// // Copyright 2012 Hakan Kjellerstrand // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. using System; using System.Collections; using System.IO; using System.Linq; using System.Text.RegularExpressions; using Google.OrTools.ConstraintSolver; public class SetCoveringDeployment { /** * * Solves a set covering deployment problem. * See See http://www.hakank.org/or-tools/set_covering_deployment.py * */ private static void Solve() { Solver solver = new Solver("SetCoveringDeployment"); // // data // // From http://mathworld.wolfram.com/SetCoveringDeployment.html string[] countries = {"Alexandria", "Asia Minor", "Britain", "Byzantium", "Gaul", "Iberia", "Rome", "Tunis"}; int n = countries.Length; // the incidence matrix (neighbours) int[,] mat = {{0, 1, 0, 1, 0, 0, 1, 1}, {1, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 1, 0, 0}, {1, 1, 0, 0, 0, 0, 1, 0}, {0, 0, 1, 0, 0, 1, 1, 0}, {0, 0, 1, 0, 1, 0, 1, 1}, {1, 0, 0, 1, 1, 1, 0, 1}, {1, 0, 0, 0, 0, 1, 1, 0}}; // // Decision variables // // First army IntVar[] x = solver.MakeIntVarArray(n, 0, 1, "x"); // Second (reserve) army IntVar[] y = solver.MakeIntVarArray(n, 0, 1, "y"); // total number of armies IntVar num_armies = (x.Sum() + y.Sum()).Var(); // // Constraints // // // Constraint 1: There is always an army in a city // (+ maybe a backup) // Or rather: Is there a backup, there // must be an an army // for(int i = 0; i < n; i++) { solver.Add(x[i] >= y[i]); } // // Constraint 2: There should always be an backup // army near every city // for(int i = 0; i < n; i++) { IntVar[] count_neighbours = ( from j in Enumerable.Range(0, n) where mat[i,j] == 1 select(y[j])).ToArray(); solver.Add((x[i] + count_neighbours.Sum()) >= 1); } // // objective // OptimizeVar objective = num_armies.Minimize(1); // // Search // DecisionBuilder db = solver.MakePhase(x, Solver.INT_VAR_DEFAULT, Solver.INT_VALUE_DEFAULT); solver.NewSearch(db, objective); while (solver.NextSolution()) { Console.WriteLine("num_armies: " + num_armies.Value()); for(int i = 0; i < n; i++) { if (x[i].Value() == 1) { Console.Write("Army: " + countries[i] + " "); } if (y[i].Value() == 1) { Console.WriteLine(" Reverse army: " + countries[i]); } } Console.WriteLine("\n"); } Console.WriteLine("\nSolutions: {0}", solver.Solutions()); Console.WriteLine("WallTime: {0}ms", solver.WallTime()); Console.WriteLine("Failures: {0}", solver.Failures()); Console.WriteLine("Branches: {0} ", solver.Branches()); solver.EndSearch(); } public static void Main(String[] args) { Solve(); } }