of routes.");
DEFINE_bool(reduce_vehicle_cost_model, true,
            "Overrides the homonymous field of "
            "DefaultRoutingModelParameters().");
DEFINE_string(routing_search_parameters,
              "first_solution_strategy:ALL_UNPERFORMED",
              "Text proto RoutingSearchParameters (possibly partial) that will "
              "override the DefaultRoutingSearchParameters()");

namespace operations_research {

// Scaling factor used to scale up distances, allowing a bit more precision
// from Euclidean distances.
const int64 kScalingFactor = 1000;

// Vector of (x,y) node coordinates, *unscaled*, in some imaginary planar,
// metric grid.
typedef std::vector<std::pair<int, int> > Coordinates;

// Returns the scaled Euclidean distance between two nodes, coords holding the
// coordinates of the nodes.
int64 Travel(const Coordinates* const coords,
             RoutingIndexManager::NodeIndex from,
             RoutingIndexManager::NodeIndex to) {
  DCHECK(coords != nullptr);
  const int xd = coords->at(from.value()).first - coords->at(to.value()).first;
  const int yd =
      coords->at(from.value()).second - coords->at(to.value()).second;
  return static_cast<int64>(kScalingFactor *
                            std::sqrt(1.0L * xd * xd + yd * yd));
}

// Returns the scaled service time at a given node, service_times holding the
// service times.
int64 ServiceTime(const std::vector<int64>* const service_times,
                  RoutingIndexManager::NodeIndex node) {
  return kScalingFactor * service_times->at(node.value());
}

// Returns the scaled (distance plus service time) between two indices, coords
// holding the coordinates of the nodes and service_times holding the service
// times.
// The service time is the time spent to execute a delivery or a pickup.
int64 TravelPlusServiceTime(const RoutingIndexManager& manager,
                            const Coordinates* const coords,
                            const std::vector<int64>* const service_times,
                            int64 from_index, int64 to_index) {
  const RoutingIndexManager::NodeIndex from = manager.IndexToNode(from_index);
  const RoutingIndexManager::NodeIndex to = manager.IndexToNode(to_index);
  return ServiceTime(service_times, from) + Travel(coords, from, to);
}

// Returns the list of variables to use for the Tabu metaheuristic.
// The current list is:
// - Total cost of the solution,
// - Number of used vehicles,
// - Total schedule duration.
// TODO(user): add total waiting time.
std::vector<IntVar*> GetTabuVars(std::vector<IntVar*> existing_vars,
                                 operations_research::RoutingModel* routing) {
  Solver* const solver = routing->solver();
  std::vector<IntVar*> vars(std::move(existing_vars));
  vars.push_back(routing->CostVar());

  IntVar* used_vehicles = solver->MakeIntVar(0, routing->vehicles());
  std::vector<IntVar*> is_used_vars;
  // Number of vehicle used
  is_used_vars.reserve(routing->vehicles());
  for (int v = 0; v < routing->vehicles(); v++) {
    is_used_vars.push_back(solver->MakeIsDifferentCstVar(
        routing->NextVar(routing->Start(v)), routing->End(v)));
  }
  solver->AddConstraint(
      solver->MakeEquality(solver->MakeSum(is_used_vars), used_vehicles));
  vars.push_back(used_vehicles);

  return vars;
}

// Outputs a solution to the current model in a std::string.
std::string VerboseOutput(const RoutingModel& routing,
                          const RoutingIndexManager& manager,
                          const Assignment& assignment,
                          const Coordinates& coords,
                          const std::vector<int64>& service_times) {
  std::string output;
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie("time");
  const RoutingDimension& load_dimension = routing.GetDimensionOrDie("demand");
  for (int i = 0; i < routing.vehicles(); ++i) {
    absl::StrAppendFormat(&output, "Vehicle %d: ", i);
    int64 index = routing.Start(i);
    if (routing.IsEnd(assignment.Value(routing.NextVar(index)))) {
      output.append("empty");
    } else {
      while (!routing.IsEnd(index)) {
        absl::StrAppendFormat(&output, "%d ",
                              manager.IndexToNode(index).value());
        const IntVar* vehicle = routing.VehicleVar(index);
        absl::StrAppendFormat(&output, "Vehicle(%d) ",
                              assignment.Value(vehicle));
        const IntVar* arrival = time_dimension.CumulVar(index);
        absl::StrAppendFormat(&output, "Time(%d..%d) ", assignment.Min(arrival),
                              assignment.Max(arrival));
        const IntVar* load = load_dimension.CumulVar(index);
        absl::StrAppendFormat(&output, "Load(%d..%d) ", assignment.Min(load),
                              assignment.Max(load));
        const int64 next_index = assignment.Value(routing.NextVar(index));
        absl::StrAppendFormat(
            &output, "Transit(%d) ",
            TravelPlusServiceTime(manager, &coords, &service_times, index,
                                  next_index));
        index = next_index;
      }
      output.append("Route end ");
      const IntVar* vehicle = routing.VehicleVar(index);
      absl::StrAppendFormat(&output, "Vehicle(%d) ", assignment.Value(vehicle));
      const IntVar* arrival = time_dimension.CumulVar(index);
      absl::StrAppendFormat(&output, "Time(%d..%d) ", assignment.Min(arrival),
                            assignment.Max(arrival));
      const IntVar* load = load_dimension.CumulVar(index);
      absl::StrAppendFormat(&output, "Load(%d..%d) ", assignment.Min(load),
                            assignment.Max(load));
    }
    output.append("\n");
  }
  return output;
}

namespace {
// An inefficient but convenient method to parse a whitespace-separated list
// of integers. Returns true iff the input std::string was entirely valid and
// parsed.
bool SafeParseInt64Array(const std::string& str,
                         std::vector<int64>* parsed_int) {
  std::istringstream input(str);
  int64 x;
  parsed_int->clear();
  while (input >> x) parsed_int->push_back(x);
  return input.eof();
}
}  // namespace

// Builds and solves a model from a file in the format defined by Li & Lim
// (https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/documentation/).
bool LoadAndSolve(const std::string& pdp_file,
                  const RoutingModelParameters& model_parameters,
                  const RoutingSearchParameters& search_parameters) {
  // Load all the lines of the file in RAM (it shouldn't be too large anyway).
  std::vector<std::string> lines;
  {
    std::string contents;
    CHECK_OK(file::GetContents(pdp_file, &contents, file::Defaults()));
    const int64 kMaxInputFileSize = 1 << 30;  // 1GB
    if (contents.size() >= kMaxInputFileSize) {
      LOG(WARNING) << "Input file '" << pdp_file << "' is too large (>"
                   << kMaxInputFileSize << " bytes).";
      return false;
    }
    lines = absl::StrSplit(contents, '\n', absl::SkipEmpty());
  }
  // Reading header.
  if (lines.empty()) {
    LOG(WARNING) << "Empty file: " << pdp_file;
    return false;
  }
  // Parse file header.
  std::vector<int64> parsed_int;
  if (!SafeParseInt64Array(lines[0], &parsed_int) || parsed_int.size() != 3 ||
      parsed_int[0] < 0 || parsed_int[1] < 0 || parsed_int[2] < 0) {
    LOG(WARNING) << "Malformed header: " << lines[0];
    return false;
  }
  const int num_vehicles =
      FLAGS_pdp_force_vehicles > 0 ? FLAGS_pdp_force_vehicles : parsed_int[0];
  const int64 capacity = parsed_int[1];
  // We do not care about the 'speed' field, in third position.

  // Parse order data.
  std::vector<int> customer_ids;
  std::vector<std::pair<int, int> > coords;
  std::vector<int64> demands;
  std::vector<int64> open_times;
  std::vector<int64> close_times;
  std::vector<int64> service_times;
  std::vector<RoutingIndexManager::NodeIndex> pickups;
  std::vector<RoutingIndexManager::NodeIndex> deliveries;
  int64 horizon = 0;
  RoutingIndexManager::NodeIndex depot(0);
  for (int line_index = 1; line_index < lines.size(); ++line_index) {
    if (!SafeParseInt64Array(lines[line_index], &parsed_int) ||
        parsed_int.size() != 9 || parsed_int[0] < 0 || parsed_int[4] < 0 ||
        parsed_int[5] < 0 || parsed_int[6] < 0 || parsed_int[7] < 0 ||
        parsed_int[8] < 0) {
      LOG(WARNING) << "Malformed line #" << line_index << ": "
                   << lines[line_index];
      return false;
    }
    const int customer_id = parsed_int[0];
    const int x = parsed_int[1];
    const int y = parsed_int[2];
    const int64 demand = parsed_int[3];
    const int64 open_time = parsed_int[4];
    const int64 close_time = parsed_int[5];
    const int64 service_time = parsed_int[6];
    const int pickup = parsed_int[7];
    const int delivery = parsed_int[8];
    customer_ids.push_back(customer_id);
    coords.push_back(std::make_pair(x, y));
    demands.push_back(demand);
    open_times.push_back(open_time);
    close_times.push_back(close_time);
    service_times.push_back(service_time);
    pickups.push_back(RoutingIndexManager::NodeIndex(pickup));
    deliveries.push_back(RoutingIndexManager::NodeIndex(delivery));
    if (pickup == 0 && delivery == 0) {
      depot = RoutingIndexManager::NodeIndex(pickups.size() - 1);
    }
    horizon = std::max(horizon, close_time);
  }

  // Build pickup and delivery model.
  const int num_nodes = customer_ids.size();
  RoutingIndexManager manager(num_nodes, num_vehicles, depot);
  RoutingModel routing(manager, model_parameters);
  const int vehicle_cost =
      routing.RegisterTransitCallback([&coords, &manager](int64 i, int64 j) {
        return Travel(const_cast<const Coordinates*>(&coords),
                      manager.IndexToNode(i), manager.IndexToNode(j));
      });
  routing.SetArcCostEvaluatorOfAllVehicles(vehicle_cost);
  RoutingTransitCallback2 demand_evaluator = [&](int64 from_index,
                                                 int64 to_index) {
    return demands[manager.IndexToNode(from_index).value()];
  };
  routing.AddDimension(routing.RegisterTransitCallback(demand_evaluator), 0,
                       capacity, /*fix_start_cumul_to_zero=*/true, "demand");
  RoutingTransitCallback2 time_evaluator = [&](int64 from_index,
                                               int64 to_index) {
    return TravelPlusServiceTime(manager, &coords, &service_times, from_index,
                                 to_index);
  };
  routing.AddDimension(routing.RegisterTransitCallback(time_evaluator),
                       kScalingFactor * horizon, kScalingFactor * horizon,
                       /*fix_start_cumul_to_zero=*/true, "time");
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie("time");
  Solver* const solver = routing.solver();
  for (int node = 0; node < num_nodes; ++node) {
    const int64 index =
        manager.NodeToIndex(RoutingIndexManager::NodeIndex(node));
    if (pickups[node] == 0 && deliveries[node] != 0) {
      const int64 delivery_index = manager.NodeToIndex(deliveries[node]);
      solver->AddConstraint(solver->MakeEquality(
          routing.VehicleVar(index), routing.VehicleVar(delivery_index)));
      solver->AddConstraint(
          solver->MakeLessOrEqual(time_dimension.CumulVar(index),
                                  time_dimension.CumulVar(delivery_index)));
      routing.AddPickupAndDelivery(index,
                                   manager.NodeToIndex(deliveries[node]));
    }
    IntVar* const cumul = time_dimension.CumulVar(index);
    cumul->SetMin(kScalingFactor * open_times[node]);
    cumul->SetMax(kScalingFactor * close_times[node]);
  }

  if (search_parameters.local_search_metaheuristic() ==
      LocalSearchMetaheuristic::GENERIC_TABU_SEARCH) {
    // Create variable for the total schedule time of the solution.
    // This will be used as one of the Tabu criteria.
    // This is done here and not in GetTabuVarsCallback as it requires calling
    // AddVariableMinimizedByFinalizer and this method must be called early.
    std::vector<IntVar*> end_cumuls;
    std::vector<IntVar*> start_cumuls;
    for (int i = 0; i < routing.vehicles(); ++i) {
      end_cumuls.push_back(time_dimension.CumulVar(routing.End(i)));
      start_cumuls.push_back(time_dimension.CumulVar(routing.Start(i)));
    }
    IntVar* total_time = solver->MakeIntVar(0, 99999999, "total");
    solver->AddConstraint(solver->MakeEquality(
        solver->MakeDifference(solver->MakeSum(end_cumuls),
                               solver->MakeSum(start_cumuls)),
        total_time));

    routing.AddVariableMinimizedByFinalizer(total_time);

    RoutingModel::GetTabuVarsCallback tabu_var_callback =
        [total_time](RoutingModel* model) {
          return GetTabuVars({total_time}, model);
        };
    routing.SetTabuVarsCallback(tabu_var_callback);
  }

  // Adding penalty costs to allow skipping orders.
  const int64 kPenalty = 10000000;
  for (RoutingIndexManager::NodeIndex order(1); order < routing.nodes();
       ++order) {
    std::vector<int64> orders(1, manager.NodeToIndex(order));
    routing.AddDisjunction(orders, kPenalty);
  }

  // Solve pickup and delivery problem.
  SimpleCycleTimer timer;
  timer.Start();
  const Assignment* assignment = routing.SolveWithParameters(search_parameters);
  timer.Stop();
  LOG(INFO) << routing.solver()->LocalSearchProfile();
  if (nullptr != assignment) {
    LOG(INFO) << VerboseOutput(routing, manager, *assignment, coords,
                               service_times);
    LOG(INFO) << "Cost: " << assignment->ObjectiveValue();
    int skipped_nodes = 0;
    for (int node = 0; node < routing.Size(); node++) {
      if (!routing.IsEnd(node) && !routing.IsStart(node) &&
          assignment->Value(routing.NextVar(node)) == node) {
        skipped_nodes++;
      }
    }
    LOG(INFO) << "Number of skipped nodes: " << skipped_nodes;
    int num_used_vehicles = 0;
    for (int v = 0; v < routing.vehicles(); v++) {
      if (routing.IsVehicleUsed(*assignment, v)) {
        num_used_vehicles++;
      }
    }
    LOG(INFO) << "Number of used vehicles: " << num_used_vehicles;
    LOG(INFO) << "Time: " << timer.Get();
    return true;
  }
  return false;
}

}  // namespace operations_research

int main(int argc, char** argv) {
  absl::SetFlag(&FLAGS_logtostderr, true);
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  operations_research::RoutingModelParameters model_parameters =
      operations_research::DefaultRoutingModelParameters();
  model_parameters.set_reduce_vehicle_cost_model(
      FLAGS_reduce_vehicle_cost_model);
  operations_research::RoutingSearchParameters search_parameters =
      operations_research::DefaultRoutingSearchParameters();
  CHECK(google::protobuf::TextFormat::MergeFromString(
      FLAGS_routing_search_parameters, &search_parameters));
  if (!operations_research::LoadAndSolve(FLAGS_pdp_file, model_parameters,
                                         search_parameters)) {
    LOG(INFO) << "Error solving " << FLAGS_pdp_file;
  }
  return EXIT_SUCCESS;
}