// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // atenasio@google.com (Chris Atenasio) (ZigZag transform) // wink@google.com (Wink Saville) (refactored from wire_format.h) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // This header is logically internal, but is made public because it is used // from protocol-compiler-generated code, which may reside in other components. #ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ #define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ #include #include #include #include #include #include #include #include #include // Do UTF-8 validation on string type in Debug build only #ifndef NDEBUG #define GOOGLE_PROTOBUF_UTF8_VALIDATION_ENABLED #endif // Avoid conflict with iOS where #defines TYPE_BOOL. // // If some one needs the macro TYPE_BOOL in a file that includes this header, // it's possible to bring it back using push/pop_macro as follows. // // #pragma push_macro("TYPE_BOOL") // #include this header and/or all headers that need the macro to be undefined. // #pragma pop_macro("TYPE_BOOL") #undef TYPE_BOOL namespace google { namespace protobuf { namespace internal { #include // This class is for internal use by the protocol buffer library and by // protocol-compiler-generated message classes. It must not be called // directly by clients. // // This class contains helpers for implementing the binary protocol buffer // wire format without the need for reflection. Use WireFormat when using // reflection. // // This class is really a namespace that contains only static methods. class PROTOBUF_EXPORT WireFormatLite { public: // ----------------------------------------------------------------- // Helper constants and functions related to the format. These are // mostly meant for internal and generated code to use. // The wire format is composed of a sequence of tag/value pairs, each // of which contains the value of one field (or one element of a repeated // field). Each tag is encoded as a varint. The lower bits of the tag // identify its wire type, which specifies the format of the data to follow. // The rest of the bits contain the field number. Each type of field (as // declared by FieldDescriptor::Type, in descriptor.h) maps to one of // these wire types. Immediately following each tag is the field's value, // encoded in the format specified by the wire type. Because the tag // identifies the encoding of this data, it is possible to skip // unrecognized fields for forwards compatibility. enum WireType { WIRETYPE_VARINT = 0, WIRETYPE_FIXED64 = 1, WIRETYPE_LENGTH_DELIMITED = 2, WIRETYPE_START_GROUP = 3, WIRETYPE_END_GROUP = 4, WIRETYPE_FIXED32 = 5, }; // Lite alternative to FieldDescriptor::Type. Must be kept in sync. enum FieldType { TYPE_DOUBLE = 1, TYPE_FLOAT = 2, TYPE_INT64 = 3, TYPE_UINT64 = 4, TYPE_INT32 = 5, TYPE_FIXED64 = 6, TYPE_FIXED32 = 7, TYPE_BOOL = 8, TYPE_STRING = 9, TYPE_GROUP = 10, TYPE_MESSAGE = 11, TYPE_BYTES = 12, TYPE_UINT32 = 13, TYPE_ENUM = 14, TYPE_SFIXED32 = 15, TYPE_SFIXED64 = 16, TYPE_SINT32 = 17, TYPE_SINT64 = 18, MAX_FIELD_TYPE = 18, }; // Lite alternative to FieldDescriptor::CppType. Must be kept in sync. enum CppType { CPPTYPE_INT32 = 1, CPPTYPE_INT64 = 2, CPPTYPE_UINT32 = 3, CPPTYPE_UINT64 = 4, CPPTYPE_DOUBLE = 5, CPPTYPE_FLOAT = 6, CPPTYPE_BOOL = 7, CPPTYPE_ENUM = 8, CPPTYPE_STRING = 9, CPPTYPE_MESSAGE = 10, MAX_CPPTYPE = 10, }; // Helper method to get the CppType for a particular Type. static CppType FieldTypeToCppType(FieldType type); // Given a FieldDescriptor::Type return its WireType static inline WireFormatLite::WireType WireTypeForFieldType( WireFormatLite::FieldType type) { return kWireTypeForFieldType[type]; } // Number of bits in a tag which identify the wire type. static constexpr int kTagTypeBits = 3; // Mask for those bits. static constexpr uint32 kTagTypeMask = (1 << kTagTypeBits) - 1; // Helper functions for encoding and decoding tags. (Inlined below and in // _inl.h) // // This is different from MakeTag(field->number(), field->type()) in the // case of packed repeated fields. constexpr static uint32 MakeTag(int field_number, WireType type); static WireType GetTagWireType(uint32 tag); static int GetTagFieldNumber(uint32 tag); // Compute the byte size of a tag. For groups, this includes both the start // and end tags. static inline size_t TagSize(int field_number, WireFormatLite::FieldType type); // Skips a field value with the given tag. The input should start // positioned immediately after the tag. Skipped values are simply // discarded, not recorded anywhere. See WireFormat::SkipField() for a // version that records to an UnknownFieldSet. static bool SkipField(io::CodedInputStream* input, uint32 tag); // Skips a field value with the given tag. The input should start // positioned immediately after the tag. Skipped values are recorded to a // CodedOutputStream. static bool SkipField(io::CodedInputStream* input, uint32 tag, io::CodedOutputStream* output); // Reads and ignores a message from the input. Skipped values are simply // discarded, not recorded anywhere. See WireFormat::SkipMessage() for a // version that records to an UnknownFieldSet. static bool SkipMessage(io::CodedInputStream* input); // Reads and ignores a message from the input. Skipped values are recorded // to a CodedOutputStream. static bool SkipMessage(io::CodedInputStream* input, io::CodedOutputStream* output); // This macro does the same thing as WireFormatLite::MakeTag(), but the // result is usable as a compile-time constant, which makes it usable // as a switch case or a template input. WireFormatLite::MakeTag() is more // type-safe, though, so prefer it if possible. #define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE) \ static_cast((static_cast(FIELD_NUMBER) << 3) | (TYPE)) // These are the tags for the old MessageSet format, which was defined as: // message MessageSet { // repeated group Item = 1 { // required int32 type_id = 2; // required string message = 3; // } // } static constexpr int kMessageSetItemNumber = 1; static constexpr int kMessageSetTypeIdNumber = 2; static constexpr int kMessageSetMessageNumber = 3; static const int kMessageSetItemStartTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( kMessageSetItemNumber, WireFormatLite::WIRETYPE_START_GROUP); static const int kMessageSetItemEndTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( kMessageSetItemNumber, WireFormatLite::WIRETYPE_END_GROUP); static const int kMessageSetTypeIdTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( kMessageSetTypeIdNumber, WireFormatLite::WIRETYPE_VARINT); static const int kMessageSetMessageTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( kMessageSetMessageNumber, WireFormatLite::WIRETYPE_LENGTH_DELIMITED); // Byte size of all tags of a MessageSet::Item combined. static const size_t kMessageSetItemTagsSize; // Helper functions for converting between floats/doubles and IEEE-754 // uint32s/uint64s so that they can be written. (Assumes your platform // uses IEEE-754 floats.) static uint32 EncodeFloat(float value); static float DecodeFloat(uint32 value); static uint64 EncodeDouble(double value); static double DecodeDouble(uint64 value); // Helper functions for mapping signed integers to unsigned integers in // such a way that numbers with small magnitudes will encode to smaller // varints. If you simply static_cast a negative number to an unsigned // number and varint-encode it, it will always take 10 bytes, defeating // the purpose of varint. So, for the "sint32" and "sint64" field types, // we ZigZag-encode the values. static uint32 ZigZagEncode32(int32 n); static int32 ZigZagDecode32(uint32 n); static uint64 ZigZagEncode64(int64 n); static int64 ZigZagDecode64(uint64 n); // ================================================================= // Methods for reading/writing individual field. // Read fields, not including tags. The assumption is that you already // read the tag to determine what field to read. // For primitive fields, we just use a templatized routine parameterized by // the represented type and the FieldType. These are specialized with the // appropriate definition for each declared type. template PROTOBUF_ALWAYS_INLINE static bool ReadPrimitive(io::CodedInputStream* input, CType* value); // Reads repeated primitive values, with optimizations for repeats. // tag_size and tag should both be compile-time constants provided by the // protocol compiler. template PROTOBUF_ALWAYS_INLINE static bool ReadRepeatedPrimitive( int tag_size, uint32 tag, io::CodedInputStream* input, RepeatedField* value); // Identical to ReadRepeatedPrimitive, except will not inline the // implementation. template static bool ReadRepeatedPrimitiveNoInline(int tag_size, uint32 tag, io::CodedInputStream* input, RepeatedField* value); // Reads a primitive value directly from the provided buffer. It returns a // pointer past the segment of data that was read. // // This is only implemented for the types with fixed wire size, e.g. // float, double, and the (s)fixed* types. template PROTOBUF_ALWAYS_INLINE static const uint8* ReadPrimitiveFromArray( const uint8* buffer, CType* value); // Reads a primitive packed field. // // This is only implemented for packable types. template PROTOBUF_ALWAYS_INLINE static bool ReadPackedPrimitive( io::CodedInputStream* input, RepeatedField* value); // Identical to ReadPackedPrimitive, except will not inline the // implementation. template static bool ReadPackedPrimitiveNoInline(io::CodedInputStream* input, RepeatedField* value); // Read a packed enum field. If the is_valid function is not NULL, values for // which is_valid(value) returns false are silently dropped. static bool ReadPackedEnumNoInline(io::CodedInputStream* input, bool (*is_valid)(int), RepeatedField* values); // Read a packed enum field. If the is_valid function is not NULL, values for // which is_valid(value) returns false are appended to unknown_fields_stream. static bool ReadPackedEnumPreserveUnknowns( io::CodedInputStream* input, int field_number, bool (*is_valid)(int), io::CodedOutputStream* unknown_fields_stream, RepeatedField* values); // Read a string. ReadString(..., std::string* value) requires an // existing std::string. static inline bool ReadString(io::CodedInputStream* input, std::string* value); // ReadString(..., std::string** p) is internal-only, and should only be // called from generated code. It starts by setting *p to "new std::string" if // *p == &GetEmptyStringAlreadyInited(). It then invokes // ReadString(io::CodedInputStream* input, *p). This is useful for reducing // code size. static inline bool ReadString(io::CodedInputStream* input, std::string** p); // Analogous to ReadString(). static bool ReadBytes(io::CodedInputStream* input, std::string* value); static bool ReadBytes(io::CodedInputStream* input, std::string** p); enum Operation { PARSE = 0, SERIALIZE = 1, }; // Returns true if the data is valid UTF-8. static bool VerifyUtf8String(const char* data, int size, Operation op, const char* field_name); template static inline bool ReadGroup(int field_number, io::CodedInputStream* input, MessageType* value); template static inline bool ReadMessage(io::CodedInputStream* input, MessageType* value); template static inline bool ReadMessageNoVirtual(io::CodedInputStream* input, MessageType* value) { return ReadMessage(input, value); } // Write a tag. The Write*() functions typically include the tag, so // normally there's no need to call this unless using the Write*NoTag() // variants. PROTOBUF_ALWAYS_INLINE static void WriteTag(int field_number, WireType type, io::CodedOutputStream* output); // Write fields, without tags. PROTOBUF_ALWAYS_INLINE static void WriteInt32NoTag( int32 value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteInt64NoTag( int64 value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteUInt32NoTag( uint32 value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteUInt64NoTag( uint64 value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteSInt32NoTag( int32 value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteSInt64NoTag( int64 value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteFixed32NoTag( uint32 value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteFixed64NoTag( uint64 value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteSFixed32NoTag( int32 value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteSFixed64NoTag( int64 value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteFloatNoTag( float value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteDoubleNoTag( double value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteBoolNoTag( bool value, io::CodedOutputStream* output); PROTOBUF_ALWAYS_INLINE static void WriteEnumNoTag( int value, io::CodedOutputStream* output); // Write array of primitive fields, without tags static void WriteFloatArray(const float* a, int n, io::CodedOutputStream* output); static void WriteDoubleArray(const double* a, int n, io::CodedOutputStream* output); static void WriteFixed32Array(const uint32* a, int n, io::CodedOutputStream* output); static void WriteFixed64Array(const uint64* a, int n, io::CodedOutputStream* output); static void WriteSFixed32Array(const int32* a, int n, io::CodedOutputStream* output); static void WriteSFixed64Array(const int64* a, int n, io::CodedOutputStream* output); static void WriteBoolArray(const bool* a, int n, io::CodedOutputStream* output); // Write fields, including tags. static void WriteInt32(int field_number, int32 value, io::CodedOutputStream* output); static void WriteInt64(int field_number, int64 value, io::CodedOutputStream* output); static void WriteUInt32(int field_number, uint32 value, io::CodedOutputStream* output); static void WriteUInt64(int field_number, uint64 value, io::CodedOutputStream* output); static void WriteSInt32(int field_number, int32 value, io::CodedOutputStream* output); static void WriteSInt64(int field_number, int64 value, io::CodedOutputStream* output); static void WriteFixed32(int field_number, uint32 value, io::CodedOutputStream* output); static void WriteFixed64(int field_number, uint64 value, io::CodedOutputStream* output); static void WriteSFixed32(int field_number, int32 value, io::CodedOutputStream* output); static void WriteSFixed64(int field_number, int64 value, io::CodedOutputStream* output); static void WriteFloat(int field_number, float value, io::CodedOutputStream* output); static void WriteDouble(int field_number, double value, io::CodedOutputStream* output); static void WriteBool(int field_number, bool value, io::CodedOutputStream* output); static void WriteEnum(int field_number, int value, io::CodedOutputStream* output); static void WriteString(int field_number, const std::string& value, io::CodedOutputStream* output); static void WriteBytes(int field_number, const std::string& value, io::CodedOutputStream* output); static void WriteStringMaybeAliased(int field_number, const std::string& value, io::CodedOutputStream* output); static void WriteBytesMaybeAliased(int field_number, const std::string& value, io::CodedOutputStream* output); static void WriteGroup(int field_number, const MessageLite& value, io::CodedOutputStream* output); static void WriteMessage(int field_number, const MessageLite& value, io::CodedOutputStream* output); // Like above, but these will check if the output stream has enough // space to write directly to a flat array. static void WriteGroupMaybeToArray(int field_number, const MessageLite& value, io::CodedOutputStream* output); static void WriteMessageMaybeToArray(int field_number, const MessageLite& value, io::CodedOutputStream* output); // Like above, but de-virtualize the call to SerializeWithCachedSizes(). The // pointer must point at an instance of MessageType, *not* a subclass (or // the subclass must not override SerializeWithCachedSizes()). template static inline void WriteGroupNoVirtual(int field_number, const MessageType& value, io::CodedOutputStream* output); template static inline void WriteMessageNoVirtual(int field_number, const MessageType& value, io::CodedOutputStream* output); // Like above, but use only *ToArray methods of CodedOutputStream. PROTOBUF_ALWAYS_INLINE static uint8* WriteTagToArray(int field_number, WireType type, uint8* target); // Write fields, without tags. PROTOBUF_ALWAYS_INLINE static uint8* WriteInt32NoTagToArray(int32 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteInt64NoTagToArray(int64 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt32NoTagToArray(uint32 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt64NoTagToArray(uint64 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt32NoTagToArray(int32 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt64NoTagToArray(int64 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed32NoTagToArray(uint32 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed64NoTagToArray(uint64 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed32NoTagToArray(int32 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed64NoTagToArray(int64 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteFloatNoTagToArray(float value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteDoubleNoTagToArray(double value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteBoolNoTagToArray(bool value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteEnumNoTagToArray(int value, uint8* target); // Write fields, without tags. These require that value.size() > 0. template PROTOBUF_ALWAYS_INLINE static uint8* WritePrimitiveNoTagToArray( const RepeatedField& value, uint8* (*Writer)(T, uint8*), uint8* target); template PROTOBUF_ALWAYS_INLINE static uint8* WriteFixedNoTagToArray( const RepeatedField& value, uint8* (*Writer)(T, uint8*), uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteInt32NoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteInt64NoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt32NoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt64NoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt32NoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt64NoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed32NoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed64NoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed32NoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed64NoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteFloatNoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteDoubleNoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteBoolNoTagToArray( const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteEnumNoTagToArray( const RepeatedField& value, uint8* output); // Write fields, including tags. PROTOBUF_ALWAYS_INLINE static uint8* WriteInt32ToArray(int field_number, int32 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteInt64ToArray(int field_number, int64 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt32ToArray(int field_number, uint32 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt64ToArray(int field_number, uint64 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt32ToArray(int field_number, int32 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt64ToArray(int field_number, int64 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed32ToArray(int field_number, uint32 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed64ToArray(int field_number, uint64 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed32ToArray(int field_number, int32 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed64ToArray(int field_number, int64 value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteFloatToArray(int field_number, float value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteDoubleToArray(int field_number, double value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteBoolToArray(int field_number, bool value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteEnumToArray(int field_number, int value, uint8* target); template PROTOBUF_ALWAYS_INLINE static uint8* WritePrimitiveToArray( int field_number, const RepeatedField& value, uint8* (*Writer)(int, T, uint8*), uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteInt32ToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteInt64ToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt32ToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt64ToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt32ToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt64ToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed32ToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed64ToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed32ToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed64ToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteFloatToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteDoubleToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteBoolToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteEnumToArray( int field_number, const RepeatedField& value, uint8* output); PROTOBUF_ALWAYS_INLINE static uint8* WriteStringToArray( int field_number, const std::string& value, uint8* target); PROTOBUF_ALWAYS_INLINE static uint8* WriteBytesToArray( int field_number, const std::string& value, uint8* target); // Whether to serialize deterministically (e.g., map keys are // sorted) is a property of a CodedOutputStream, and in the process // of serialization, the "ToArray" variants may be invoked. But they don't // have a CodedOutputStream available, so they get an additional parameter // telling them whether to serialize deterministically. template PROTOBUF_ALWAYS_INLINE static uint8* InternalWriteGroup( int field_number, const MessageType& value, uint8* target, io::EpsCopyOutputStream* stream); template PROTOBUF_ALWAYS_INLINE static uint8* InternalWriteMessage( int field_number, const MessageType& value, uint8* target, io::EpsCopyOutputStream* stream); // Like above, but de-virtualize the call to SerializeWithCachedSizes(). The // pointer must point at an instance of MessageType, *not* a subclass (or // the subclass must not override SerializeWithCachedSizes()). template PROTOBUF_ALWAYS_INLINE static uint8* InternalWriteGroupNoVirtualToArray( int field_number, const MessageType& value, uint8* target); template PROTOBUF_ALWAYS_INLINE static uint8* InternalWriteMessageNoVirtualToArray( int field_number, const MessageType& value, uint8* target); // For backward-compatibility, the last four methods also have versions // that are non-deterministic always. PROTOBUF_ALWAYS_INLINE static uint8* WriteGroupToArray( int field_number, const MessageLite& value, uint8* target) { io::EpsCopyOutputStream stream( target, value.GetCachedSize() + static_cast(2 * io::CodedOutputStream::VarintSize32( static_cast(field_number) << 3)), io::CodedOutputStream::IsDefaultSerializationDeterministic()); return InternalWriteGroup(field_number, value, target, &stream); } PROTOBUF_ALWAYS_INLINE static uint8* WriteMessageToArray( int field_number, const MessageLite& value, uint8* target) { int size = value.GetCachedSize(); io::EpsCopyOutputStream stream( target, size + static_cast(io::CodedOutputStream::VarintSize32( static_cast(field_number) << 3) + io::CodedOutputStream::VarintSize32(size)), io::CodedOutputStream::IsDefaultSerializationDeterministic()); return InternalWriteMessage(field_number, value, target, &stream); } // Compute the byte size of a field. The XxSize() functions do NOT include // the tag, so you must also call TagSize(). (This is because, for repeated // fields, you should only call TagSize() once and multiply it by the element // count, but you may have to call XxSize() for each individual element.) static inline size_t Int32Size(int32 value); static inline size_t Int64Size(int64 value); static inline size_t UInt32Size(uint32 value); static inline size_t UInt64Size(uint64 value); static inline size_t SInt32Size(int32 value); static inline size_t SInt64Size(int64 value); static inline size_t EnumSize(int value); static size_t Int32Size(const RepeatedField& value); static size_t Int64Size(const RepeatedField& value); static size_t UInt32Size(const RepeatedField& value); static size_t UInt64Size(const RepeatedField& value); static size_t SInt32Size(const RepeatedField& value); static size_t SInt64Size(const RepeatedField& value); static size_t EnumSize(const RepeatedField& value); // These types always have the same size. static constexpr size_t kFixed32Size = 4; static constexpr size_t kFixed64Size = 8; static constexpr size_t kSFixed32Size = 4; static constexpr size_t kSFixed64Size = 8; static constexpr size_t kFloatSize = 4; static constexpr size_t kDoubleSize = 8; static constexpr size_t kBoolSize = 1; static inline size_t StringSize(const std::string& value); static inline size_t BytesSize(const std::string& value); template static inline size_t GroupSize(const MessageType& value); template static inline size_t MessageSize(const MessageType& value); // Like above, but de-virtualize the call to ByteSize(). The // pointer must point at an instance of MessageType, *not* a subclass (or // the subclass must not override ByteSize()). template static inline size_t GroupSizeNoVirtual(const MessageType& value); template static inline size_t MessageSizeNoVirtual(const MessageType& value); // Given the length of data, calculate the byte size of the data on the // wire if we encode the data as a length delimited field. static inline size_t LengthDelimitedSize(size_t length); private: // A helper method for the repeated primitive reader. This method has // optimizations for primitive types that have fixed size on the wire, and // can be read using potentially faster paths. template PROTOBUF_ALWAYS_INLINE static bool ReadRepeatedFixedSizePrimitive( int tag_size, uint32 tag, io::CodedInputStream* input, RepeatedField* value); // Like ReadRepeatedFixedSizePrimitive but for packed primitive fields. template PROTOBUF_ALWAYS_INLINE static bool ReadPackedFixedSizePrimitive( io::CodedInputStream* input, RepeatedField* value); static const CppType kFieldTypeToCppTypeMap[]; static const WireFormatLite::WireType kWireTypeForFieldType[]; static void WriteSubMessageMaybeToArray(int size, const MessageLite& value, io::CodedOutputStream* output); GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite); }; // A class which deals with unknown values. The default implementation just // discards them. WireFormat defines a subclass which writes to an // UnknownFieldSet. This class is used by ExtensionSet::ParseField(), since // ExtensionSet is part of the lite library but UnknownFieldSet is not. class PROTOBUF_EXPORT FieldSkipper { public: FieldSkipper() {} virtual ~FieldSkipper() {} // Skip a field whose tag has already been consumed. virtual bool SkipField(io::CodedInputStream* input, uint32 tag); // Skip an entire message or group, up to an end-group tag (which is consumed) // or end-of-stream. virtual bool SkipMessage(io::CodedInputStream* input); // Deal with an already-parsed unrecognized enum value. The default // implementation does nothing, but the UnknownFieldSet-based implementation // saves it as an unknown varint. virtual void SkipUnknownEnum(int field_number, int value); }; // Subclass of FieldSkipper which saves skipped fields to a CodedOutputStream. class PROTOBUF_EXPORT CodedOutputStreamFieldSkipper : public FieldSkipper { public: explicit CodedOutputStreamFieldSkipper(io::CodedOutputStream* unknown_fields) : unknown_fields_(unknown_fields) {} ~CodedOutputStreamFieldSkipper() override {} // implements FieldSkipper ----------------------------------------- bool SkipField(io::CodedInputStream* input, uint32 tag) override; bool SkipMessage(io::CodedInputStream* input) override; void SkipUnknownEnum(int field_number, int value) override; protected: io::CodedOutputStream* unknown_fields_; }; // inline methods ==================================================== inline WireFormatLite::CppType WireFormatLite::FieldTypeToCppType( FieldType type) { return kFieldTypeToCppTypeMap[type]; } constexpr inline uint32 WireFormatLite::MakeTag(int field_number, WireType type) { return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type); } inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32 tag) { return static_cast(tag & kTagTypeMask); } inline int WireFormatLite::GetTagFieldNumber(uint32 tag) { return static_cast(tag >> kTagTypeBits); } inline size_t WireFormatLite::TagSize(int field_number, WireFormatLite::FieldType type) { size_t result = io::CodedOutputStream::VarintSize32( static_cast(field_number << kTagTypeBits)); if (type == TYPE_GROUP) { // Groups have both a start and an end tag. return result * 2; } else { return result; } } inline uint32 WireFormatLite::EncodeFloat(float value) { return bit_cast(value); } inline float WireFormatLite::DecodeFloat(uint32 value) { return bit_cast(value); } inline uint64 WireFormatLite::EncodeDouble(double value) { return bit_cast(value); } inline double WireFormatLite::DecodeDouble(uint64 value) { return bit_cast(value); } // ZigZag Transform: Encodes signed integers so that they can be // effectively used with varint encoding. // // varint operates on unsigned integers, encoding smaller numbers into // fewer bytes. If you try to use it on a signed integer, it will treat // this number as a very large unsigned integer, which means that even // small signed numbers like -1 will take the maximum number of bytes // (10) to encode. ZigZagEncode() maps signed integers to unsigned // in such a way that those with a small absolute value will have smaller // encoded values, making them appropriate for encoding using varint. // // int32 -> uint32 // ------------------------- // 0 -> 0 // -1 -> 1 // 1 -> 2 // -2 -> 3 // ... -> ... // 2147483647 -> 4294967294 // -2147483648 -> 4294967295 // // >> encode >> // << decode << inline uint32 WireFormatLite::ZigZagEncode32(int32 n) { // Note: the right-shift must be arithmetic // Note: left shift must be unsigned because of overflow return (static_cast(n) << 1) ^ static_cast(n >> 31); } inline int32 WireFormatLite::ZigZagDecode32(uint32 n) { // Note: Using unsigned types prevent undefined behavior return static_cast((n >> 1) ^ (~(n & 1) + 1)); } inline uint64 WireFormatLite::ZigZagEncode64(int64 n) { // Note: the right-shift must be arithmetic // Note: left shift must be unsigned because of overflow return (static_cast(n) << 1) ^ static_cast(n >> 63); } inline int64 WireFormatLite::ZigZagDecode64(uint64 n) { // Note: Using unsigned types prevent undefined behavior return static_cast((n >> 1) ^ (~(n & 1) + 1)); } // String is for UTF-8 text only, but, even so, ReadString() can simply // call ReadBytes(). inline bool WireFormatLite::ReadString(io::CodedInputStream* input, std::string* value) { return ReadBytes(input, value); } inline bool WireFormatLite::ReadString(io::CodedInputStream* input, std::string** p) { return ReadBytes(input, p); } inline uint8* InternalSerializeUnknownMessageSetItemsToArray( const std::string& unknown_fields, uint8* target, io::EpsCopyOutputStream* stream) { return stream->WriteRaw(unknown_fields.data(), static_cast(unknown_fields.size()), target); } inline size_t ComputeUnknownMessageSetItemsSize( const std::string& unknown_fields) { return unknown_fields.size(); } // Implementation details of ReadPrimitive. template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int32* value) { uint32 temp; if (!input->ReadVarint32(&temp)) return false; *value = static_cast(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int64* value) { uint64 temp; if (!input->ReadVarint64(&temp)) return false; *value = static_cast(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, uint32* value) { return input->ReadVarint32(value); } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, uint64* value) { return input->ReadVarint64(value); } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int32* value) { uint32 temp; if (!input->ReadVarint32(&temp)) return false; *value = ZigZagDecode32(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int64* value) { uint64 temp; if (!input->ReadVarint64(&temp)) return false; *value = ZigZagDecode64(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, uint32* value) { return input->ReadLittleEndian32(value); } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, uint64* value) { return input->ReadLittleEndian64(value); } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int32* value) { uint32 temp; if (!input->ReadLittleEndian32(&temp)) return false; *value = static_cast(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int64* value) { uint64 temp; if (!input->ReadLittleEndian64(&temp)) return false; *value = static_cast(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, float* value) { uint32 temp; if (!input->ReadLittleEndian32(&temp)) return false; *value = DecodeFloat(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, double* value) { uint64 temp; if (!input->ReadLittleEndian64(&temp)) return false; *value = DecodeDouble(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, bool* value) { uint64 temp; if (!input->ReadVarint64(&temp)) return false; *value = temp != 0; return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int* value) { uint32 temp; if (!input->ReadVarint32(&temp)) return false; *value = static_cast(temp); return true; } template <> inline const uint8* WireFormatLite::ReadPrimitiveFromArray( const uint8* buffer, uint32* value) { return io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value); } template <> inline const uint8* WireFormatLite::ReadPrimitiveFromArray( const uint8* buffer, uint64* value) { return io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value); } template <> inline const uint8* WireFormatLite::ReadPrimitiveFromArray( const uint8* buffer, int32* value) { uint32 temp; buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, &temp); *value = static_cast(temp); return buffer; } template <> inline const uint8* WireFormatLite::ReadPrimitiveFromArray( const uint8* buffer, int64* value) { uint64 temp; buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, &temp); *value = static_cast(temp); return buffer; } template <> inline const uint8* WireFormatLite::ReadPrimitiveFromArray( const uint8* buffer, float* value) { uint32 temp; buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, &temp); *value = DecodeFloat(temp); return buffer; } template <> inline const uint8* WireFormatLite::ReadPrimitiveFromArray( const uint8* buffer, double* value) { uint64 temp; buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, &temp); *value = DecodeDouble(temp); return buffer; } template inline bool WireFormatLite::ReadRepeatedPrimitive( int, // tag_size, unused. uint32 tag, io::CodedInputStream* input, RepeatedField* values) { CType value; if (!ReadPrimitive(input, &value)) return false; values->Add(value); int elements_already_reserved = values->Capacity() - values->size(); while (elements_already_reserved > 0 && input->ExpectTag(tag)) { if (!ReadPrimitive(input, &value)) return false; values->AddAlreadyReserved(value); elements_already_reserved--; } return true; } template inline bool WireFormatLite::ReadRepeatedFixedSizePrimitive( int tag_size, uint32 tag, io::CodedInputStream* input, RepeatedField* values) { GOOGLE_DCHECK_EQ(UInt32Size(tag), static_cast(tag_size)); CType value; if (!ReadPrimitive(input, &value)) return false; values->Add(value); // For fixed size values, repeated values can be read more quickly by // reading directly from a raw array. // // We can get a tight loop by only reading as many elements as can be // added to the RepeatedField without having to do any resizing. Additionally, // we only try to read as many elements as are available from the current // buffer space. Doing so avoids having to perform boundary checks when // reading the value: the maximum number of elements that can be read is // known outside of the loop. const void* void_pointer; int size; input->GetDirectBufferPointerInline(&void_pointer, &size); if (size > 0) { const uint8* buffer = reinterpret_cast(void_pointer); // The number of bytes each type occupies on the wire. const int per_value_size = tag_size + static_cast(sizeof(value)); // parentheses around (std::min) prevents macro expansion of min(...) int elements_available = (std::min)(values->Capacity() - values->size(), size / per_value_size); int num_read = 0; while (num_read < elements_available && (buffer = io::CodedInputStream::ExpectTagFromArray(buffer, tag)) != NULL) { buffer = ReadPrimitiveFromArray(buffer, &value); values->AddAlreadyReserved(value); ++num_read; } const int read_bytes = num_read * per_value_size; if (read_bytes > 0) { input->Skip(read_bytes); } } return true; } // Specializations of ReadRepeatedPrimitive for the fixed size types, which use // the optimized code path. #define READ_REPEATED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \ template <> \ inline bool WireFormatLite::ReadRepeatedPrimitive< \ CPPTYPE, WireFormatLite::DECLARED_TYPE>( \ int tag_size, uint32 tag, io::CodedInputStream* input, \ RepeatedField* values) { \ return ReadRepeatedFixedSizePrimitive( \ tag_size, tag, input, values); \ } READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint32, TYPE_FIXED32) READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint64, TYPE_FIXED64) READ_REPEATED_FIXED_SIZE_PRIMITIVE(int32, TYPE_SFIXED32) READ_REPEATED_FIXED_SIZE_PRIMITIVE(int64, TYPE_SFIXED64) READ_REPEATED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT) READ_REPEATED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE) #undef READ_REPEATED_FIXED_SIZE_PRIMITIVE template bool WireFormatLite::ReadRepeatedPrimitiveNoInline( int tag_size, uint32 tag, io::CodedInputStream* input, RepeatedField* value) { return ReadRepeatedPrimitive(tag_size, tag, input, value); } template inline bool WireFormatLite::ReadPackedPrimitive(io::CodedInputStream* input, RepeatedField* values) { int length; if (!input->ReadVarintSizeAsInt(&length)) return false; io::CodedInputStream::Limit limit = input->PushLimit(length); while (input->BytesUntilLimit() > 0) { CType value; if (!ReadPrimitive(input, &value)) return false; values->Add(value); } input->PopLimit(limit); return true; } template inline bool WireFormatLite::ReadPackedFixedSizePrimitive( io::CodedInputStream* input, RepeatedField* values) { int length; if (!input->ReadVarintSizeAsInt(&length)) return false; const int old_entries = values->size(); const int new_entries = length / static_cast(sizeof(CType)); const int new_bytes = new_entries * static_cast(sizeof(CType)); if (new_bytes != length) return false; // We would *like* to pre-allocate the buffer to write into (for // speed), but *must* avoid performing a very large allocation due // to a malicious user-supplied "length" above. So we have a fast // path that pre-allocates when the "length" is less than a bound. // We determine the bound by calling BytesUntilTotalBytesLimit() and // BytesUntilLimit(). These return -1 to mean "no limit set". // There are four cases: // TotalBytesLimit Limit // -1 -1 Use slow path. // -1 >= 0 Use fast path if length <= Limit. // >= 0 -1 Use slow path. // >= 0 >= 0 Use fast path if length <= min(both limits). int64 bytes_limit = input->BytesUntilTotalBytesLimit(); if (bytes_limit == -1) { bytes_limit = input->BytesUntilLimit(); } else { // parentheses around (std::min) prevents macro expansion of min(...) bytes_limit = (std::min)(bytes_limit, static_cast(input->BytesUntilLimit())); } if (bytes_limit >= new_bytes) { // Fast-path that pre-allocates *values to the final size. #if defined(PROTOBUF_LITTLE_ENDIAN) values->Resize(old_entries + new_entries, 0); // values->mutable_data() may change after Resize(), so do this after: void* dest = reinterpret_cast(values->mutable_data() + old_entries); if (!input->ReadRaw(dest, new_bytes)) { values->Truncate(old_entries); return false; } #else values->Reserve(old_entries + new_entries); CType value; for (int i = 0; i < new_entries; ++i) { if (!ReadPrimitive(input, &value)) return false; values->AddAlreadyReserved(value); } #endif } else { // This is the slow-path case where "length" may be too large to // safely allocate. We read as much as we can into *values // without pre-allocating "length" bytes. CType value; for (int i = 0; i < new_entries; ++i) { if (!ReadPrimitive(input, &value)) return false; values->Add(value); } } return true; } // Specializations of ReadPackedPrimitive for the fixed size types, which use // an optimized code path. #define READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \ template <> \ inline bool \ WireFormatLite::ReadPackedPrimitive( \ io::CodedInputStream * input, RepeatedField * values) { \ return ReadPackedFixedSizePrimitive( \ input, values); \ } READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint32, TYPE_FIXED32) READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint64, TYPE_FIXED64) READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int32, TYPE_SFIXED32) READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int64, TYPE_SFIXED64) READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT) READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE) #undef READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE template bool WireFormatLite::ReadPackedPrimitiveNoInline(io::CodedInputStream* input, RepeatedField* values) { return ReadPackedPrimitive(input, values); } template inline bool WireFormatLite::ReadGroup(int field_number, io::CodedInputStream* input, MessageType* value) { if (!input->IncrementRecursionDepth()) return false; if (!value->MergePartialFromCodedStream(input)) return false; input->UnsafeDecrementRecursionDepth(); // Make sure the last thing read was an end tag for this group. if (!input->LastTagWas(MakeTag(field_number, WIRETYPE_END_GROUP))) { return false; } return true; } template inline bool WireFormatLite::ReadMessage(io::CodedInputStream* input, MessageType* value) { int length; if (!input->ReadVarintSizeAsInt(&length)) return false; std::pair p = input->IncrementRecursionDepthAndPushLimit(length); if (p.second < 0 || !value->MergePartialFromCodedStream(input)) return false; // Make sure that parsing stopped when the limit was hit, not at an endgroup // tag. return input->DecrementRecursionDepthAndPopLimit(p.first); } // =================================================================== inline void WireFormatLite::WriteTag(int field_number, WireType type, io::CodedOutputStream* output) { output->WriteTag(MakeTag(field_number, type)); } inline void WireFormatLite::WriteInt32NoTag(int32 value, io::CodedOutputStream* output) { output->WriteVarint32SignExtended(value); } inline void WireFormatLite::WriteInt64NoTag(int64 value, io::CodedOutputStream* output) { output->WriteVarint64(static_cast(value)); } inline void WireFormatLite::WriteUInt32NoTag(uint32 value, io::CodedOutputStream* output) { output->WriteVarint32(value); } inline void WireFormatLite::WriteUInt64NoTag(uint64 value, io::CodedOutputStream* output) { output->WriteVarint64(value); } inline void WireFormatLite::WriteSInt32NoTag(int32 value, io::CodedOutputStream* output) { output->WriteVarint32(ZigZagEncode32(value)); } inline void WireFormatLite::WriteSInt64NoTag(int64 value, io::CodedOutputStream* output) { output->WriteVarint64(ZigZagEncode64(value)); } inline void WireFormatLite::WriteFixed32NoTag(uint32 value, io::CodedOutputStream* output) { output->WriteLittleEndian32(value); } inline void WireFormatLite::WriteFixed64NoTag(uint64 value, io::CodedOutputStream* output) { output->WriteLittleEndian64(value); } inline void WireFormatLite::WriteSFixed32NoTag(int32 value, io::CodedOutputStream* output) { output->WriteLittleEndian32(static_cast(value)); } inline void WireFormatLite::WriteSFixed64NoTag(int64 value, io::CodedOutputStream* output) { output->WriteLittleEndian64(static_cast(value)); } inline void WireFormatLite::WriteFloatNoTag(float value, io::CodedOutputStream* output) { output->WriteLittleEndian32(EncodeFloat(value)); } inline void WireFormatLite::WriteDoubleNoTag(double value, io::CodedOutputStream* output) { output->WriteLittleEndian64(EncodeDouble(value)); } inline void WireFormatLite::WriteBoolNoTag(bool value, io::CodedOutputStream* output) { output->WriteVarint32(value ? 1 : 0); } inline void WireFormatLite::WriteEnumNoTag(int value, io::CodedOutputStream* output) { output->WriteVarint32SignExtended(value); } // See comment on ReadGroupNoVirtual to understand the need for this template // parameter name. template inline void WireFormatLite::WriteGroupNoVirtual( int field_number, const MessageType_WorkAroundCppLookupDefect& value, io::CodedOutputStream* output) { WriteTag(field_number, WIRETYPE_START_GROUP, output); value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output); WriteTag(field_number, WIRETYPE_END_GROUP, output); } template inline void WireFormatLite::WriteMessageNoVirtual( int field_number, const MessageType_WorkAroundCppLookupDefect& value, io::CodedOutputStream* output) { WriteTag(field_number, WIRETYPE_LENGTH_DELIMITED, output); output->WriteVarint32( value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()); value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output); } // =================================================================== inline uint8* WireFormatLite::WriteTagToArray(int field_number, WireType type, uint8* target) { return io::CodedOutputStream::WriteTagToArray(MakeTag(field_number, type), target); } inline uint8* WireFormatLite::WriteInt32NoTagToArray(int32 value, uint8* target) { return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target); } inline uint8* WireFormatLite::WriteInt64NoTagToArray(int64 value, uint8* target) { return io::CodedOutputStream::WriteVarint64ToArray(static_cast(value), target); } inline uint8* WireFormatLite::WriteUInt32NoTagToArray(uint32 value, uint8* target) { return io::CodedOutputStream::WriteVarint32ToArray(value, target); } inline uint8* WireFormatLite::WriteUInt64NoTagToArray(uint64 value, uint8* target) { return io::CodedOutputStream::WriteVarint64ToArray(value, target); } inline uint8* WireFormatLite::WriteSInt32NoTagToArray(int32 value, uint8* target) { return io::CodedOutputStream::WriteVarint32ToArray(ZigZagEncode32(value), target); } inline uint8* WireFormatLite::WriteSInt64NoTagToArray(int64 value, uint8* target) { return io::CodedOutputStream::WriteVarint64ToArray(ZigZagEncode64(value), target); } inline uint8* WireFormatLite::WriteFixed32NoTagToArray(uint32 value, uint8* target) { return io::CodedOutputStream::WriteLittleEndian32ToArray(value, target); } inline uint8* WireFormatLite::WriteFixed64NoTagToArray(uint64 value, uint8* target) { return io::CodedOutputStream::WriteLittleEndian64ToArray(value, target); } inline uint8* WireFormatLite::WriteSFixed32NoTagToArray(int32 value, uint8* target) { return io::CodedOutputStream::WriteLittleEndian32ToArray( static_cast(value), target); } inline uint8* WireFormatLite::WriteSFixed64NoTagToArray(int64 value, uint8* target) { return io::CodedOutputStream::WriteLittleEndian64ToArray( static_cast(value), target); } inline uint8* WireFormatLite::WriteFloatNoTagToArray(float value, uint8* target) { return io::CodedOutputStream::WriteLittleEndian32ToArray(EncodeFloat(value), target); } inline uint8* WireFormatLite::WriteDoubleNoTagToArray(double value, uint8* target) { return io::CodedOutputStream::WriteLittleEndian64ToArray(EncodeDouble(value), target); } inline uint8* WireFormatLite::WriteBoolNoTagToArray(bool value, uint8* target) { return io::CodedOutputStream::WriteVarint32ToArray(value ? 1 : 0, target); } inline uint8* WireFormatLite::WriteEnumNoTagToArray(int value, uint8* target) { return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target); } template inline uint8* WireFormatLite::WritePrimitiveNoTagToArray( const RepeatedField& value, uint8* (*Writer)(T, uint8*), uint8* target) { const int n = value.size(); GOOGLE_DCHECK_GT(n, 0); const T* ii = value.data(); int i = 0; do { target = Writer(ii[i], target); } while (++i < n); return target; } template inline uint8* WireFormatLite::WriteFixedNoTagToArray( const RepeatedField& value, uint8* (*Writer)(T, uint8*), uint8* target) { #if defined(PROTOBUF_LITTLE_ENDIAN) (void)Writer; const int n = value.size(); GOOGLE_DCHECK_GT(n, 0); const T* ii = value.data(); const int bytes = n * static_cast(sizeof(ii[0])); memcpy(target, ii, static_cast(bytes)); return target + bytes; #else return WritePrimitiveNoTagToArray(value, Writer, target); #endif } inline uint8* WireFormatLite::WriteInt32NoTagToArray( const RepeatedField& value, uint8* target) { return WritePrimitiveNoTagToArray(value, WriteInt32NoTagToArray, target); } inline uint8* WireFormatLite::WriteInt64NoTagToArray( const RepeatedField& value, uint8* target) { return WritePrimitiveNoTagToArray(value, WriteInt64NoTagToArray, target); } inline uint8* WireFormatLite::WriteUInt32NoTagToArray( const RepeatedField& value, uint8* target) { return WritePrimitiveNoTagToArray(value, WriteUInt32NoTagToArray, target); } inline uint8* WireFormatLite::WriteUInt64NoTagToArray( const RepeatedField& value, uint8* target) { return WritePrimitiveNoTagToArray(value, WriteUInt64NoTagToArray, target); } inline uint8* WireFormatLite::WriteSInt32NoTagToArray( const RepeatedField& value, uint8* target) { return WritePrimitiveNoTagToArray(value, WriteSInt32NoTagToArray, target); } inline uint8* WireFormatLite::WriteSInt64NoTagToArray( const RepeatedField& value, uint8* target) { return WritePrimitiveNoTagToArray(value, WriteSInt64NoTagToArray, target); } inline uint8* WireFormatLite::WriteFixed32NoTagToArray( const RepeatedField& value, uint8* target) { return WriteFixedNoTagToArray(value, WriteFixed32NoTagToArray, target); } inline uint8* WireFormatLite::WriteFixed64NoTagToArray( const RepeatedField& value, uint8* target) { return WriteFixedNoTagToArray(value, WriteFixed64NoTagToArray, target); } inline uint8* WireFormatLite::WriteSFixed32NoTagToArray( const RepeatedField& value, uint8* target) { return WriteFixedNoTagToArray(value, WriteSFixed32NoTagToArray, target); } inline uint8* WireFormatLite::WriteSFixed64NoTagToArray( const RepeatedField& value, uint8* target) { return WriteFixedNoTagToArray(value, WriteSFixed64NoTagToArray, target); } inline uint8* WireFormatLite::WriteFloatNoTagToArray( const RepeatedField& value, uint8* target) { return WriteFixedNoTagToArray(value, WriteFloatNoTagToArray, target); } inline uint8* WireFormatLite::WriteDoubleNoTagToArray( const RepeatedField& value, uint8* target) { return WriteFixedNoTagToArray(value, WriteDoubleNoTagToArray, target); } inline uint8* WireFormatLite::WriteBoolNoTagToArray( const RepeatedField& value, uint8* target) { return WritePrimitiveNoTagToArray(value, WriteBoolNoTagToArray, target); } inline uint8* WireFormatLite::WriteEnumNoTagToArray( const RepeatedField& value, uint8* target) { return WritePrimitiveNoTagToArray(value, WriteEnumNoTagToArray, target); } inline uint8* WireFormatLite::WriteInt32ToArray(int field_number, int32 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteInt32NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteInt64ToArray(int field_number, int64 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteInt64NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteUInt32ToArray(int field_number, uint32 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteUInt32NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteUInt64ToArray(int field_number, uint64 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteUInt64NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteSInt32ToArray(int field_number, int32 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteSInt32NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteSInt64ToArray(int field_number, int64 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteSInt64NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteFixed32ToArray(int field_number, uint32 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target); return WriteFixed32NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteFixed64ToArray(int field_number, uint64 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target); return WriteFixed64NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteSFixed32ToArray(int field_number, int32 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target); return WriteSFixed32NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteSFixed64ToArray(int field_number, int64 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target); return WriteSFixed64NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteFloatToArray(int field_number, float value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target); return WriteFloatNoTagToArray(value, target); } inline uint8* WireFormatLite::WriteDoubleToArray(int field_number, double value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target); return WriteDoubleNoTagToArray(value, target); } inline uint8* WireFormatLite::WriteBoolToArray(int field_number, bool value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteBoolNoTagToArray(value, target); } inline uint8* WireFormatLite::WriteEnumToArray(int field_number, int value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteEnumNoTagToArray(value, target); } template inline uint8* WireFormatLite::WritePrimitiveToArray( int field_number, const RepeatedField& value, uint8* (*Writer)(int, T, uint8*), uint8* target) { const int n = value.size(); if (n == 0) { return target; } const T* ii = value.data(); int i = 0; do { target = Writer(field_number, ii[i], target); } while (++i < n); return target; } inline uint8* WireFormatLite::WriteInt32ToArray( int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteInt32ToArray, target); } inline uint8* WireFormatLite::WriteInt64ToArray( int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteInt64ToArray, target); } inline uint8* WireFormatLite::WriteUInt32ToArray( int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteUInt32ToArray, target); } inline uint8* WireFormatLite::WriteUInt64ToArray( int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteUInt64ToArray, target); } inline uint8* WireFormatLite::WriteSInt32ToArray( int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteSInt32ToArray, target); } inline uint8* WireFormatLite::WriteSInt64ToArray( int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteSInt64ToArray, target); } inline uint8* WireFormatLite::WriteFixed32ToArray( int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteFixed32ToArray, target); } inline uint8* WireFormatLite::WriteFixed64ToArray( int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteFixed64ToArray, target); } inline uint8* WireFormatLite::WriteSFixed32ToArray( int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteSFixed32ToArray, target); } inline uint8* WireFormatLite::WriteSFixed64ToArray( int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteSFixed64ToArray, target); } inline uint8* WireFormatLite::WriteFloatToArray( int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteFloatToArray, target); } inline uint8* WireFormatLite::WriteDoubleToArray( int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteDoubleToArray, target); } inline uint8* WireFormatLite::WriteBoolToArray(int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteBoolToArray, target); } inline uint8* WireFormatLite::WriteEnumToArray(int field_number, const RepeatedField& value, uint8* target) { return WritePrimitiveToArray(field_number, value, WriteEnumToArray, target); } inline uint8* WireFormatLite::WriteStringToArray(int field_number, const std::string& value, uint8* target) { // String is for UTF-8 text only // WARNING: In wire_format.cc, both strings and bytes are handled by // WriteString() to avoid code duplication. If the implementations become // different, you will need to update that usage. target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target); return io::CodedOutputStream::WriteStringWithSizeToArray(value, target); } inline uint8* WireFormatLite::WriteBytesToArray(int field_number, const std::string& value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target); return io::CodedOutputStream::WriteStringWithSizeToArray(value, target); } template inline uint8* WireFormatLite::InternalWriteGroup( int field_number, const MessageType& value, uint8* target, io::EpsCopyOutputStream* stream) { target = WriteTagToArray(field_number, WIRETYPE_START_GROUP, target); target = value._InternalSerialize(target, stream); target = stream->EnsureSpace(target); return WriteTagToArray(field_number, WIRETYPE_END_GROUP, target); } template inline uint8* WireFormatLite::InternalWriteMessage( int field_number, const MessageType& value, uint8* target, io::EpsCopyOutputStream* stream) { target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target); target = io::CodedOutputStream::WriteVarint32ToArray( static_cast(value.GetCachedSize()), target); return value._InternalSerialize(target, stream); } // See comment on ReadGroupNoVirtual to understand the need for this template // parameter name. template inline uint8* WireFormatLite::InternalWriteGroupNoVirtualToArray( int field_number, const MessageType_WorkAroundCppLookupDefect& value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_START_GROUP, target); target = value.MessageType_WorkAroundCppLookupDefect:: SerializeWithCachedSizesToArray(target); return WriteTagToArray(field_number, WIRETYPE_END_GROUP, target); } template inline uint8* WireFormatLite::InternalWriteMessageNoVirtualToArray( int field_number, const MessageType_WorkAroundCppLookupDefect& value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target); target = io::CodedOutputStream::WriteVarint32ToArray( static_cast( value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()), target); return value .MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizesToArray( target); } // =================================================================== inline size_t WireFormatLite::Int32Size(int32 value) { return io::CodedOutputStream::VarintSize32SignExtended(value); } inline size_t WireFormatLite::Int64Size(int64 value) { return io::CodedOutputStream::VarintSize64(static_cast(value)); } inline size_t WireFormatLite::UInt32Size(uint32 value) { return io::CodedOutputStream::VarintSize32(value); } inline size_t WireFormatLite::UInt64Size(uint64 value) { return io::CodedOutputStream::VarintSize64(value); } inline size_t WireFormatLite::SInt32Size(int32 value) { return io::CodedOutputStream::VarintSize32(ZigZagEncode32(value)); } inline size_t WireFormatLite::SInt64Size(int64 value) { return io::CodedOutputStream::VarintSize64(ZigZagEncode64(value)); } inline size_t WireFormatLite::EnumSize(int value) { return io::CodedOutputStream::VarintSize32SignExtended(value); } inline size_t WireFormatLite::StringSize(const std::string& value) { return LengthDelimitedSize(value.size()); } inline size_t WireFormatLite::BytesSize(const std::string& value) { return LengthDelimitedSize(value.size()); } template inline size_t WireFormatLite::GroupSize(const MessageType& value) { return value.ByteSizeLong(); } template inline size_t WireFormatLite::MessageSize(const MessageType& value) { return LengthDelimitedSize(value.ByteSizeLong()); } // See comment on ReadGroupNoVirtual to understand the need for this template // parameter name. template inline size_t WireFormatLite::GroupSizeNoVirtual( const MessageType_WorkAroundCppLookupDefect& value) { return value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong(); } template inline size_t WireFormatLite::MessageSizeNoVirtual( const MessageType_WorkAroundCppLookupDefect& value) { return LengthDelimitedSize( value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong()); } inline size_t WireFormatLite::LengthDelimitedSize(size_t length) { // The static_cast here prevents an error in certain compiler configurations // but is not technically correct--if length is too large to fit in a uint32 // then it will be silently truncated. We will need to fix this if we ever // decide to start supporting serialized messages greater than 2 GiB in size. return length + io::CodedOutputStream::VarintSize32(static_cast(length)); } template bool ParseMessageSetItemImpl(io::CodedInputStream* input, MS ms) { // This method parses a group which should contain two fields: // required int32 type_id = 2; // required data message = 3; uint32 last_type_id = 0; // If we see message data before the type_id, we'll append it to this so // we can parse it later. std::string message_data; while (true) { const uint32 tag = input->ReadTagNoLastTag(); if (tag == 0) return false; switch (tag) { case WireFormatLite::kMessageSetTypeIdTag: { uint32 type_id; if (!input->ReadVarint32(&type_id)) return false; last_type_id = type_id; if (!message_data.empty()) { // We saw some message data before the type_id. Have to parse it // now. io::CodedInputStream sub_input( reinterpret_cast(message_data.data()), static_cast(message_data.size())); sub_input.SetRecursionLimit(input->RecursionBudget()); if (!ms.ParseField(last_type_id, &sub_input)) { return false; } message_data.clear(); } break; } case WireFormatLite::kMessageSetMessageTag: { if (last_type_id == 0) { // We haven't seen a type_id yet. Append this data to message_data. uint32 length; if (!input->ReadVarint32(&length)) return false; if (static_cast(length) < 0) return false; uint32 size = static_cast( length + io::CodedOutputStream::VarintSize32(length)); message_data.resize(size); auto ptr = reinterpret_cast(&message_data[0]); ptr = io::CodedOutputStream::WriteVarint32ToArray(length, ptr); if (!input->ReadRaw(ptr, length)) return false; } else { // Already saw type_id, so we can parse this directly. if (!ms.ParseField(last_type_id, input)) { return false; } } break; } case WireFormatLite::kMessageSetItemEndTag: { return true; } default: { if (!ms.SkipField(tag, input)) return false; } } } } } // namespace internal } // namespace protobuf } // namespace google #include #endif // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__