// Copyright 2010-2018 Google LLC // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Pickup and Delivery Problem with Time Windows. // The overall objective is to minimize the length of the routes delivering // quantities of goods between pickup and delivery locations, taking into // account vehicle capacities and node time windows. // Given a set of pairs of pickup and delivery nodes, find the set of routes // visiting all the nodes, such that // - corresponding pickup and delivery nodes are visited on the same route, // - the pickup node is visited before the corresponding delivery node, // - the quantity picked up at the pickup node is the same as the quantity // delivered at the delivery node, // - the total quantity carried by a vehicle at any time is less than its // capacity, // - each node must be visited within its time window (time range during which // the node is accessible). // The maximum number of vehicles used (i.e. the number of routes used) is // specified in the data but can be overridden using the --pdp_force_vehicles // flag. // // A further description of the problem can be found here: // http://en.wikipedia.org/wiki/Vehicle_routing_problem // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.9965&rep=rep1&type=pdf. // Reads data in the format defined by Li & Lim // (https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/documentation/). #include #include #include "absl/strings/str_format.h" #include "absl/strings/str_split.h" #include "google/protobuf/text_format.h" #include "ortools/base/commandlineflags.h" #include "ortools/base/file.h" #include "ortools/base/mathutil.h" #include "ortools/base/timer.h" #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" #include "ortools/constraint_solver/routing_parameters.pb.h" DEFINE_string(pdp_file, "", "File containing the Pickup and Delivery Problem to solve."); DEFINE_int32(pdp_force_vehicles, 0, "Force the number of vehicles used (maximum number of routes."); DEFINE_bool(reduce_vehicle_cost_model, true, "Overrides the homonymous field of " "DefaultRoutingModelParameters()."); DEFINE_string(routing_search_parameters, "first_solution_strategy:ALL_UNPERFORMED", "Text proto RoutingSearchParameters (possibly partial) that will " "override the DefaultRoutingSearchParameters()"); namespace operations_research { // Scaling factor used to scale up distances, allowing a bit more precision // from Euclidean distances. const int64 kScalingFactor = 1000; // Vector of (x,y) node coordinates, *unscaled*, in some imaginary planar, // metric grid. typedef std::vector > Coordinates; // Returns the scaled Euclidean distance between two nodes, coords holding the // coordinates of the nodes. int64 Travel(const Coordinates* const coords, RoutingIndexManager::NodeIndex from, RoutingIndexManager::NodeIndex to) { DCHECK(coords != nullptr); const int xd = coords->at(from.value()).first - coords->at(to.value()).first; const int yd = coords->at(from.value()).second - coords->at(to.value()).second; return static_cast(kScalingFactor * std::sqrt(1.0L * xd * xd + yd * yd)); } // Returns the scaled service time at a given node, service_times holding the // service times. int64 ServiceTime(const std::vector* const service_times, RoutingIndexManager::NodeIndex node) { return kScalingFactor * service_times->at(node.value()); } // Returns the scaled (distance plus service time) between two indices, coords // holding the coordinates of the nodes and service_times holding the service // times. // The service time is the time spent to execute a delivery or a pickup. int64 TravelPlusServiceTime(const RoutingIndexManager& manager, const Coordinates* const coords, const std::vector* const service_times, int64 from_index, int64 to_index) { const RoutingIndexManager::NodeIndex from = manager.IndexToNode(from_index); const RoutingIndexManager::NodeIndex to = manager.IndexToNode(to_index); return ServiceTime(service_times, from) + Travel(coords, from, to); } // Returns the list of variables to use for the Tabu metaheuristic. // The current list is: // - Total cost of the solution, // - Number of used vehicles, // - Total schedule duration. // TODO(user): add total waiting time. std::vector GetTabuVars(std::vector existing_vars, operations_research::RoutingModel* routing) { Solver* const solver = routing->solver(); std::vector vars(std::move(existing_vars)); vars.push_back(routing->CostVar()); IntVar* used_vehicles = solver->MakeIntVar(0, routing->vehicles()); std::vector is_used_vars; // Number of vehicle used is_used_vars.reserve(routing->vehicles()); for (int v = 0; v < routing->vehicles(); v++) { is_used_vars.push_back(solver->MakeIsDifferentCstVar( routing->NextVar(routing->Start(v)), routing->End(v))); } solver->AddConstraint( solver->MakeEquality(solver->MakeSum(is_used_vars), used_vehicles)); vars.push_back(used_vehicles); return vars; } // Outputs a solution to the current model in a std::string. std::string VerboseOutput(const RoutingModel& routing, const RoutingIndexManager& manager, const Assignment& assignment, const Coordinates& coords, const std::vector& service_times) { std::string output; const RoutingDimension& time_dimension = routing.GetDimensionOrDie("time"); const RoutingDimension& load_dimension = routing.GetDimensionOrDie("demand"); for (int i = 0; i < routing.vehicles(); ++i) { absl::StrAppendFormat(&output, "Vehicle %d: ", i); int64 index = routing.Start(i); if (routing.IsEnd(assignment.Value(routing.NextVar(index)))) { output.append("empty"); } else { while (!routing.IsEnd(index)) { absl::StrAppendFormat(&output, "%d ", manager.IndexToNode(index).value()); const IntVar* vehicle = routing.VehicleVar(index); absl::StrAppendFormat(&output, "Vehicle(%d) ", assignment.Value(vehicle)); const IntVar* arrival = time_dimension.CumulVar(index); absl::StrAppendFormat(&output, "Time(%d..%d) ", assignment.Min(arrival), assignment.Max(arrival)); const IntVar* load = load_dimension.CumulVar(index); absl::StrAppendFormat(&output, "Load(%d..%d) ", assignment.Min(load), assignment.Max(load)); const int64 next_index = assignment.Value(routing.NextVar(index)); absl::StrAppendFormat( &output, "Transit(%d) ", TravelPlusServiceTime(manager, &coords, &service_times, index, next_index)); index = next_index; } output.append("Route end "); const IntVar* vehicle = routing.VehicleVar(index); absl::StrAppendFormat(&output, "Vehicle(%d) ", assignment.Value(vehicle)); const IntVar* arrival = time_dimension.CumulVar(index); absl::StrAppendFormat(&output, "Time(%d..%d) ", assignment.Min(arrival), assignment.Max(arrival)); const IntVar* load = load_dimension.CumulVar(index); absl::StrAppendFormat(&output, "Load(%d..%d) ", assignment.Min(load), assignment.Max(load)); } output.append("\n"); } return output; } namespace { // An inefficient but convenient method to parse a whitespace-separated list // of integers. Returns true iff the input std::string was entirely valid and // parsed. bool SafeParseInt64Array(const std::string& str, std::vector* parsed_int) { std::istringstream input(str); int64 x; parsed_int->clear(); while (input >> x) parsed_int->push_back(x); return input.eof(); } } // namespace // Builds and solves a model from a file in the format defined by Li & Lim // (https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/documentation/). bool LoadAndSolve(const std::string& pdp_file, const RoutingModelParameters& model_parameters, const RoutingSearchParameters& search_parameters) { // Load all the lines of the file in RAM (it shouldn't be too large anyway). std::vector lines; { std::string contents; CHECK_OK(file::GetContents(pdp_file, &contents, file::Defaults())); const int64 kMaxInputFileSize = 1 << 30; // 1GB if (contents.size() >= kMaxInputFileSize) { LOG(WARNING) << "Input file '" << pdp_file << "' is too large (>" << kMaxInputFileSize << " bytes)."; return false; } lines = absl::StrSplit(contents, '\n', absl::SkipEmpty()); } // Reading header. if (lines.empty()) { LOG(WARNING) << "Empty file: " << pdp_file; return false; } // Parse file header. std::vector parsed_int; if (!SafeParseInt64Array(lines[0], &parsed_int) || parsed_int.size() != 3 || parsed_int[0] < 0 || parsed_int[1] < 0 || parsed_int[2] < 0) { LOG(WARNING) << "Malformed header: " << lines[0]; return false; } const int num_vehicles = FLAGS_pdp_force_vehicles > 0 ? FLAGS_pdp_force_vehicles : parsed_int[0]; const int64 capacity = parsed_int[1]; // We do not care about the 'speed' field, in third position. // Parse order data. std::vector customer_ids; std::vector > coords; std::vector demands; std::vector open_times; std::vector close_times; std::vector service_times; std::vector pickups; std::vector deliveries; int64 horizon = 0; RoutingIndexManager::NodeIndex depot(0); for (int line_index = 1; line_index < lines.size(); ++line_index) { if (!SafeParseInt64Array(lines[line_index], &parsed_int) || parsed_int.size() != 9 || parsed_int[0] < 0 || parsed_int[4] < 0 || parsed_int[5] < 0 || parsed_int[6] < 0 || parsed_int[7] < 0 || parsed_int[8] < 0) { LOG(WARNING) << "Malformed line #" << line_index << ": " << lines[line_index]; return false; } const int customer_id = parsed_int[0]; const int x = parsed_int[1]; const int y = parsed_int[2]; const int64 demand = parsed_int[3]; const int64 open_time = parsed_int[4]; const int64 close_time = parsed_int[5]; const int64 service_time = parsed_int[6]; const int pickup = parsed_int[7]; const int delivery = parsed_int[8]; customer_ids.push_back(customer_id); coords.push_back(std::make_pair(x, y)); demands.push_back(demand); open_times.push_back(open_time); close_times.push_back(close_time); service_times.push_back(service_time); pickups.push_back(RoutingIndexManager::NodeIndex(pickup)); deliveries.push_back(RoutingIndexManager::NodeIndex(delivery)); if (pickup == 0 && delivery == 0) { depot = RoutingIndexManager::NodeIndex(pickups.size() - 1); } horizon = std::max(horizon, close_time); } // Build pickup and delivery model. const int num_nodes = customer_ids.size(); RoutingIndexManager manager(num_nodes, num_vehicles, depot); RoutingModel routing(manager, model_parameters); const int vehicle_cost = routing.RegisterTransitCallback([&coords, &manager](int64 i, int64 j) { return Travel(const_cast(&coords), manager.IndexToNode(i), manager.IndexToNode(j)); }); routing.SetArcCostEvaluatorOfAllVehicles(vehicle_cost); RoutingTransitCallback2 demand_evaluator = [&](int64 from_index, int64 to_index) { return demands[manager.IndexToNode(from_index).value()]; }; routing.AddDimension(routing.RegisterTransitCallback(demand_evaluator), 0, capacity, /*fix_start_cumul_to_zero=*/true, "demand"); RoutingTransitCallback2 time_evaluator = [&](int64 from_index, int64 to_index) { return TravelPlusServiceTime(manager, &coords, &service_times, from_index, to_index); }; routing.AddDimension(routing.RegisterTransitCallback(time_evaluator), kScalingFactor * horizon, kScalingFactor * horizon, /*fix_start_cumul_to_zero=*/true, "time"); const RoutingDimension& time_dimension = routing.GetDimensionOrDie("time"); Solver* const solver = routing.solver(); for (int node = 0; node < num_nodes; ++node) { const int64 index = manager.NodeToIndex(RoutingIndexManager::NodeIndex(node)); if (pickups[node] == 0 && deliveries[node] != 0) { const int64 delivery_index = manager.NodeToIndex(deliveries[node]); solver->AddConstraint(solver->MakeEquality( routing.VehicleVar(index), routing.VehicleVar(delivery_index))); solver->AddConstraint( solver->MakeLessOrEqual(time_dimension.CumulVar(index), time_dimension.CumulVar(delivery_index))); routing.AddPickupAndDelivery(index, manager.NodeToIndex(deliveries[node])); } IntVar* const cumul = time_dimension.CumulVar(index); cumul->SetMin(kScalingFactor * open_times[node]); cumul->SetMax(kScalingFactor * close_times[node]); } if (search_parameters.local_search_metaheuristic() == LocalSearchMetaheuristic::GENERIC_TABU_SEARCH) { // Create variable for the total schedule time of the solution. // This will be used as one of the Tabu criteria. // This is done here and not in GetTabuVarsCallback as it requires calling // AddVariableMinimizedByFinalizer and this method must be called early. std::vector end_cumuls; std::vector start_cumuls; for (int i = 0; i < routing.vehicles(); ++i) { end_cumuls.push_back(time_dimension.CumulVar(routing.End(i))); start_cumuls.push_back(time_dimension.CumulVar(routing.Start(i))); } IntVar* total_time = solver->MakeIntVar(0, 99999999, "total"); solver->AddConstraint(solver->MakeEquality( solver->MakeDifference(solver->MakeSum(end_cumuls), solver->MakeSum(start_cumuls)), total_time)); routing.AddVariableMinimizedByFinalizer(total_time); RoutingModel::GetTabuVarsCallback tabu_var_callback = [total_time](RoutingModel* model) { return GetTabuVars({total_time}, model); }; routing.SetTabuVarsCallback(tabu_var_callback); } // Adding penalty costs to allow skipping orders. const int64 kPenalty = 10000000; for (RoutingIndexManager::NodeIndex order(1); order < routing.nodes(); ++order) { std::vector orders(1, manager.NodeToIndex(order)); routing.AddDisjunction(orders, kPenalty); } // Solve pickup and delivery problem. SimpleCycleTimer timer; timer.Start(); const Assignment* assignment = routing.SolveWithParameters(search_parameters); timer.Stop(); LOG(INFO) << routing.solver()->LocalSearchProfile(); if (nullptr != assignment) { LOG(INFO) << VerboseOutput(routing, manager, *assignment, coords, service_times); LOG(INFO) << "Cost: " << assignment->ObjectiveValue(); int skipped_nodes = 0; for (int node = 0; node < routing.Size(); node++) { if (!routing.IsEnd(node) && !routing.IsStart(node) && assignment->Value(routing.NextVar(node)) == node) { skipped_nodes++; } } LOG(INFO) << "Number of skipped nodes: " << skipped_nodes; int num_used_vehicles = 0; for (int v = 0; v < routing.vehicles(); v++) { if (routing.IsVehicleUsed(*assignment, v)) { num_used_vehicles++; } } LOG(INFO) << "Number of used vehicles: " << num_used_vehicles; LOG(INFO) << "Time: " << timer.Get(); return true; } return false; } } // namespace operations_research int main(int argc, char** argv) { absl::SetFlag(&FLAGS_logtostderr, true); gflags::ParseCommandLineFlags(&argc, &argv, true); operations_research::RoutingModelParameters model_parameters = operations_research::DefaultRoutingModelParameters(); model_parameters.set_reduce_vehicle_cost_model( FLAGS_reduce_vehicle_cost_model); operations_research::RoutingSearchParameters search_parameters = operations_research::DefaultRoutingSearchParameters(); CHECK(google::protobuf::TextFormat::MergeFromString( FLAGS_routing_search_parameters, &search_parameters)); if (!operations_research::LoadAndSolve(FLAGS_pdp_file, model_parameters, search_parameters)) { LOG(INFO) << "Error solving " << FLAGS_pdp_file; } return EXIT_SUCCESS; }