wire_format_lite.h 81.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//         atenasio@google.com (Chris Atenasio) (ZigZag transform)
//         wink@google.com (Wink Saville) (refactored from wire_format.h)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// This header is logically internal, but is made public because it is used
// from protocol-compiler-generated code, which may reside in other components.

#ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
#define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__

#include <string>

#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/arenastring.h>
#include <google/protobuf/message_lite.h>
#include <google/protobuf/port.h>
#include <google/protobuf/repeated_field.h>
#include <google/protobuf/stubs/casts.h>

// Do UTF-8 validation on string type in Debug build only
#ifndef NDEBUG
#define GOOGLE_PROTOBUF_UTF8_VALIDATION_ENABLED
#endif

// Avoid conflict with iOS where <ConditionalMacros.h> #defines TYPE_BOOL.
//
// If some one needs the macro TYPE_BOOL in a file that includes this header,
// it's possible to bring it back using push/pop_macro as follows.
//
// #pragma push_macro("TYPE_BOOL")
// #include this header and/or all headers that need the macro to be undefined.
// #pragma pop_macro("TYPE_BOOL")
#undef TYPE_BOOL


namespace google {
namespace protobuf {
namespace internal {

#include <google/protobuf/port_def.inc>

// This class is for internal use by the protocol buffer library and by
// protocol-compiler-generated message classes.  It must not be called
// directly by clients.
//
// This class contains helpers for implementing the binary protocol buffer
// wire format without the need for reflection. Use WireFormat when using
// reflection.
//
// This class is really a namespace that contains only static methods.
class PROTOBUF_EXPORT WireFormatLite {
 public:
  // -----------------------------------------------------------------
  // Helper constants and functions related to the format.  These are
  // mostly meant for internal and generated code to use.

  // The wire format is composed of a sequence of tag/value pairs, each
  // of which contains the value of one field (or one element of a repeated
  // field).  Each tag is encoded as a varint.  The lower bits of the tag
  // identify its wire type, which specifies the format of the data to follow.
  // The rest of the bits contain the field number.  Each type of field (as
  // declared by FieldDescriptor::Type, in descriptor.h) maps to one of
  // these wire types.  Immediately following each tag is the field's value,
  // encoded in the format specified by the wire type.  Because the tag
  // identifies the encoding of this data, it is possible to skip
  // unrecognized fields for forwards compatibility.

  enum WireType {
    WIRETYPE_VARINT = 0,
    WIRETYPE_FIXED64 = 1,
    WIRETYPE_LENGTH_DELIMITED = 2,
    WIRETYPE_START_GROUP = 3,
    WIRETYPE_END_GROUP = 4,
    WIRETYPE_FIXED32 = 5,
  };

  // Lite alternative to FieldDescriptor::Type.  Must be kept in sync.
  enum FieldType {
    TYPE_DOUBLE = 1,
    TYPE_FLOAT = 2,
    TYPE_INT64 = 3,
    TYPE_UINT64 = 4,
    TYPE_INT32 = 5,
    TYPE_FIXED64 = 6,
    TYPE_FIXED32 = 7,
    TYPE_BOOL = 8,
    TYPE_STRING = 9,
    TYPE_GROUP = 10,
    TYPE_MESSAGE = 11,
    TYPE_BYTES = 12,
    TYPE_UINT32 = 13,
    TYPE_ENUM = 14,
    TYPE_SFIXED32 = 15,
    TYPE_SFIXED64 = 16,
    TYPE_SINT32 = 17,
    TYPE_SINT64 = 18,
    MAX_FIELD_TYPE = 18,
  };

  // Lite alternative to FieldDescriptor::CppType.  Must be kept in sync.
  enum CppType {
    CPPTYPE_INT32 = 1,
    CPPTYPE_INT64 = 2,
    CPPTYPE_UINT32 = 3,
    CPPTYPE_UINT64 = 4,
    CPPTYPE_DOUBLE = 5,
    CPPTYPE_FLOAT = 6,
    CPPTYPE_BOOL = 7,
    CPPTYPE_ENUM = 8,
    CPPTYPE_STRING = 9,
    CPPTYPE_MESSAGE = 10,
    MAX_CPPTYPE = 10,
  };

  // Helper method to get the CppType for a particular Type.
  static CppType FieldTypeToCppType(FieldType type);

  // Given a FieldDescriptor::Type return its WireType
  static inline WireFormatLite::WireType WireTypeForFieldType(
      WireFormatLite::FieldType type) {
    return kWireTypeForFieldType[type];
  }

  // Number of bits in a tag which identify the wire type.
  static constexpr int kTagTypeBits = 3;
  // Mask for those bits.
  static constexpr uint32 kTagTypeMask = (1 << kTagTypeBits) - 1;

  // Helper functions for encoding and decoding tags.  (Inlined below and in
  // _inl.h)
  //
  // This is different from MakeTag(field->number(), field->type()) in the
  // case of packed repeated fields.
  constexpr static uint32 MakeTag(int field_number, WireType type);
  static WireType GetTagWireType(uint32 tag);
  static int GetTagFieldNumber(uint32 tag);

  // Compute the byte size of a tag.  For groups, this includes both the start
  // and end tags.
  static inline size_t TagSize(int field_number,
                               WireFormatLite::FieldType type);

  // Skips a field value with the given tag.  The input should start
  // positioned immediately after the tag.  Skipped values are simply
  // discarded, not recorded anywhere.  See WireFormat::SkipField() for a
  // version that records to an UnknownFieldSet.
  static bool SkipField(io::CodedInputStream* input, uint32 tag);

  // Skips a field value with the given tag.  The input should start
  // positioned immediately after the tag. Skipped values are recorded to a
  // CodedOutputStream.
  static bool SkipField(io::CodedInputStream* input, uint32 tag,
                        io::CodedOutputStream* output);

  // Reads and ignores a message from the input.  Skipped values are simply
  // discarded, not recorded anywhere.  See WireFormat::SkipMessage() for a
  // version that records to an UnknownFieldSet.
  static bool SkipMessage(io::CodedInputStream* input);

  // Reads and ignores a message from the input.  Skipped values are recorded
  // to a CodedOutputStream.
  static bool SkipMessage(io::CodedInputStream* input,
                          io::CodedOutputStream* output);

  // This macro does the same thing as WireFormatLite::MakeTag(), but the
  // result is usable as a compile-time constant, which makes it usable
  // as a switch case or a template input.  WireFormatLite::MakeTag() is more
  // type-safe, though, so prefer it if possible.
#define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE) \
  static_cast<uint32>((static_cast<uint32>(FIELD_NUMBER) << 3) | (TYPE))

  // These are the tags for the old MessageSet format, which was defined as:
  //   message MessageSet {
  //     repeated group Item = 1 {
  //       required int32 type_id = 2;
  //       required string message = 3;
  //     }
  //   }
  static constexpr int kMessageSetItemNumber = 1;
  static constexpr int kMessageSetTypeIdNumber = 2;
  static constexpr int kMessageSetMessageNumber = 3;
  static const int kMessageSetItemStartTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
      kMessageSetItemNumber, WireFormatLite::WIRETYPE_START_GROUP);
  static const int kMessageSetItemEndTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
      kMessageSetItemNumber, WireFormatLite::WIRETYPE_END_GROUP);
  static const int kMessageSetTypeIdTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
      kMessageSetTypeIdNumber, WireFormatLite::WIRETYPE_VARINT);
  static const int kMessageSetMessageTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
      kMessageSetMessageNumber, WireFormatLite::WIRETYPE_LENGTH_DELIMITED);

  // Byte size of all tags of a MessageSet::Item combined.
  static const size_t kMessageSetItemTagsSize;

  // Helper functions for converting between floats/doubles and IEEE-754
  // uint32s/uint64s so that they can be written.  (Assumes your platform
  // uses IEEE-754 floats.)
  static uint32 EncodeFloat(float value);
  static float DecodeFloat(uint32 value);
  static uint64 EncodeDouble(double value);
  static double DecodeDouble(uint64 value);

  // Helper functions for mapping signed integers to unsigned integers in
  // such a way that numbers with small magnitudes will encode to smaller
  // varints.  If you simply static_cast a negative number to an unsigned
  // number and varint-encode it, it will always take 10 bytes, defeating
  // the purpose of varint.  So, for the "sint32" and "sint64" field types,
  // we ZigZag-encode the values.
  static uint32 ZigZagEncode32(int32 n);
  static int32 ZigZagDecode32(uint32 n);
  static uint64 ZigZagEncode64(int64 n);
  static int64 ZigZagDecode64(uint64 n);

  // =================================================================
  // Methods for reading/writing individual field.

  // Read fields, not including tags.  The assumption is that you already
  // read the tag to determine what field to read.

  // For primitive fields, we just use a templatized routine parameterized by
  // the represented type and the FieldType. These are specialized with the
  // appropriate definition for each declared type.
  template <typename CType, enum FieldType DeclaredType>
  PROTOBUF_ALWAYS_INLINE static bool ReadPrimitive(io::CodedInputStream* input,
                                                   CType* value);

  // Reads repeated primitive values, with optimizations for repeats.
  // tag_size and tag should both be compile-time constants provided by the
  // protocol compiler.
  template <typename CType, enum FieldType DeclaredType>
  PROTOBUF_ALWAYS_INLINE static bool ReadRepeatedPrimitive(
      int tag_size, uint32 tag, io::CodedInputStream* input,
      RepeatedField<CType>* value);

  // Identical to ReadRepeatedPrimitive, except will not inline the
  // implementation.
  template <typename CType, enum FieldType DeclaredType>
  static bool ReadRepeatedPrimitiveNoInline(int tag_size, uint32 tag,
                                            io::CodedInputStream* input,
                                            RepeatedField<CType>* value);

  // Reads a primitive value directly from the provided buffer. It returns a
  // pointer past the segment of data that was read.
  //
  // This is only implemented for the types with fixed wire size, e.g.
  // float, double, and the (s)fixed* types.
  template <typename CType, enum FieldType DeclaredType>
  PROTOBUF_ALWAYS_INLINE static const uint8* ReadPrimitiveFromArray(
      const uint8* buffer, CType* value);

  // Reads a primitive packed field.
  //
  // This is only implemented for packable types.
  template <typename CType, enum FieldType DeclaredType>
  PROTOBUF_ALWAYS_INLINE static bool ReadPackedPrimitive(
      io::CodedInputStream* input, RepeatedField<CType>* value);

  // Identical to ReadPackedPrimitive, except will not inline the
  // implementation.
  template <typename CType, enum FieldType DeclaredType>
  static bool ReadPackedPrimitiveNoInline(io::CodedInputStream* input,
                                          RepeatedField<CType>* value);

  // Read a packed enum field. If the is_valid function is not NULL, values for
  // which is_valid(value) returns false are silently dropped.
  static bool ReadPackedEnumNoInline(io::CodedInputStream* input,
                                     bool (*is_valid)(int),
                                     RepeatedField<int>* values);

  // Read a packed enum field. If the is_valid function is not NULL, values for
  // which is_valid(value) returns false are appended to unknown_fields_stream.
  static bool ReadPackedEnumPreserveUnknowns(
      io::CodedInputStream* input, int field_number, bool (*is_valid)(int),
      io::CodedOutputStream* unknown_fields_stream, RepeatedField<int>* values);

  // Read a string.  ReadString(..., std::string* value) requires an
  // existing std::string.
  static inline bool ReadString(io::CodedInputStream* input,
                                std::string* value);
  // ReadString(..., std::string** p) is internal-only, and should only be
  // called from generated code. It starts by setting *p to "new std::string" if
  // *p == &GetEmptyStringAlreadyInited().  It then invokes
  // ReadString(io::CodedInputStream* input, *p).  This is useful for reducing
  // code size.
  static inline bool ReadString(io::CodedInputStream* input, std::string** p);
  // Analogous to ReadString().
  static bool ReadBytes(io::CodedInputStream* input, std::string* value);
  static bool ReadBytes(io::CodedInputStream* input, std::string** p);

  enum Operation {
    PARSE = 0,
    SERIALIZE = 1,
  };

  // Returns true if the data is valid UTF-8.
  static bool VerifyUtf8String(const char* data, int size, Operation op,
                               const char* field_name);

  template <typename MessageType>
  static inline bool ReadGroup(int field_number, io::CodedInputStream* input,
                               MessageType* value);

  template <typename MessageType>
  static inline bool ReadMessage(io::CodedInputStream* input,
                                 MessageType* value);

  template <typename MessageType>
  static inline bool ReadMessageNoVirtual(io::CodedInputStream* input,
                                          MessageType* value) {
    return ReadMessage(input, value);
  }

  // Write a tag.  The Write*() functions typically include the tag, so
  // normally there's no need to call this unless using the Write*NoTag()
  // variants.
  PROTOBUF_ALWAYS_INLINE static void WriteTag(int field_number, WireType type,
                                              io::CodedOutputStream* output);

  // Write fields, without tags.
  PROTOBUF_ALWAYS_INLINE static void WriteInt32NoTag(
      int32 value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteInt64NoTag(
      int64 value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteUInt32NoTag(
      uint32 value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteUInt64NoTag(
      uint64 value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteSInt32NoTag(
      int32 value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteSInt64NoTag(
      int64 value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteFixed32NoTag(
      uint32 value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteFixed64NoTag(
      uint64 value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteSFixed32NoTag(
      int32 value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteSFixed64NoTag(
      int64 value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteFloatNoTag(
      float value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteDoubleNoTag(
      double value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteBoolNoTag(
      bool value, io::CodedOutputStream* output);
  PROTOBUF_ALWAYS_INLINE static void WriteEnumNoTag(
      int value, io::CodedOutputStream* output);

  // Write array of primitive fields, without tags
  static void WriteFloatArray(const float* a, int n,
                              io::CodedOutputStream* output);
  static void WriteDoubleArray(const double* a, int n,
                               io::CodedOutputStream* output);
  static void WriteFixed32Array(const uint32* a, int n,
                                io::CodedOutputStream* output);
  static void WriteFixed64Array(const uint64* a, int n,
                                io::CodedOutputStream* output);
  static void WriteSFixed32Array(const int32* a, int n,
                                 io::CodedOutputStream* output);
  static void WriteSFixed64Array(const int64* a, int n,
                                 io::CodedOutputStream* output);
  static void WriteBoolArray(const bool* a, int n,
                             io::CodedOutputStream* output);

  // Write fields, including tags.
  static void WriteInt32(int field_number, int32 value,
                         io::CodedOutputStream* output);
  static void WriteInt64(int field_number, int64 value,
                         io::CodedOutputStream* output);
  static void WriteUInt32(int field_number, uint32 value,
                          io::CodedOutputStream* output);
  static void WriteUInt64(int field_number, uint64 value,
                          io::CodedOutputStream* output);
  static void WriteSInt32(int field_number, int32 value,
                          io::CodedOutputStream* output);
  static void WriteSInt64(int field_number, int64 value,
                          io::CodedOutputStream* output);
  static void WriteFixed32(int field_number, uint32 value,
                           io::CodedOutputStream* output);
  static void WriteFixed64(int field_number, uint64 value,
                           io::CodedOutputStream* output);
  static void WriteSFixed32(int field_number, int32 value,
                            io::CodedOutputStream* output);
  static void WriteSFixed64(int field_number, int64 value,
                            io::CodedOutputStream* output);
  static void WriteFloat(int field_number, float value,
                         io::CodedOutputStream* output);
  static void WriteDouble(int field_number, double value,
                          io::CodedOutputStream* output);
  static void WriteBool(int field_number, bool value,
                        io::CodedOutputStream* output);
  static void WriteEnum(int field_number, int value,
                        io::CodedOutputStream* output);

  static void WriteString(int field_number, const std::string& value,
                          io::CodedOutputStream* output);
  static void WriteBytes(int field_number, const std::string& value,
                         io::CodedOutputStream* output);
  static void WriteStringMaybeAliased(int field_number,
                                      const std::string& value,
                                      io::CodedOutputStream* output);
  static void WriteBytesMaybeAliased(int field_number, const std::string& value,
                                     io::CodedOutputStream* output);

  static void WriteGroup(int field_number, const MessageLite& value,
                         io::CodedOutputStream* output);
  static void WriteMessage(int field_number, const MessageLite& value,
                           io::CodedOutputStream* output);
  // Like above, but these will check if the output stream has enough
  // space to write directly to a flat array.
  static void WriteGroupMaybeToArray(int field_number, const MessageLite& value,
                                     io::CodedOutputStream* output);
  static void WriteMessageMaybeToArray(int field_number,
                                       const MessageLite& value,
                                       io::CodedOutputStream* output);

  // Like above, but de-virtualize the call to SerializeWithCachedSizes().  The
  // pointer must point at an instance of MessageType, *not* a subclass (or
  // the subclass must not override SerializeWithCachedSizes()).
  template <typename MessageType>
  static inline void WriteGroupNoVirtual(int field_number,
                                         const MessageType& value,
                                         io::CodedOutputStream* output);
  template <typename MessageType>
  static inline void WriteMessageNoVirtual(int field_number,
                                           const MessageType& value,
                                           io::CodedOutputStream* output);

  // Like above, but use only *ToArray methods of CodedOutputStream.
  PROTOBUF_ALWAYS_INLINE static uint8* WriteTagToArray(int field_number,
                                                       WireType type,
                                                       uint8* target);

  // Write fields, without tags.
  PROTOBUF_ALWAYS_INLINE static uint8* WriteInt32NoTagToArray(int32 value,
                                                              uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteInt64NoTagToArray(int64 value,
                                                              uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt32NoTagToArray(uint32 value,
                                                               uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt64NoTagToArray(uint64 value,
                                                               uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt32NoTagToArray(int32 value,
                                                               uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt64NoTagToArray(int64 value,
                                                               uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed32NoTagToArray(uint32 value,
                                                                uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed64NoTagToArray(uint64 value,
                                                                uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed32NoTagToArray(int32 value,
                                                                 uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed64NoTagToArray(int64 value,
                                                                 uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFloatNoTagToArray(float value,
                                                              uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteDoubleNoTagToArray(double value,
                                                               uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteBoolNoTagToArray(bool value,
                                                             uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteEnumNoTagToArray(int value,
                                                             uint8* target);

  // Write fields, without tags.  These require that value.size() > 0.
  template <typename T>
  PROTOBUF_ALWAYS_INLINE static uint8* WritePrimitiveNoTagToArray(
      const RepeatedField<T>& value, uint8* (*Writer)(T, uint8*),
      uint8* target);
  template <typename T>
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFixedNoTagToArray(
      const RepeatedField<T>& value, uint8* (*Writer)(T, uint8*),
      uint8* target);

  PROTOBUF_ALWAYS_INLINE static uint8* WriteInt32NoTagToArray(
      const RepeatedField<int32>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteInt64NoTagToArray(
      const RepeatedField<int64>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt32NoTagToArray(
      const RepeatedField<uint32>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt64NoTagToArray(
      const RepeatedField<uint64>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt32NoTagToArray(
      const RepeatedField<int32>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt64NoTagToArray(
      const RepeatedField<int64>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed32NoTagToArray(
      const RepeatedField<uint32>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed64NoTagToArray(
      const RepeatedField<uint64>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed32NoTagToArray(
      const RepeatedField<int32>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed64NoTagToArray(
      const RepeatedField<int64>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFloatNoTagToArray(
      const RepeatedField<float>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteDoubleNoTagToArray(
      const RepeatedField<double>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteBoolNoTagToArray(
      const RepeatedField<bool>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteEnumNoTagToArray(
      const RepeatedField<int>& value, uint8* output);

  // Write fields, including tags.
  PROTOBUF_ALWAYS_INLINE static uint8* WriteInt32ToArray(int field_number,
                                                         int32 value,
                                                         uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteInt64ToArray(int field_number,
                                                         int64 value,
                                                         uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt32ToArray(int field_number,
                                                          uint32 value,
                                                          uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt64ToArray(int field_number,
                                                          uint64 value,
                                                          uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt32ToArray(int field_number,
                                                          int32 value,
                                                          uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt64ToArray(int field_number,
                                                          int64 value,
                                                          uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed32ToArray(int field_number,
                                                           uint32 value,
                                                           uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed64ToArray(int field_number,
                                                           uint64 value,
                                                           uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed32ToArray(int field_number,
                                                            int32 value,
                                                            uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed64ToArray(int field_number,
                                                            int64 value,
                                                            uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFloatToArray(int field_number,
                                                         float value,
                                                         uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteDoubleToArray(int field_number,
                                                          double value,
                                                          uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteBoolToArray(int field_number,
                                                        bool value,
                                                        uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteEnumToArray(int field_number,
                                                        int value,
                                                        uint8* target);

  template <typename T>
  PROTOBUF_ALWAYS_INLINE static uint8* WritePrimitiveToArray(
      int field_number, const RepeatedField<T>& value,
      uint8* (*Writer)(int, T, uint8*), uint8* target);

  PROTOBUF_ALWAYS_INLINE static uint8* WriteInt32ToArray(
      int field_number, const RepeatedField<int32>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteInt64ToArray(
      int field_number, const RepeatedField<int64>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt32ToArray(
      int field_number, const RepeatedField<uint32>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt64ToArray(
      int field_number, const RepeatedField<uint64>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt32ToArray(
      int field_number, const RepeatedField<int32>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt64ToArray(
      int field_number, const RepeatedField<int64>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed32ToArray(
      int field_number, const RepeatedField<uint32>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed64ToArray(
      int field_number, const RepeatedField<uint64>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed32ToArray(
      int field_number, const RepeatedField<int32>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed64ToArray(
      int field_number, const RepeatedField<int64>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteFloatToArray(
      int field_number, const RepeatedField<float>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteDoubleToArray(
      int field_number, const RepeatedField<double>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteBoolToArray(
      int field_number, const RepeatedField<bool>& value, uint8* output);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteEnumToArray(
      int field_number, const RepeatedField<int>& value, uint8* output);

  PROTOBUF_ALWAYS_INLINE static uint8* WriteStringToArray(
      int field_number, const std::string& value, uint8* target);
  PROTOBUF_ALWAYS_INLINE static uint8* WriteBytesToArray(
      int field_number, const std::string& value, uint8* target);

  // Whether to serialize deterministically (e.g., map keys are
  // sorted) is a property of a CodedOutputStream, and in the process
  // of serialization, the "ToArray" variants may be invoked.  But they don't
  // have a CodedOutputStream available, so they get an additional parameter
  // telling them whether to serialize deterministically.
  template <typename MessageType>
  PROTOBUF_ALWAYS_INLINE static uint8* InternalWriteGroup(
      int field_number, const MessageType& value, uint8* target,
      io::EpsCopyOutputStream* stream);
  template <typename MessageType>
  PROTOBUF_ALWAYS_INLINE static uint8* InternalWriteMessage(
      int field_number, const MessageType& value, uint8* target,
      io::EpsCopyOutputStream* stream);

  // Like above, but de-virtualize the call to SerializeWithCachedSizes().  The
  // pointer must point at an instance of MessageType, *not* a subclass (or
  // the subclass must not override SerializeWithCachedSizes()).
  template <typename MessageType>
  PROTOBUF_ALWAYS_INLINE static uint8* InternalWriteGroupNoVirtualToArray(
      int field_number, const MessageType& value, uint8* target);
  template <typename MessageType>
  PROTOBUF_ALWAYS_INLINE static uint8* InternalWriteMessageNoVirtualToArray(
      int field_number, const MessageType& value, uint8* target);

  // For backward-compatibility, the last four methods also have versions
  // that are non-deterministic always.
  PROTOBUF_ALWAYS_INLINE static uint8* WriteGroupToArray(
      int field_number, const MessageLite& value, uint8* target) {
    io::EpsCopyOutputStream stream(
        target,
        value.GetCachedSize() +
            static_cast<int>(2 * io::CodedOutputStream::VarintSize32(
                                     static_cast<uint32>(field_number) << 3)),
        io::CodedOutputStream::IsDefaultSerializationDeterministic());
    return InternalWriteGroup(field_number, value, target, &stream);
  }
  PROTOBUF_ALWAYS_INLINE static uint8* WriteMessageToArray(
      int field_number, const MessageLite& value, uint8* target) {
    int size = value.GetCachedSize();
    io::EpsCopyOutputStream stream(
        target,
        size + static_cast<int>(io::CodedOutputStream::VarintSize32(
                                    static_cast<uint32>(field_number) << 3) +
                                io::CodedOutputStream::VarintSize32(size)),
        io::CodedOutputStream::IsDefaultSerializationDeterministic());
    return InternalWriteMessage(field_number, value, target, &stream);
  }

  // Compute the byte size of a field.  The XxSize() functions do NOT include
  // the tag, so you must also call TagSize().  (This is because, for repeated
  // fields, you should only call TagSize() once and multiply it by the element
  // count, but you may have to call XxSize() for each individual element.)
  static inline size_t Int32Size(int32 value);
  static inline size_t Int64Size(int64 value);
  static inline size_t UInt32Size(uint32 value);
  static inline size_t UInt64Size(uint64 value);
  static inline size_t SInt32Size(int32 value);
  static inline size_t SInt64Size(int64 value);
  static inline size_t EnumSize(int value);

  static size_t Int32Size(const RepeatedField<int32>& value);
  static size_t Int64Size(const RepeatedField<int64>& value);
  static size_t UInt32Size(const RepeatedField<uint32>& value);
  static size_t UInt64Size(const RepeatedField<uint64>& value);
  static size_t SInt32Size(const RepeatedField<int32>& value);
  static size_t SInt64Size(const RepeatedField<int64>& value);
  static size_t EnumSize(const RepeatedField<int>& value);

  // These types always have the same size.
  static constexpr size_t kFixed32Size = 4;
  static constexpr size_t kFixed64Size = 8;
  static constexpr size_t kSFixed32Size = 4;
  static constexpr size_t kSFixed64Size = 8;
  static constexpr size_t kFloatSize = 4;
  static constexpr size_t kDoubleSize = 8;
  static constexpr size_t kBoolSize = 1;

  static inline size_t StringSize(const std::string& value);
  static inline size_t BytesSize(const std::string& value);

  template <typename MessageType>
  static inline size_t GroupSize(const MessageType& value);
  template <typename MessageType>
  static inline size_t MessageSize(const MessageType& value);

  // Like above, but de-virtualize the call to ByteSize().  The
  // pointer must point at an instance of MessageType, *not* a subclass (or
  // the subclass must not override ByteSize()).
  template <typename MessageType>
  static inline size_t GroupSizeNoVirtual(const MessageType& value);
  template <typename MessageType>
  static inline size_t MessageSizeNoVirtual(const MessageType& value);

  // Given the length of data, calculate the byte size of the data on the
  // wire if we encode the data as a length delimited field.
  static inline size_t LengthDelimitedSize(size_t length);

 private:
  // A helper method for the repeated primitive reader. This method has
  // optimizations for primitive types that have fixed size on the wire, and
  // can be read using potentially faster paths.
  template <typename CType, enum FieldType DeclaredType>
  PROTOBUF_ALWAYS_INLINE static bool ReadRepeatedFixedSizePrimitive(
      int tag_size, uint32 tag, io::CodedInputStream* input,
      RepeatedField<CType>* value);

  // Like ReadRepeatedFixedSizePrimitive but for packed primitive fields.
  template <typename CType, enum FieldType DeclaredType>
  PROTOBUF_ALWAYS_INLINE static bool ReadPackedFixedSizePrimitive(
      io::CodedInputStream* input, RepeatedField<CType>* value);

  static const CppType kFieldTypeToCppTypeMap[];
  static const WireFormatLite::WireType kWireTypeForFieldType[];
  static void WriteSubMessageMaybeToArray(int size, const MessageLite& value,
                                          io::CodedOutputStream* output);

  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite);
};

// A class which deals with unknown values.  The default implementation just
// discards them.  WireFormat defines a subclass which writes to an
// UnknownFieldSet.  This class is used by ExtensionSet::ParseField(), since
// ExtensionSet is part of the lite library but UnknownFieldSet is not.
class PROTOBUF_EXPORT FieldSkipper {
 public:
  FieldSkipper() {}
  virtual ~FieldSkipper() {}

  // Skip a field whose tag has already been consumed.
  virtual bool SkipField(io::CodedInputStream* input, uint32 tag);

  // Skip an entire message or group, up to an end-group tag (which is consumed)
  // or end-of-stream.
  virtual bool SkipMessage(io::CodedInputStream* input);

  // Deal with an already-parsed unrecognized enum value.  The default
  // implementation does nothing, but the UnknownFieldSet-based implementation
  // saves it as an unknown varint.
  virtual void SkipUnknownEnum(int field_number, int value);
};

// Subclass of FieldSkipper which saves skipped fields to a CodedOutputStream.

class PROTOBUF_EXPORT CodedOutputStreamFieldSkipper : public FieldSkipper {
 public:
  explicit CodedOutputStreamFieldSkipper(io::CodedOutputStream* unknown_fields)
      : unknown_fields_(unknown_fields) {}
  ~CodedOutputStreamFieldSkipper() override {}

  // implements FieldSkipper -----------------------------------------
  bool SkipField(io::CodedInputStream* input, uint32 tag) override;
  bool SkipMessage(io::CodedInputStream* input) override;
  void SkipUnknownEnum(int field_number, int value) override;

 protected:
  io::CodedOutputStream* unknown_fields_;
};

// inline methods ====================================================

inline WireFormatLite::CppType WireFormatLite::FieldTypeToCppType(
    FieldType type) {
  return kFieldTypeToCppTypeMap[type];
}

constexpr inline uint32 WireFormatLite::MakeTag(int field_number,
                                                WireType type) {
  return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type);
}

inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32 tag) {
  return static_cast<WireType>(tag & kTagTypeMask);
}

inline int WireFormatLite::GetTagFieldNumber(uint32 tag) {
  return static_cast<int>(tag >> kTagTypeBits);
}

inline size_t WireFormatLite::TagSize(int field_number,
                                      WireFormatLite::FieldType type) {
  size_t result = io::CodedOutputStream::VarintSize32(
      static_cast<uint32>(field_number << kTagTypeBits));
  if (type == TYPE_GROUP) {
    // Groups have both a start and an end tag.
    return result * 2;
  } else {
    return result;
  }
}

inline uint32 WireFormatLite::EncodeFloat(float value) {
  return bit_cast<uint32>(value);
}

inline float WireFormatLite::DecodeFloat(uint32 value) {
  return bit_cast<float>(value);
}

inline uint64 WireFormatLite::EncodeDouble(double value) {
  return bit_cast<uint64>(value);
}

inline double WireFormatLite::DecodeDouble(uint64 value) {
  return bit_cast<double>(value);
}

// ZigZag Transform:  Encodes signed integers so that they can be
// effectively used with varint encoding.
//
// varint operates on unsigned integers, encoding smaller numbers into
// fewer bytes.  If you try to use it on a signed integer, it will treat
// this number as a very large unsigned integer, which means that even
// small signed numbers like -1 will take the maximum number of bytes
// (10) to encode.  ZigZagEncode() maps signed integers to unsigned
// in such a way that those with a small absolute value will have smaller
// encoded values, making them appropriate for encoding using varint.
//
//       int32 ->     uint32
// -------------------------
//           0 ->          0
//          -1 ->          1
//           1 ->          2
//          -2 ->          3
//         ... ->        ...
//  2147483647 -> 4294967294
// -2147483648 -> 4294967295
//
//        >> encode >>
//        << decode <<

inline uint32 WireFormatLite::ZigZagEncode32(int32 n) {
  // Note:  the right-shift must be arithmetic
  // Note:  left shift must be unsigned because of overflow
  return (static_cast<uint32>(n) << 1) ^ static_cast<uint32>(n >> 31);
}

inline int32 WireFormatLite::ZigZagDecode32(uint32 n) {
  // Note:  Using unsigned types prevent undefined behavior
  return static_cast<int32>((n >> 1) ^ (~(n & 1) + 1));
}

inline uint64 WireFormatLite::ZigZagEncode64(int64 n) {
  // Note:  the right-shift must be arithmetic
  // Note:  left shift must be unsigned because of overflow
  return (static_cast<uint64>(n) << 1) ^ static_cast<uint64>(n >> 63);
}

inline int64 WireFormatLite::ZigZagDecode64(uint64 n) {
  // Note:  Using unsigned types prevent undefined behavior
  return static_cast<int64>((n >> 1) ^ (~(n & 1) + 1));
}

// String is for UTF-8 text only, but, even so, ReadString() can simply
// call ReadBytes().

inline bool WireFormatLite::ReadString(io::CodedInputStream* input,
                                       std::string* value) {
  return ReadBytes(input, value);
}

inline bool WireFormatLite::ReadString(io::CodedInputStream* input,
                                       std::string** p) {
  return ReadBytes(input, p);
}

inline uint8* InternalSerializeUnknownMessageSetItemsToArray(
    const std::string& unknown_fields, uint8* target,
    io::EpsCopyOutputStream* stream) {
  return stream->WriteRaw(unknown_fields.data(),
                          static_cast<int>(unknown_fields.size()), target);
}

inline size_t ComputeUnknownMessageSetItemsSize(
    const std::string& unknown_fields) {
  return unknown_fields.size();
}

// Implementation details of ReadPrimitive.

template <>
inline bool WireFormatLite::ReadPrimitive<int32, WireFormatLite::TYPE_INT32>(
    io::CodedInputStream* input, int32* value) {
  uint32 temp;
  if (!input->ReadVarint32(&temp)) return false;
  *value = static_cast<int32>(temp);
  return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<int64, WireFormatLite::TYPE_INT64>(
    io::CodedInputStream* input, int64* value) {
  uint64 temp;
  if (!input->ReadVarint64(&temp)) return false;
  *value = static_cast<int64>(temp);
  return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<uint32, WireFormatLite::TYPE_UINT32>(
    io::CodedInputStream* input, uint32* value) {
  return input->ReadVarint32(value);
}
template <>
inline bool WireFormatLite::ReadPrimitive<uint64, WireFormatLite::TYPE_UINT64>(
    io::CodedInputStream* input, uint64* value) {
  return input->ReadVarint64(value);
}
template <>
inline bool WireFormatLite::ReadPrimitive<int32, WireFormatLite::TYPE_SINT32>(
    io::CodedInputStream* input, int32* value) {
  uint32 temp;
  if (!input->ReadVarint32(&temp)) return false;
  *value = ZigZagDecode32(temp);
  return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<int64, WireFormatLite::TYPE_SINT64>(
    io::CodedInputStream* input, int64* value) {
  uint64 temp;
  if (!input->ReadVarint64(&temp)) return false;
  *value = ZigZagDecode64(temp);
  return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<uint32, WireFormatLite::TYPE_FIXED32>(
    io::CodedInputStream* input, uint32* value) {
  return input->ReadLittleEndian32(value);
}
template <>
inline bool WireFormatLite::ReadPrimitive<uint64, WireFormatLite::TYPE_FIXED64>(
    io::CodedInputStream* input, uint64* value) {
  return input->ReadLittleEndian64(value);
}
template <>
inline bool WireFormatLite::ReadPrimitive<int32, WireFormatLite::TYPE_SFIXED32>(
    io::CodedInputStream* input, int32* value) {
  uint32 temp;
  if (!input->ReadLittleEndian32(&temp)) return false;
  *value = static_cast<int32>(temp);
  return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<int64, WireFormatLite::TYPE_SFIXED64>(
    io::CodedInputStream* input, int64* value) {
  uint64 temp;
  if (!input->ReadLittleEndian64(&temp)) return false;
  *value = static_cast<int64>(temp);
  return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<float, WireFormatLite::TYPE_FLOAT>(
    io::CodedInputStream* input, float* value) {
  uint32 temp;
  if (!input->ReadLittleEndian32(&temp)) return false;
  *value = DecodeFloat(temp);
  return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<double, WireFormatLite::TYPE_DOUBLE>(
    io::CodedInputStream* input, double* value) {
  uint64 temp;
  if (!input->ReadLittleEndian64(&temp)) return false;
  *value = DecodeDouble(temp);
  return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<bool, WireFormatLite::TYPE_BOOL>(
    io::CodedInputStream* input, bool* value) {
  uint64 temp;
  if (!input->ReadVarint64(&temp)) return false;
  *value = temp != 0;
  return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<int, WireFormatLite::TYPE_ENUM>(
    io::CodedInputStream* input, int* value) {
  uint32 temp;
  if (!input->ReadVarint32(&temp)) return false;
  *value = static_cast<int>(temp);
  return true;
}

template <>
inline const uint8*
WireFormatLite::ReadPrimitiveFromArray<uint32, WireFormatLite::TYPE_FIXED32>(
    const uint8* buffer, uint32* value) {
  return io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value);
}
template <>
inline const uint8*
WireFormatLite::ReadPrimitiveFromArray<uint64, WireFormatLite::TYPE_FIXED64>(
    const uint8* buffer, uint64* value) {
  return io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value);
}
template <>
inline const uint8*
WireFormatLite::ReadPrimitiveFromArray<int32, WireFormatLite::TYPE_SFIXED32>(
    const uint8* buffer, int32* value) {
  uint32 temp;
  buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, &temp);
  *value = static_cast<int32>(temp);
  return buffer;
}
template <>
inline const uint8*
WireFormatLite::ReadPrimitiveFromArray<int64, WireFormatLite::TYPE_SFIXED64>(
    const uint8* buffer, int64* value) {
  uint64 temp;
  buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, &temp);
  *value = static_cast<int64>(temp);
  return buffer;
}
template <>
inline const uint8*
WireFormatLite::ReadPrimitiveFromArray<float, WireFormatLite::TYPE_FLOAT>(
    const uint8* buffer, float* value) {
  uint32 temp;
  buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, &temp);
  *value = DecodeFloat(temp);
  return buffer;
}
template <>
inline const uint8*
WireFormatLite::ReadPrimitiveFromArray<double, WireFormatLite::TYPE_DOUBLE>(
    const uint8* buffer, double* value) {
  uint64 temp;
  buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, &temp);
  *value = DecodeDouble(temp);
  return buffer;
}

template <typename CType, enum WireFormatLite::FieldType DeclaredType>
inline bool WireFormatLite::ReadRepeatedPrimitive(
    int,  // tag_size, unused.
    uint32 tag, io::CodedInputStream* input, RepeatedField<CType>* values) {
  CType value;
  if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
  values->Add(value);
  int elements_already_reserved = values->Capacity() - values->size();
  while (elements_already_reserved > 0 && input->ExpectTag(tag)) {
    if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
    values->AddAlreadyReserved(value);
    elements_already_reserved--;
  }
  return true;
}

template <typename CType, enum WireFormatLite::FieldType DeclaredType>
inline bool WireFormatLite::ReadRepeatedFixedSizePrimitive(
    int tag_size, uint32 tag, io::CodedInputStream* input,
    RepeatedField<CType>* values) {
  GOOGLE_DCHECK_EQ(UInt32Size(tag), static_cast<size_t>(tag_size));
  CType value;
  if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
  values->Add(value);

  // For fixed size values, repeated values can be read more quickly by
  // reading directly from a raw array.
  //
  // We can get a tight loop by only reading as many elements as can be
  // added to the RepeatedField without having to do any resizing. Additionally,
  // we only try to read as many elements as are available from the current
  // buffer space. Doing so avoids having to perform boundary checks when
  // reading the value: the maximum number of elements that can be read is
  // known outside of the loop.
  const void* void_pointer;
  int size;
  input->GetDirectBufferPointerInline(&void_pointer, &size);
  if (size > 0) {
    const uint8* buffer = reinterpret_cast<const uint8*>(void_pointer);
    // The number of bytes each type occupies on the wire.
    const int per_value_size = tag_size + static_cast<int>(sizeof(value));

    // parentheses around (std::min) prevents macro expansion of min(...)
    int elements_available =
        (std::min)(values->Capacity() - values->size(), size / per_value_size);
    int num_read = 0;
    while (num_read < elements_available &&
           (buffer = io::CodedInputStream::ExpectTagFromArray(buffer, tag)) !=
               NULL) {
      buffer = ReadPrimitiveFromArray<CType, DeclaredType>(buffer, &value);
      values->AddAlreadyReserved(value);
      ++num_read;
    }
    const int read_bytes = num_read * per_value_size;
    if (read_bytes > 0) {
      input->Skip(read_bytes);
    }
  }
  return true;
}

// Specializations of ReadRepeatedPrimitive for the fixed size types, which use
// the optimized code path.
#define READ_REPEATED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE)        \
  template <>                                                             \
  inline bool WireFormatLite::ReadRepeatedPrimitive<                      \
      CPPTYPE, WireFormatLite::DECLARED_TYPE>(                            \
      int tag_size, uint32 tag, io::CodedInputStream* input,              \
      RepeatedField<CPPTYPE>* values) {                                   \
    return ReadRepeatedFixedSizePrimitive<CPPTYPE,                        \
                                          WireFormatLite::DECLARED_TYPE>( \
        tag_size, tag, input, values);                                    \
  }

READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint32, TYPE_FIXED32)
READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint64, TYPE_FIXED64)
READ_REPEATED_FIXED_SIZE_PRIMITIVE(int32, TYPE_SFIXED32)
READ_REPEATED_FIXED_SIZE_PRIMITIVE(int64, TYPE_SFIXED64)
READ_REPEATED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT)
READ_REPEATED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE)

#undef READ_REPEATED_FIXED_SIZE_PRIMITIVE

template <typename CType, enum WireFormatLite::FieldType DeclaredType>
bool WireFormatLite::ReadRepeatedPrimitiveNoInline(
    int tag_size, uint32 tag, io::CodedInputStream* input,
    RepeatedField<CType>* value) {
  return ReadRepeatedPrimitive<CType, DeclaredType>(tag_size, tag, input,
                                                    value);
}

template <typename CType, enum WireFormatLite::FieldType DeclaredType>
inline bool WireFormatLite::ReadPackedPrimitive(io::CodedInputStream* input,
                                                RepeatedField<CType>* values) {
  int length;
  if (!input->ReadVarintSizeAsInt(&length)) return false;
  io::CodedInputStream::Limit limit = input->PushLimit(length);
  while (input->BytesUntilLimit() > 0) {
    CType value;
    if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
    values->Add(value);
  }
  input->PopLimit(limit);
  return true;
}

template <typename CType, enum WireFormatLite::FieldType DeclaredType>
inline bool WireFormatLite::ReadPackedFixedSizePrimitive(
    io::CodedInputStream* input, RepeatedField<CType>* values) {
  int length;
  if (!input->ReadVarintSizeAsInt(&length)) return false;
  const int old_entries = values->size();
  const int new_entries = length / static_cast<int>(sizeof(CType));
  const int new_bytes = new_entries * static_cast<int>(sizeof(CType));
  if (new_bytes != length) return false;
  // We would *like* to pre-allocate the buffer to write into (for
  // speed), but *must* avoid performing a very large allocation due
  // to a malicious user-supplied "length" above.  So we have a fast
  // path that pre-allocates when the "length" is less than a bound.
  // We determine the bound by calling BytesUntilTotalBytesLimit() and
  // BytesUntilLimit().  These return -1 to mean "no limit set".
  // There are four cases:
  // TotalBytesLimit  Limit
  // -1               -1     Use slow path.
  // -1               >= 0   Use fast path if length <= Limit.
  // >= 0             -1     Use slow path.
  // >= 0             >= 0   Use fast path if length <= min(both limits).
  int64 bytes_limit = input->BytesUntilTotalBytesLimit();
  if (bytes_limit == -1) {
    bytes_limit = input->BytesUntilLimit();
  } else {
    // parentheses around (std::min) prevents macro expansion of min(...)
    bytes_limit =
        (std::min)(bytes_limit, static_cast<int64>(input->BytesUntilLimit()));
  }
  if (bytes_limit >= new_bytes) {
    // Fast-path that pre-allocates *values to the final size.
#if defined(PROTOBUF_LITTLE_ENDIAN)
    values->Resize(old_entries + new_entries, 0);
    // values->mutable_data() may change after Resize(), so do this after:
    void* dest = reinterpret_cast<void*>(values->mutable_data() + old_entries);
    if (!input->ReadRaw(dest, new_bytes)) {
      values->Truncate(old_entries);
      return false;
    }
#else
    values->Reserve(old_entries + new_entries);
    CType value;
    for (int i = 0; i < new_entries; ++i) {
      if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
      values->AddAlreadyReserved(value);
    }
#endif
  } else {
    // This is the slow-path case where "length" may be too large to
    // safely allocate.  We read as much as we can into *values
    // without pre-allocating "length" bytes.
    CType value;
    for (int i = 0; i < new_entries; ++i) {
      if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
      values->Add(value);
    }
  }
  return true;
}

// Specializations of ReadPackedPrimitive for the fixed size types, which use
// an optimized code path.
#define READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE)      \
  template <>                                                                  \
  inline bool                                                                  \
  WireFormatLite::ReadPackedPrimitive<CPPTYPE, WireFormatLite::DECLARED_TYPE>( \
      io::CodedInputStream * input, RepeatedField<CPPTYPE> * values) {         \
    return ReadPackedFixedSizePrimitive<CPPTYPE,                               \
                                        WireFormatLite::DECLARED_TYPE>(        \
        input, values);                                                        \
  }

READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint32, TYPE_FIXED32)
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint64, TYPE_FIXED64)
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int32, TYPE_SFIXED32)
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int64, TYPE_SFIXED64)
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT)
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE)

#undef READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE

template <typename CType, enum WireFormatLite::FieldType DeclaredType>
bool WireFormatLite::ReadPackedPrimitiveNoInline(io::CodedInputStream* input,
                                                 RepeatedField<CType>* values) {
  return ReadPackedPrimitive<CType, DeclaredType>(input, values);
}


template <typename MessageType>
inline bool WireFormatLite::ReadGroup(int field_number,
                                      io::CodedInputStream* input,
                                      MessageType* value) {
  if (!input->IncrementRecursionDepth()) return false;
  if (!value->MergePartialFromCodedStream(input)) return false;
  input->UnsafeDecrementRecursionDepth();
  // Make sure the last thing read was an end tag for this group.
  if (!input->LastTagWas(MakeTag(field_number, WIRETYPE_END_GROUP))) {
    return false;
  }
  return true;
}
template <typename MessageType>
inline bool WireFormatLite::ReadMessage(io::CodedInputStream* input,
                                        MessageType* value) {
  int length;
  if (!input->ReadVarintSizeAsInt(&length)) return false;
  std::pair<io::CodedInputStream::Limit, int> p =
      input->IncrementRecursionDepthAndPushLimit(length);
  if (p.second < 0 || !value->MergePartialFromCodedStream(input)) return false;
  // Make sure that parsing stopped when the limit was hit, not at an endgroup
  // tag.
  return input->DecrementRecursionDepthAndPopLimit(p.first);
}

// ===================================================================

inline void WireFormatLite::WriteTag(int field_number, WireType type,
                                     io::CodedOutputStream* output) {
  output->WriteTag(MakeTag(field_number, type));
}

inline void WireFormatLite::WriteInt32NoTag(int32 value,
                                            io::CodedOutputStream* output) {
  output->WriteVarint32SignExtended(value);
}
inline void WireFormatLite::WriteInt64NoTag(int64 value,
                                            io::CodedOutputStream* output) {
  output->WriteVarint64(static_cast<uint64>(value));
}
inline void WireFormatLite::WriteUInt32NoTag(uint32 value,
                                             io::CodedOutputStream* output) {
  output->WriteVarint32(value);
}
inline void WireFormatLite::WriteUInt64NoTag(uint64 value,
                                             io::CodedOutputStream* output) {
  output->WriteVarint64(value);
}
inline void WireFormatLite::WriteSInt32NoTag(int32 value,
                                             io::CodedOutputStream* output) {
  output->WriteVarint32(ZigZagEncode32(value));
}
inline void WireFormatLite::WriteSInt64NoTag(int64 value,
                                             io::CodedOutputStream* output) {
  output->WriteVarint64(ZigZagEncode64(value));
}
inline void WireFormatLite::WriteFixed32NoTag(uint32 value,
                                              io::CodedOutputStream* output) {
  output->WriteLittleEndian32(value);
}
inline void WireFormatLite::WriteFixed64NoTag(uint64 value,
                                              io::CodedOutputStream* output) {
  output->WriteLittleEndian64(value);
}
inline void WireFormatLite::WriteSFixed32NoTag(int32 value,
                                               io::CodedOutputStream* output) {
  output->WriteLittleEndian32(static_cast<uint32>(value));
}
inline void WireFormatLite::WriteSFixed64NoTag(int64 value,
                                               io::CodedOutputStream* output) {
  output->WriteLittleEndian64(static_cast<uint64>(value));
}
inline void WireFormatLite::WriteFloatNoTag(float value,
                                            io::CodedOutputStream* output) {
  output->WriteLittleEndian32(EncodeFloat(value));
}
inline void WireFormatLite::WriteDoubleNoTag(double value,
                                             io::CodedOutputStream* output) {
  output->WriteLittleEndian64(EncodeDouble(value));
}
inline void WireFormatLite::WriteBoolNoTag(bool value,
                                           io::CodedOutputStream* output) {
  output->WriteVarint32(value ? 1 : 0);
}
inline void WireFormatLite::WriteEnumNoTag(int value,
                                           io::CodedOutputStream* output) {
  output->WriteVarint32SignExtended(value);
}

// See comment on ReadGroupNoVirtual to understand the need for this template
// parameter name.
template <typename MessageType_WorkAroundCppLookupDefect>
inline void WireFormatLite::WriteGroupNoVirtual(
    int field_number, const MessageType_WorkAroundCppLookupDefect& value,
    io::CodedOutputStream* output) {
  WriteTag(field_number, WIRETYPE_START_GROUP, output);
  value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output);
  WriteTag(field_number, WIRETYPE_END_GROUP, output);
}
template <typename MessageType_WorkAroundCppLookupDefect>
inline void WireFormatLite::WriteMessageNoVirtual(
    int field_number, const MessageType_WorkAroundCppLookupDefect& value,
    io::CodedOutputStream* output) {
  WriteTag(field_number, WIRETYPE_LENGTH_DELIMITED, output);
  output->WriteVarint32(
      value.MessageType_WorkAroundCppLookupDefect::GetCachedSize());
  value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output);
}

// ===================================================================

inline uint8* WireFormatLite::WriteTagToArray(int field_number, WireType type,
                                              uint8* target) {
  return io::CodedOutputStream::WriteTagToArray(MakeTag(field_number, type),
                                                target);
}

inline uint8* WireFormatLite::WriteInt32NoTagToArray(int32 value,
                                                     uint8* target) {
  return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target);
}
inline uint8* WireFormatLite::WriteInt64NoTagToArray(int64 value,
                                                     uint8* target) {
  return io::CodedOutputStream::WriteVarint64ToArray(static_cast<uint64>(value),
                                                     target);
}
inline uint8* WireFormatLite::WriteUInt32NoTagToArray(uint32 value,
                                                      uint8* target) {
  return io::CodedOutputStream::WriteVarint32ToArray(value, target);
}
inline uint8* WireFormatLite::WriteUInt64NoTagToArray(uint64 value,
                                                      uint8* target) {
  return io::CodedOutputStream::WriteVarint64ToArray(value, target);
}
inline uint8* WireFormatLite::WriteSInt32NoTagToArray(int32 value,
                                                      uint8* target) {
  return io::CodedOutputStream::WriteVarint32ToArray(ZigZagEncode32(value),
                                                     target);
}
inline uint8* WireFormatLite::WriteSInt64NoTagToArray(int64 value,
                                                      uint8* target) {
  return io::CodedOutputStream::WriteVarint64ToArray(ZigZagEncode64(value),
                                                     target);
}
inline uint8* WireFormatLite::WriteFixed32NoTagToArray(uint32 value,
                                                       uint8* target) {
  return io::CodedOutputStream::WriteLittleEndian32ToArray(value, target);
}
inline uint8* WireFormatLite::WriteFixed64NoTagToArray(uint64 value,
                                                       uint8* target) {
  return io::CodedOutputStream::WriteLittleEndian64ToArray(value, target);
}
inline uint8* WireFormatLite::WriteSFixed32NoTagToArray(int32 value,
                                                        uint8* target) {
  return io::CodedOutputStream::WriteLittleEndian32ToArray(
      static_cast<uint32>(value), target);
}
inline uint8* WireFormatLite::WriteSFixed64NoTagToArray(int64 value,
                                                        uint8* target) {
  return io::CodedOutputStream::WriteLittleEndian64ToArray(
      static_cast<uint64>(value), target);
}
inline uint8* WireFormatLite::WriteFloatNoTagToArray(float value,
                                                     uint8* target) {
  return io::CodedOutputStream::WriteLittleEndian32ToArray(EncodeFloat(value),
                                                           target);
}
inline uint8* WireFormatLite::WriteDoubleNoTagToArray(double value,
                                                      uint8* target) {
  return io::CodedOutputStream::WriteLittleEndian64ToArray(EncodeDouble(value),
                                                           target);
}
inline uint8* WireFormatLite::WriteBoolNoTagToArray(bool value, uint8* target) {
  return io::CodedOutputStream::WriteVarint32ToArray(value ? 1 : 0, target);
}
inline uint8* WireFormatLite::WriteEnumNoTagToArray(int value, uint8* target) {
  return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target);
}

template <typename T>
inline uint8* WireFormatLite::WritePrimitiveNoTagToArray(
    const RepeatedField<T>& value, uint8* (*Writer)(T, uint8*), uint8* target) {
  const int n = value.size();
  GOOGLE_DCHECK_GT(n, 0);

  const T* ii = value.data();
  int i = 0;
  do {
    target = Writer(ii[i], target);
  } while (++i < n);

  return target;
}

template <typename T>
inline uint8* WireFormatLite::WriteFixedNoTagToArray(
    const RepeatedField<T>& value, uint8* (*Writer)(T, uint8*), uint8* target) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  (void)Writer;

  const int n = value.size();
  GOOGLE_DCHECK_GT(n, 0);

  const T* ii = value.data();
  const int bytes = n * static_cast<int>(sizeof(ii[0]));
  memcpy(target, ii, static_cast<size_t>(bytes));
  return target + bytes;
#else
  return WritePrimitiveNoTagToArray(value, Writer, target);
#endif
}

inline uint8* WireFormatLite::WriteInt32NoTagToArray(
    const RepeatedField<int32>& value, uint8* target) {
  return WritePrimitiveNoTagToArray(value, WriteInt32NoTagToArray, target);
}
inline uint8* WireFormatLite::WriteInt64NoTagToArray(
    const RepeatedField<int64>& value, uint8* target) {
  return WritePrimitiveNoTagToArray(value, WriteInt64NoTagToArray, target);
}
inline uint8* WireFormatLite::WriteUInt32NoTagToArray(
    const RepeatedField<uint32>& value, uint8* target) {
  return WritePrimitiveNoTagToArray(value, WriteUInt32NoTagToArray, target);
}
inline uint8* WireFormatLite::WriteUInt64NoTagToArray(
    const RepeatedField<uint64>& value, uint8* target) {
  return WritePrimitiveNoTagToArray(value, WriteUInt64NoTagToArray, target);
}
inline uint8* WireFormatLite::WriteSInt32NoTagToArray(
    const RepeatedField<int32>& value, uint8* target) {
  return WritePrimitiveNoTagToArray(value, WriteSInt32NoTagToArray, target);
}
inline uint8* WireFormatLite::WriteSInt64NoTagToArray(
    const RepeatedField<int64>& value, uint8* target) {
  return WritePrimitiveNoTagToArray(value, WriteSInt64NoTagToArray, target);
}
inline uint8* WireFormatLite::WriteFixed32NoTagToArray(
    const RepeatedField<uint32>& value, uint8* target) {
  return WriteFixedNoTagToArray(value, WriteFixed32NoTagToArray, target);
}
inline uint8* WireFormatLite::WriteFixed64NoTagToArray(
    const RepeatedField<uint64>& value, uint8* target) {
  return WriteFixedNoTagToArray(value, WriteFixed64NoTagToArray, target);
}
inline uint8* WireFormatLite::WriteSFixed32NoTagToArray(
    const RepeatedField<int32>& value, uint8* target) {
  return WriteFixedNoTagToArray(value, WriteSFixed32NoTagToArray, target);
}
inline uint8* WireFormatLite::WriteSFixed64NoTagToArray(
    const RepeatedField<int64>& value, uint8* target) {
  return WriteFixedNoTagToArray(value, WriteSFixed64NoTagToArray, target);
}
inline uint8* WireFormatLite::WriteFloatNoTagToArray(
    const RepeatedField<float>& value, uint8* target) {
  return WriteFixedNoTagToArray(value, WriteFloatNoTagToArray, target);
}
inline uint8* WireFormatLite::WriteDoubleNoTagToArray(
    const RepeatedField<double>& value, uint8* target) {
  return WriteFixedNoTagToArray(value, WriteDoubleNoTagToArray, target);
}
inline uint8* WireFormatLite::WriteBoolNoTagToArray(
    const RepeatedField<bool>& value, uint8* target) {
  return WritePrimitiveNoTagToArray(value, WriteBoolNoTagToArray, target);
}
inline uint8* WireFormatLite::WriteEnumNoTagToArray(
    const RepeatedField<int>& value, uint8* target) {
  return WritePrimitiveNoTagToArray(value, WriteEnumNoTagToArray, target);
}

inline uint8* WireFormatLite::WriteInt32ToArray(int field_number, int32 value,
                                                uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
  return WriteInt32NoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteInt64ToArray(int field_number, int64 value,
                                                uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
  return WriteInt64NoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteUInt32ToArray(int field_number, uint32 value,
                                                 uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
  return WriteUInt32NoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteUInt64ToArray(int field_number, uint64 value,
                                                 uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
  return WriteUInt64NoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteSInt32ToArray(int field_number, int32 value,
                                                 uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
  return WriteSInt32NoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteSInt64ToArray(int field_number, int64 value,
                                                 uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
  return WriteSInt64NoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteFixed32ToArray(int field_number,
                                                  uint32 value, uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target);
  return WriteFixed32NoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteFixed64ToArray(int field_number,
                                                  uint64 value, uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target);
  return WriteFixed64NoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteSFixed32ToArray(int field_number,
                                                   int32 value, uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target);
  return WriteSFixed32NoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteSFixed64ToArray(int field_number,
                                                   int64 value, uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target);
  return WriteSFixed64NoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteFloatToArray(int field_number, float value,
                                                uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target);
  return WriteFloatNoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteDoubleToArray(int field_number, double value,
                                                 uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target);
  return WriteDoubleNoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteBoolToArray(int field_number, bool value,
                                               uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
  return WriteBoolNoTagToArray(value, target);
}
inline uint8* WireFormatLite::WriteEnumToArray(int field_number, int value,
                                               uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
  return WriteEnumNoTagToArray(value, target);
}

template <typename T>
inline uint8* WireFormatLite::WritePrimitiveToArray(
    int field_number, const RepeatedField<T>& value,
    uint8* (*Writer)(int, T, uint8*), uint8* target) {
  const int n = value.size();
  if (n == 0) {
    return target;
  }

  const T* ii = value.data();
  int i = 0;
  do {
    target = Writer(field_number, ii[i], target);
  } while (++i < n);

  return target;
}

inline uint8* WireFormatLite::WriteInt32ToArray(
    int field_number, const RepeatedField<int32>& value, uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteInt32ToArray, target);
}
inline uint8* WireFormatLite::WriteInt64ToArray(
    int field_number, const RepeatedField<int64>& value, uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteInt64ToArray, target);
}
inline uint8* WireFormatLite::WriteUInt32ToArray(
    int field_number, const RepeatedField<uint32>& value, uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteUInt32ToArray, target);
}
inline uint8* WireFormatLite::WriteUInt64ToArray(
    int field_number, const RepeatedField<uint64>& value, uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteUInt64ToArray, target);
}
inline uint8* WireFormatLite::WriteSInt32ToArray(
    int field_number, const RepeatedField<int32>& value, uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteSInt32ToArray, target);
}
inline uint8* WireFormatLite::WriteSInt64ToArray(
    int field_number, const RepeatedField<int64>& value, uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteSInt64ToArray, target);
}
inline uint8* WireFormatLite::WriteFixed32ToArray(
    int field_number, const RepeatedField<uint32>& value, uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteFixed32ToArray,
                               target);
}
inline uint8* WireFormatLite::WriteFixed64ToArray(
    int field_number, const RepeatedField<uint64>& value, uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteFixed64ToArray,
                               target);
}
inline uint8* WireFormatLite::WriteSFixed32ToArray(
    int field_number, const RepeatedField<int32>& value, uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteSFixed32ToArray,
                               target);
}
inline uint8* WireFormatLite::WriteSFixed64ToArray(
    int field_number, const RepeatedField<int64>& value, uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteSFixed64ToArray,
                               target);
}
inline uint8* WireFormatLite::WriteFloatToArray(
    int field_number, const RepeatedField<float>& value, uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteFloatToArray, target);
}
inline uint8* WireFormatLite::WriteDoubleToArray(
    int field_number, const RepeatedField<double>& value, uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteDoubleToArray, target);
}
inline uint8* WireFormatLite::WriteBoolToArray(int field_number,
                                               const RepeatedField<bool>& value,
                                               uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteBoolToArray, target);
}
inline uint8* WireFormatLite::WriteEnumToArray(int field_number,
                                               const RepeatedField<int>& value,
                                               uint8* target) {
  return WritePrimitiveToArray(field_number, value, WriteEnumToArray, target);
}
inline uint8* WireFormatLite::WriteStringToArray(int field_number,
                                                 const std::string& value,
                                                 uint8* target) {
  // String is for UTF-8 text only
  // WARNING:  In wire_format.cc, both strings and bytes are handled by
  //   WriteString() to avoid code duplication.  If the implementations become
  //   different, you will need to update that usage.
  target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
  return io::CodedOutputStream::WriteStringWithSizeToArray(value, target);
}
inline uint8* WireFormatLite::WriteBytesToArray(int field_number,
                                                const std::string& value,
                                                uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
  return io::CodedOutputStream::WriteStringWithSizeToArray(value, target);
}


template <typename MessageType>
inline uint8* WireFormatLite::InternalWriteGroup(
    int field_number, const MessageType& value, uint8* target,
    io::EpsCopyOutputStream* stream) {
  target = WriteTagToArray(field_number, WIRETYPE_START_GROUP, target);
  target = value._InternalSerialize(target, stream);
  target = stream->EnsureSpace(target);
  return WriteTagToArray(field_number, WIRETYPE_END_GROUP, target);
}
template <typename MessageType>
inline uint8* WireFormatLite::InternalWriteMessage(
    int field_number, const MessageType& value, uint8* target,
    io::EpsCopyOutputStream* stream) {
  target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
  target = io::CodedOutputStream::WriteVarint32ToArray(
      static_cast<uint32>(value.GetCachedSize()), target);
  return value._InternalSerialize(target, stream);
}

// See comment on ReadGroupNoVirtual to understand the need for this template
// parameter name.
template <typename MessageType_WorkAroundCppLookupDefect>
inline uint8* WireFormatLite::InternalWriteGroupNoVirtualToArray(
    int field_number, const MessageType_WorkAroundCppLookupDefect& value,
    uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_START_GROUP, target);
  target = value.MessageType_WorkAroundCppLookupDefect::
               SerializeWithCachedSizesToArray(target);
  return WriteTagToArray(field_number, WIRETYPE_END_GROUP, target);
}
template <typename MessageType_WorkAroundCppLookupDefect>
inline uint8* WireFormatLite::InternalWriteMessageNoVirtualToArray(
    int field_number, const MessageType_WorkAroundCppLookupDefect& value,
    uint8* target) {
  target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
  target = io::CodedOutputStream::WriteVarint32ToArray(
      static_cast<uint32>(
          value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()),
      target);
  return value
      .MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizesToArray(
          target);
}

// ===================================================================

inline size_t WireFormatLite::Int32Size(int32 value) {
  return io::CodedOutputStream::VarintSize32SignExtended(value);
}
inline size_t WireFormatLite::Int64Size(int64 value) {
  return io::CodedOutputStream::VarintSize64(static_cast<uint64>(value));
}
inline size_t WireFormatLite::UInt32Size(uint32 value) {
  return io::CodedOutputStream::VarintSize32(value);
}
inline size_t WireFormatLite::UInt64Size(uint64 value) {
  return io::CodedOutputStream::VarintSize64(value);
}
inline size_t WireFormatLite::SInt32Size(int32 value) {
  return io::CodedOutputStream::VarintSize32(ZigZagEncode32(value));
}
inline size_t WireFormatLite::SInt64Size(int64 value) {
  return io::CodedOutputStream::VarintSize64(ZigZagEncode64(value));
}
inline size_t WireFormatLite::EnumSize(int value) {
  return io::CodedOutputStream::VarintSize32SignExtended(value);
}

inline size_t WireFormatLite::StringSize(const std::string& value) {
  return LengthDelimitedSize(value.size());
}
inline size_t WireFormatLite::BytesSize(const std::string& value) {
  return LengthDelimitedSize(value.size());
}


template <typename MessageType>
inline size_t WireFormatLite::GroupSize(const MessageType& value) {
  return value.ByteSizeLong();
}
template <typename MessageType>
inline size_t WireFormatLite::MessageSize(const MessageType& value) {
  return LengthDelimitedSize(value.ByteSizeLong());
}

// See comment on ReadGroupNoVirtual to understand the need for this template
// parameter name.
template <typename MessageType_WorkAroundCppLookupDefect>
inline size_t WireFormatLite::GroupSizeNoVirtual(
    const MessageType_WorkAroundCppLookupDefect& value) {
  return value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong();
}
template <typename MessageType_WorkAroundCppLookupDefect>
inline size_t WireFormatLite::MessageSizeNoVirtual(
    const MessageType_WorkAroundCppLookupDefect& value) {
  return LengthDelimitedSize(
      value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong());
}

inline size_t WireFormatLite::LengthDelimitedSize(size_t length) {
  // The static_cast here prevents an error in certain compiler configurations
  // but is not technically correct--if length is too large to fit in a uint32
  // then it will be silently truncated. We will need to fix this if we ever
  // decide to start supporting serialized messages greater than 2 GiB in size.
  return length +
         io::CodedOutputStream::VarintSize32(static_cast<uint32>(length));
}

template <typename MS>
bool ParseMessageSetItemImpl(io::CodedInputStream* input, MS ms) {
  // This method parses a group which should contain two fields:
  //   required int32 type_id = 2;
  //   required data message = 3;

  uint32 last_type_id = 0;

  // If we see message data before the type_id, we'll append it to this so
  // we can parse it later.
  std::string message_data;

  while (true) {
    const uint32 tag = input->ReadTagNoLastTag();
    if (tag == 0) return false;

    switch (tag) {
      case WireFormatLite::kMessageSetTypeIdTag: {
        uint32 type_id;
        if (!input->ReadVarint32(&type_id)) return false;
        last_type_id = type_id;

        if (!message_data.empty()) {
          // We saw some message data before the type_id.  Have to parse it
          // now.
          io::CodedInputStream sub_input(
              reinterpret_cast<const uint8*>(message_data.data()),
              static_cast<int>(message_data.size()));
          sub_input.SetRecursionLimit(input->RecursionBudget());
          if (!ms.ParseField(last_type_id, &sub_input)) {
            return false;
          }
          message_data.clear();
        }

        break;
      }

      case WireFormatLite::kMessageSetMessageTag: {
        if (last_type_id == 0) {
          // We haven't seen a type_id yet.  Append this data to message_data.
          uint32 length;
          if (!input->ReadVarint32(&length)) return false;
          if (static_cast<int32>(length) < 0) return false;
          uint32 size = static_cast<uint32>(
              length + io::CodedOutputStream::VarintSize32(length));
          message_data.resize(size);
          auto ptr = reinterpret_cast<uint8*>(&message_data[0]);
          ptr = io::CodedOutputStream::WriteVarint32ToArray(length, ptr);
          if (!input->ReadRaw(ptr, length)) return false;
        } else {
          // Already saw type_id, so we can parse this directly.
          if (!ms.ParseField(last_type_id, input)) {
            return false;
          }
        }

        break;
      }

      case WireFormatLite::kMessageSetItemEndTag: {
        return true;
      }

      default: {
        if (!ms.SkipField(tag, input)) return false;
      }
    }
  }
}

}  // namespace internal
}  // namespace protobuf
}  // namespace google

#include <google/protobuf/port_undef.inc>

#endif  // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__