// // Copyright 2012 Hakan Kjellerstrand // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. using System; using System.Collections; using System.Collections.Generic; using System.Linq; using Google.OrTools.ConstraintSolver; public class MaxFlowWinston1 { /** * * Max flow problem. * * From Winston 'Operations Research', page 420f, 423f * Sunco Oil example. * * * Also see http://www.hakank.org/or-tools/max_flow_winston1.py * */ private static void Solve() { Solver solver = new Solver("MaxFlowWinston1"); // // Data // int n = 5; IEnumerable NODES = Enumerable.Range(0, n); // The arcs // Note: // This is 1-based to be compatible with other implementations. // int[,] arcs1 = { {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 5}, {4, 5}, {5, 1} }; // Capacities int [] cap = {2,3,3,4,2,1,100}; // Convert arcs to 0-based int num_arcs = arcs1.GetLength(0); IEnumerable ARCS = Enumerable.Range(0, num_arcs); int[,] arcs = new int[num_arcs, 2]; foreach(int i in ARCS) { for(int j = 0; j < 2; j++) { arcs[i,j] = arcs1[i,j] - 1; } } // Convert arcs to matrix (for sanity checking below) int[,] mat = new int[num_arcs, num_arcs]; foreach(int i in NODES) { foreach(int j in NODES) { int c = 0; foreach(int k in ARCS) { if (arcs[k,0] == i && arcs[k,1] == j) { c = 1; } } mat[i,j] = c; } } // // Decision variables // IntVar[,] flow = solver.MakeIntVarMatrix(n, n, 0, 200, "flow"); IntVar z = flow[n-1, 0].VarWithName("z"); // // Constraints // // capacity of arcs foreach(int i in ARCS) { solver.Add(flow[arcs[i,0], arcs[i,1]] <= cap[i]); } // inflows == outflows foreach(int i in NODES) { var s1 = (from k in ARCS where arcs[k,1] == i select flow[arcs[k,0], arcs[k,1]] ).ToArray().Sum(); var s2 = (from k in ARCS where arcs[k,0] == i select flow[arcs[k,0], arcs[k,1]] ).ToArray().Sum(); solver.Add(s1 == s2); } // Sanity check: just arcs with connections can have a flow. foreach(int i in NODES) { foreach(int j in NODES) { if (mat[i,j] == 0) { solver.Add(flow[i,j] == 0); } } } // // Objective // OptimizeVar obj = z.Maximize(1); // // Search // DecisionBuilder db = solver.MakePhase(flow.Flatten(), Solver.INT_VAR_DEFAULT, Solver.ASSIGN_MAX_VALUE); solver.NewSearch(db, obj); while (solver.NextSolution()) { Console.WriteLine("z: {0}",z.Value()); foreach(int i in NODES) { foreach(int j in NODES) { Console.Write(flow[i,j].Value() + " "); } Console.WriteLine(); } Console.WriteLine(); } Console.WriteLine("\nSolutions: {0}", solver.Solutions()); Console.WriteLine("WallTime: {0}ms", solver.WallTime()); Console.WriteLine("Failures: {0}", solver.Failures()); Console.WriteLine("Branches: {0} ", solver.Branches()); solver.EndSearch(); } public static void Main(String[] args) { Solve(); } }