max_flow_winston1.cs 3.84 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.ConstraintSolver;

public class MaxFlowWinston1
{
  /**
   *
   * Max flow problem.
   *
   * From Winston 'Operations Research', page 420f, 423f
   * Sunco Oil example.
   *
   *
   * Also see http://www.hakank.org/or-tools/max_flow_winston1.py
   *
   */
  private static void Solve()
  {

    Solver solver = new Solver("MaxFlowWinston1");

    //
    // Data
    //
    int n     = 5;
    IEnumerable<int> NODES = Enumerable.Range(0, n);

    // The arcs
    // Note:
    // This is 1-based to be compatible with other implementations.
    //
    int[,] arcs1 = {
      {1, 2},
      {1, 3},
      {2, 3},
      {2, 4},
      {3, 5},
      {4, 5},
      {5, 1}
    };

    // Capacities
    int [] cap = {2,3,3,4,2,1,100};

    // Convert arcs to 0-based
    int num_arcs = arcs1.GetLength(0);
    IEnumerable<int> ARCS = Enumerable.Range(0, num_arcs);
    int[,] arcs = new int[num_arcs, 2];
    foreach(int i in ARCS) {
      for(int j = 0; j < 2; j++) {
        arcs[i,j] = arcs1[i,j] - 1;
      }
    }

    // Convert arcs to matrix (for sanity checking below)
    int[,] mat = new int[num_arcs, num_arcs];
    foreach(int i in NODES) {
      foreach(int j in NODES) {
        int c = 0;
        foreach(int k in ARCS) {
          if (arcs[k,0] == i && arcs[k,1] == j) {
            c = 1;
          }
        }
        mat[i,j] = c;
      }
    }

    //
    // Decision variables
    //
    IntVar[,] flow = solver.MakeIntVarMatrix(n, n, 0, 200, "flow");
    IntVar z = flow[n-1, 0].VarWithName("z");

    //
    // Constraints
    //

    // capacity of arcs
    foreach(int i in ARCS) {
      solver.Add(flow[arcs[i,0], arcs[i,1]] <= cap[i]);
    }

    // inflows == outflows
    foreach(int i in NODES) {
      var s1 = (from k in ARCS
                where arcs[k,1] == i
                select flow[arcs[k,0], arcs[k,1]]
                ).ToArray().Sum();

      var s2 = (from k in ARCS
                where arcs[k,0] == i
                select flow[arcs[k,0], arcs[k,1]]
                ).ToArray().Sum();

      solver.Add(s1 == s2);

    }

    // Sanity check: just arcs with connections can have a flow.
    foreach(int i in NODES) {
      foreach(int j in NODES) {
        if (mat[i,j] == 0) {
          solver.Add(flow[i,j] == 0);
        }
      }
    }


    //
    // Objective
    //
    OptimizeVar obj = z.Maximize(1);

    //
    // Search
    //
    DecisionBuilder db = solver.MakePhase(flow.Flatten(),
                                          Solver.INT_VAR_DEFAULT,
                                          Solver.ASSIGN_MAX_VALUE);
    solver.NewSearch(db, obj);

    while (solver.NextSolution()) {
      Console.WriteLine("z: {0}",z.Value());
      foreach(int i in NODES) {
        foreach(int j in NODES) {
          Console.Write(flow[i,j].Value() + " ");
        }
        Console.WriteLine();
      }
      Console.WriteLine();
    }

    Console.WriteLine("\nSolutions: {0}", solver.Solutions());
    Console.WriteLine("WallTime: {0}ms", solver.WallTime());
    Console.WriteLine("Failures: {0}", solver.Failures());
    Console.WriteLine("Branches: {0} ", solver.Branches());

    solver.EndSearch();

  }

  public static void Main(String[] args)
  {
    Solve();
  }
}