set_covering_deployment.cs 3.83 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using System.Collections;
using System.IO;
using System.Linq;
using System.Text.RegularExpressions;
using Google.OrTools.ConstraintSolver;

public class SetCoveringDeployment
{

  /**
   *
   * Solves a set covering deployment problem.
   * See  See http://www.hakank.org/or-tools/set_covering_deployment.py
   *
   */
  private static void Solve()
  {

    Solver solver = new Solver("SetCoveringDeployment");

    //
    // data
    //

    // From http://mathworld.wolfram.com/SetCoveringDeployment.html
    string[] countries = {"Alexandria",
                          "Asia Minor",
                          "Britain",
                          "Byzantium",
                          "Gaul",
                          "Iberia",
                          "Rome",
                          "Tunis"};

    int n = countries.Length;

    // the incidence matrix (neighbours)
    int[,] mat = {{0, 1, 0, 1, 0, 0, 1, 1},
                  {1, 0, 0, 1, 0, 0, 0, 0},
                  {0, 0, 0, 0, 1, 1, 0, 0},
                  {1, 1, 0, 0, 0, 0, 1, 0},
                  {0, 0, 1, 0, 0, 1, 1, 0},
                  {0, 0, 1, 0, 1, 0, 1, 1},
                  {1, 0, 0, 1, 1, 1, 0, 1},
                  {1, 0, 0, 0, 0, 1, 1, 0}};

    //
    // Decision variables
    //

    // First army
    IntVar[] x = solver.MakeIntVarArray(n, 0, 1, "x");

    // Second (reserve) army
    IntVar[] y = solver.MakeIntVarArray(n, 0, 1, "y");

    // total number of armies
    IntVar num_armies = (x.Sum() + y.Sum()).Var();


    //
    // Constraints
    //

    //
    //  Constraint 1: There is always an army in a city
    //                (+ maybe a backup)
    //                Or rather: Is there a backup, there
    //                must be an an army
    //
    for(int i = 0; i < n; i++) {
      solver.Add(x[i] >= y[i]);
    }

    //
    // Constraint 2: There should always be an backup
    //               army near every city
    //
    for(int i = 0; i < n; i++) {
      IntVar[] count_neighbours = (
                                   from j in Enumerable.Range(0, n)
                                   where mat[i,j] == 1
                                   select(y[j])).ToArray();

      solver.Add((x[i] + count_neighbours.Sum()) >= 1);

    }


    //
    // objective
    //
    OptimizeVar objective = num_armies.Minimize(1);


    //
    // Search
    //
    DecisionBuilder db = solver.MakePhase(x,
                                          Solver.INT_VAR_DEFAULT,
                                          Solver.INT_VALUE_DEFAULT);

    solver.NewSearch(db, objective);

    while (solver.NextSolution()) {
      Console.WriteLine("num_armies: " + num_armies.Value());
      for(int i = 0; i < n; i++) {
        if (x[i].Value() == 1) {
          Console.Write("Army: " + countries[i] + " ");
        }

        if (y[i].Value() == 1) {
          Console.WriteLine(" Reverse army: " + countries[i]);
        }
      }
      Console.WriteLine("\n");

    }

    Console.WriteLine("\nSolutions: {0}", solver.Solutions());
    Console.WriteLine("WallTime: {0}ms", solver.WallTime());
    Console.WriteLine("Failures: {0}", solver.Failures());
    Console.WriteLine("Branches: {0} ", solver.Branches());

    solver.EndSearch();

  }

  public static void Main(String[] args)
  {
    Solve();
  }
}