Newer
Older
#include "CircularSurvey.h"
#include "RoutingThread.h"
#include "JsonHelper.h"
#include "QGCApplication.h"
#include "clipper/clipper.hpp"
#include "Geometry/GenericCircle.h"
#include <boost/units/io.hpp>
#include <boost/units/systems/si.hpp>
#include "CircularGenerator.h"
#include "LinearGenerator.h"
QGC_LOGGING_CATEGORY(CircularSurveyLog, "CircularSurveyLog")
template <typename T>
constexpr typename std::underlying_type<T>::type integral(T value) {
return static_cast<typename std::underlying_type<T>::type>(value);
}
const char *CircularSurvey::settingsGroup = "CircularSurvey";
const char *CircularSurvey::CircularSurveyName = "CircularSurvey";
const char *CircularSurvey::variantName = "Variant";
CircularSurvey::CircularSurvey(Vehicle *vehicle, bool flyView,
const QString &kmlOrShpFile, QObject *parent)
: TransectStyleComplexItem(vehicle, flyView, settingsGroup, parent),
_metaDataMap(FactMetaData::createMapFromJsonFile(
QStringLiteral(":/json/CircularSurvey.SettingsGroup.json"), this)),
_variant(settingsGroup, _metaDataMap[variantName]),
_areaData(std::make_shared<WimaPlanData>()),
_pWorker(std::make_unique<RoutingThread>()) {
Q_UNUSED(kmlOrShpFile)
_editorQml = "qrc:/qml/CircularSurveyItemEditor.qml";
connect(&this->_type, &Fact::rawValueChanged, this,
&CircularSurvey::_rebuildTransects);
connect(&this->_variant, &Fact::rawValueChanged, this,
&CircularSurvey::_changeVariant);
connect(this->_pWorker.get(), &RoutingThread::result, this,
&CircularSurvey::_setTransects);
connect(this->_pWorker.get(), &RoutingThread::calculatingChanged, this,
&CircularSurvey::calculatingChanged);
// Altitude
connect(&_cameraCalc, &CameraCalc::distanceToSurfaceRelativeChanged, this,
&CircularSurvey::coordinateHasRelativeAltitudeChanged);
connect(&_cameraCalc, &CameraCalc::distanceToSurfaceRelativeChanged, this,
&CircularSurvey::exitCoordinateHasRelativeAltitudeChanged);
// Register Generators.
auto cg = std::make_shared<routing::CircularGenerator>(this->_areaData);
registerGenerator(cg->name(), cg);
auto lg = std::make_shared<routing::LinearGenerator>(this->_areaData);
registerGenerator(lg->name(), lg);
CircularSurvey::~CircularSurvey() {}
void CircularSurvey::reverse() {
this->_state = STATE::REVERSE;
this->_rebuildTransects();
}
void CircularSurvey::setPlanData(const WimaPlanData &d) {
*this->_areaData = d;
QList<QString> CircularSurvey::variantNames() const { return _variantNames; }
bool CircularSurvey::load(const QJsonObject &complexObject, int sequenceNumber,
QString &errorString) {
// We need to pull version first to determine what validation/conversion
// needs to be performed
QList<JsonHelper::KeyValidateInfo> versionKeyInfoList = {
{JsonHelper::jsonVersionKey, QJsonValue::Double, true},
};
if (!JsonHelper::validateKeys(complexObject, versionKeyInfoList,
errorString)) {
return false;
}
int version = complexObject[JsonHelper::jsonVersionKey].toInt();
if (version != 1) {
errorString = tr("Survey items do not support version %1").arg(version);
return false;
}
QList<JsonHelper::KeyValidateInfo> keyInfoList = {
{VisualMissionItem::jsonTypeKey, QJsonValue::String, true},
{ComplexMissionItem::jsonComplexItemTypeKey, QJsonValue::String, true},
{transectDistanceName, QJsonValue::Double, true},
{alphaName, QJsonValue::Double, true},
{minLengthName, QJsonValue::Double, true},
{typeName, QJsonValue::Double, true},
{variantName, QJsonValue::Double, false},
{numRunsName, QJsonValue::Double, false},
{runName, QJsonValue::Double, false},
{refPointLatitudeName, QJsonValue::Double, true},
{refPointLongitudeName, QJsonValue::Double, true},
{refPointAltitudeName, QJsonValue::Double, true},
};
if (!JsonHelper::validateKeys(complexObject, keyInfoList, errorString)) {
return false;
}
QString itemType = complexObject[VisualMissionItem::jsonTypeKey].toString();
QString complexType =
complexObject[ComplexMissionItem::jsonComplexItemTypeKey].toString();
if (itemType != VisualMissionItem::jsonTypeComplexItemValue ||
complexType != CircularSurveyName) {
errorString = tr("%1 does not support loading this complex mission item "
"type: %2:%3")
.arg(qgcApp()->applicationName())
.arg(itemType)
.arg(complexType);
return false;
}
_ignoreRecalc = true;
setSequenceNumber(sequenceNumber);
if (!_surveyAreaPolygon.loadFromJson(complexObject, true /* required */,
errorString)) {
_surveyAreaPolygon.clear();
return false;
}
if (!_load(complexObject, errorString)) {
_ignoreRecalc = false;
return false;
}
_type.setRawValue(complexObject[typeName].toInt());
_variant.setRawValue(complexObject[variantName].toInt());
_numRuns.setRawValue(complexObject[numRunsName].toInt());
_run.setRawValue(complexObject[runName].toInt());
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
_referencePoint.setLongitude(complexObject[refPointLongitudeName].toDouble());
_referencePoint.setLatitude(complexObject[refPointLatitudeName].toDouble());
_referencePoint.setAltitude(complexObject[refPointAltitudeName].toDouble());
_ignoreRecalc = false;
_recalcComplexDistance();
if (_cameraShots == 0) {
// Shot count was possibly not available from plan file
_recalcCameraShots();
}
return true;
}
QString CircularSurvey::mapVisualQML() const {
return QStringLiteral("CircularSurveyMapVisual.qml");
}
void CircularSurvey::save(QJsonArray &planItems) {
QJsonObject saveObject;
_save(saveObject);
saveObject[JsonHelper::jsonVersionKey] = 1;
saveObject[VisualMissionItem::jsonTypeKey] =
VisualMissionItem::jsonTypeComplexItemValue;
saveObject[ComplexMissionItem::jsonComplexItemTypeKey] = CircularSurveyName;
saveObject[typeName] = double(_type.rawValue().toUInt());
saveObject[variantName] = double(_variant.rawValue().toUInt());
saveObject[numRunsName] = double(_numRuns.rawValue().toUInt());
saveObject[runName] = double(_numRuns.rawValue().toUInt());
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
saveObject[refPointLongitudeName] = _referencePoint.longitude();
saveObject[refPointLatitudeName] = _referencePoint.latitude();
saveObject[refPointAltitudeName] = _referencePoint.altitude();
// Polygon shape
_surveyAreaPolygon.saveToJson(saveObject);
planItems.append(saveObject);
}
bool CircularSurvey::specifiesCoordinate() const { return true; }
void CircularSurvey::appendMissionItems(QList<MissionItem *> &items,
QObject *missionItemParent) {
if (_transectsDirty)
return;
if (_loadedMissionItems.count()) {
// We have mission items from the loaded plan, use those
_appendLoadedMissionItems(items, missionItemParent);
} else {
// Build the mission items on the fly
_buildAndAppendMissionItems(items, missionItemParent);
}
}
void CircularSurvey::_appendLoadedMissionItems(QList<MissionItem *> &items,
QObject *missionItemParent) {
if (_transectsDirty)
return;
int seqNum = _sequenceNumber;
for (const MissionItem *loadedMissionItem : _loadedMissionItems) {
MissionItem *item = new MissionItem(*loadedMissionItem, missionItemParent);
item->setSequenceNumber(seqNum++);
items.append(item);
}
}
void CircularSurvey::_buildAndAppendMissionItems(QList<MissionItem *> &items,
QObject *missionItemParent) {
if (_transectsDirty || _transects.count() == 0)
return;
MissionItem *item;
int seqNum = _sequenceNumber;
MAV_FRAME mavFrame =
followTerrain() || !_cameraCalc.distanceToSurfaceRelative()
? MAV_FRAME_GLOBAL
: MAV_FRAME_GLOBAL_RELATIVE_ALT;
for (const QList<TransectStyleComplexItem::CoordInfo_t> &transect :
_transects) {
// bool transectEntry = true;
for (const CoordInfo_t &transectCoordInfo : transect) {
item = new MissionItem(
seqNum++, MAV_CMD_NAV_WAYPOINT, mavFrame,
0, // Hold time (delay for hover and capture to settle vehicle
// before image is taken)
0.0, // No acceptance radius specified
0.0, // Pass through waypoint
std::numeric_limits<double>::quiet_NaN(), // Yaw unchanged
transectCoordInfo.coord.latitude(),
transectCoordInfo.coord.longitude(),
transectCoordInfo.coord.altitude(),
true, // autoContinue
false, // isCurrentItem
missionItemParent);
items.append(item);
}
}
}
bool CircularSurvey::_switchToGenerator(
const CircularSurvey::PtrGenerator &newG) {
if (this->_pGenerator != newG) {
if (this->_pGenerator != nullptr) {
disconnect(this->_pGenerator.get(), &GeneratorBase::generatorChanged,
this, &CircularSurvey::_rebuildTransects);
}
this->_pGenerator = newG;
connect(this->_pGenerator.get(), &GeneratorBase::generatorChanged, this,
&CircularSurvey::_rebuildTransects);
this->_state = STATE::IDLE;
_rebuildTransects();
return true;
} else {
return false;
}
}
void CircularSurvey::_changeVariant() {
this->_state = STATE::VARIANT_CHANGE;
this->_rebuildTransects();
void CircularSurvey::_changeRun() {
this->_state = STATE::RUN_CHANGE;
this->_rebuildTransects();
}
void CircularSurvey::_updateWorker() {
// Mark transects as dirty.
this->_transectsDirty = true;
// Reset data.
this->_transects.clear();
this->_variantNames.clear();
emit variantNamesChanged();
if (this->_areaData->isValid()) {
// Prepare data.
auto origin = this->_areaData->origin();
// Convert safe area.
auto geoSafeArea = this->_jArea.coordinateList();
if (!(geoSafeArea.size() >= 3)) {
qCWarning(CircularSurveyLog)
<< "_updateWorker(): safe area invalid." << geoSafeArea;
return;
}
for (auto &v : geoSafeArea) {
if (v.isValid()) {
v.setAltitude(0);
} else {
qCWarning(CircularSurveyLog)
<< "_updateWorker(): safe area contains invalid coordinate."
<< geoSafeArea;
return;
// Routing par.
RoutingParameter par;
par.numSolutions = 5;
auto &safeAreaENU = par.safeArea;
snake::areaToEnu(origin, geoSafeArea, safeAreaENU);
// Create generator.
GeneratorBase::Generator g; // Transect generator.
if (_pGenerator->get(g)) {
// Start/Restart routing worker.
this->_pWorker->route(par, g);
qCWarning(CircularSurveyLog)
<< "_updateWorker(): generator creation failed.";
qCWarning(CircularSurveyLog) << "_updateWorker(): plan data invalid.";
auto variant = this->_variant.rawValue().toUInt();
auto run = this->_run.rawValue().toUInt();
// Find old variant and run. Old run corresponts with empty list.
std::size_t old_variant = std::numeric_limits<std::size_t>::max();
std::size_t old_run = std::numeric_limits<std::size_t>::max();
for (std::size_t i = 0; i < std::size_t(this->_variantVector.size()); ++i) {
const auto &solution = this->_variantVector.at(i);
for (std::size_t j = 0; j < std::size_t(solution.size()); ++j) {
const auto &r = solution[j];
if (r.isEmpty()) {
old_variant = i;
old_run = j;
// break
i = std::numeric_limits<std::size_t>::max() - 1;
j = std::numeric_limits<std::size_t>::max() - 1;
}
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Swap route.
if (variant != old_variant || run != old_run) {
// Swap in new variant, if condition.
if (variant < std::size_t(this->_variantVector.size()) &&
run < std::size_t(this->_variantVector.at(variant).size())) {
if (old_variant != std::numeric_limits<std::size_t>::max()) {
// this->_transects containes a route, swap it back to
// this->_solutionVector
auto &old_solution = this->_variantVector[old_variant];
auto &old_route = old_solution[old_run];
old_route.swap(this->_transects);
}
auto &solution = this->_variantVector[variant];
auto &route = solution[run];
this->_transects.swap(route);
if (variant != old_variant) {
// Add run names.
this->_runNames.clear();
for (std::size_t i = 1; i <= std::size_t(solution.size()); ++i) {
this->_runNames.append(QString::number(i));
}
emit runNamesChanged();
}
} else { // error
qCWarning(CircularSurveyLog)
<< "Variant or run out of bounds (variant = " << variant
<< ", run = " << run << ").";
qCWarning(CircularSurveyLog) << "Resetting variant and run.";
disconnect(&this->_variant, &Fact::rawValueChanged, this,
&CircularSurvey::_changeVariant);
disconnect(&this->_run, &Fact::rawValueChanged, this,
&CircularSurvey::_changeRun);
if (old_variant < std::size_t(this->_variantVector.size())) {
this->_variant.setCookedValue(QVariant::fromValue(old_variant));
auto &solution = this->_variantVector[old_variant];
if (old_run < std::size_t(solution.size())) {
this->_run.setCookedValue(QVariant::fromValue(old_run));
} else {
this->_run.setCookedValue(QVariant(0));
}
} else {
this->_variant.setCookedValue(QVariant(0));
this->_run.setCookedValue(QVariant(0));
}
connect(&this->_variant, &Fact::rawValueChanged, this,
&CircularSurvey::_changeVariant);
connect(&this->_run, &Fact::rawValueChanged, this,
&CircularSurvey::_changeRun);
if (this->_variantVector.size() > 0 &&
this->_variantVector.front().size() > 0) {
void CircularSurvey::_reverseWorker() {
if (this->_transects.size() > 0) {
auto &t = this->_transects.front();
void CircularSurvey::_storeWorker() {
// If the transects are getting rebuilt then any previously loaded
// mission items are now invalid.
if (_loadedMissionItemsParent) {
_loadedMissionItems.clear();
_loadedMissionItemsParent->deleteLater();
_loadedMissionItemsParent = nullptr;
}
const auto &pRoutingData = this->_pRoutingData;
const auto &ori = this->_referencePoint;
const auto &transectsENU = pRoutingData->transects;
QList<QList<QGeoCoordinate>> rawTransects;
for (std::size_t i = 1; i < transectsENU.size(); ++i) {
const auto &t = transectsENU[i];
rawTransects.append(QList<QGeoCoordinate>());
auto trGeo = rawTransects.back();
for (auto &v : t) {
QGeoCoordinate c;
snake::fromENU(ori, v, c);
trGeo.append(c);
const auto nSolutions = pRoutingData->solutionVector.size();
for (std::size_t j = 0; j < nSolutions; ++j) {
const auto &solution = pRoutingData->solutionVector.at(j);
const auto nRuns = solution.size();
// Store runs.
Variant runs(nRuns, Transects{QList<CoordInfo_t>()});
for (std::size_t k = 0; k < nRuns; ++k) {
const auto &route = solution.at(k);
const auto &path = route.path;
const auto &info = route.info;
if (info.size() > 1) {
// Find index of first waypoint.
std::size_t idxFirst = 0;
const auto &infoFirst = info.at(1);
const auto &firstTransect = transectsENU[infoFirst.index];
if (firstTransect.size() > 0) {
const auto &firstWaypoint =
infoFirst.reversed ? firstTransect.back() : firstTransect.front();
double th = 0.01;
for (std::size_t i = 0; i < path.size(); ++i) {
auto dist = bg::distance(path[i], firstWaypoint);
// Find index of last waypoint.
std::size_t idxLast = path.size() - 1;
const auto &infoLast = info.at(info.size() - 2);
const auto &lastTransect = transectsENU[infoLast.index];
if (lastTransect.size() > 0) {
const auto &lastWaypoint =
infoLast.reversed ? lastTransect.front() : lastTransect.back();
for (long i = path.size() - 1; i >= 0; --i) {
auto dist = bg::distance(path[i], lastWaypoint);
if (dist < th) {
idxLast = i;
break;
}
}
// Convert to geo coordinates.
auto &list = runs[k].front();
for (std::size_t i = idxFirst; i <= idxLast; ++i) {
auto &vertex = path[i];
QGeoCoordinate c;
snake::fromENU(ori, vertex, c);
list.append(CoordInfo_t{c, CoordTypeInterior});
}
} else {
}
}
// Remove empty runs.
bool error = true;
for (auto it = runs.begin(); it < runs.end();) {
if (it->size() > 0 && it->front().size() > 0) {
error = false;
++it;
} else {
it = runs.erase(it);
}
if (!error) {
solutionVector.push_back(std::move(runs));
// Remove empty solutions.
std::size_t nSol = 0;
for (auto it = solutionVector.begin(); it < solutionVector.end();) {
if (it->size() > 0 && it->front().size() > 0) {
++it;
// Assign routes if no error occured.
// Swap first route to _transects.
this->_variantVector.swap(solutionVector);
// Add route variant names.
this->_variantNames.clear();
for (std::size_t i = 1; i <= std::size_t(this->_variantVector.size());
++i) {
this->_variantNames.append(QString::number(i));
emit variantNamesChanged();
// Swap in rawTransects.
this->_rawTransects.swap(rawTransects);
disconnect(&this->_variant, &Fact::rawValueChanged, this,
&CircularSurvey::_changeVariant);
disconnect(&this->_run, &Fact::rawValueChanged, this,
&CircularSurvey::_changeRun);
this->_variant.setCookedValue(QVariant(0));
this->_run.setCookedValue(QVariant(0));
connect(&this->_variant, &Fact::rawValueChanged, this,
&CircularSurvey::_changeVariant);
connect(&this->_run, &Fact::rawValueChanged, this,
&CircularSurvey::_changeRun);
// Mark transect as stored and ready.
this->_transectsDirty = false;
}
void CircularSurvey::applyNewAltitude(double newAltitude) {
_cameraCalc.valueSetIsDistance()->setRawValue(true);
_cameraCalc.distanceToSurface()->setRawValue(newAltitude);
_cameraCalc.setDistanceToSurfaceRelative(true);
}
double CircularSurvey::timeBetweenShots() { return 1; }
QString CircularSurvey::commandDescription() const {
return tr("Circular Survey");
}
QString CircularSurvey::commandName() const { return tr("Circular Survey"); }
QString CircularSurvey::abbreviation() const { return tr("C.S."); }
bool CircularSurvey::readyForSave() const {
return TransectStyleComplexItem::readyForSave() && !_transectsDirty &&
this->_state == STATE::IDLE;
}
double CircularSurvey::additionalTimeDelay() const { return 0; }
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
bool CircularSurvey::registerGenerator(const QString &name,
std::shared_ptr<GeneratorBase> g) {
if (name.isEmpty()) {
qCWarning(CircularSurveyLog) << "registerGenerator(): empty name string.";
return false;
}
if (g) {
qCWarning(CircularSurveyLog) << "registerGenerator(): empty generator.";
return false;
}
if (this->_generatorNameList.contains(name)) {
qCWarning(CircularSurveyLog) << "registerGenerator(): generator "
"already registered.";
return false;
} else {
this->_generatorNameList.push_back(name);
this->_generatorList.push_back(g);
if (this->_generatorList.size() == 1) {
this->_pGenerator = g;
}
emit generatorNameListChanged();
return true;
}
}
bool CircularSurvey::unregisterGenerator(const QString &name) {
auto index = this->_generatorNameList.indexOf(name);
if (index >= 0) {
// Is this the current generator?
const auto &g = this->_generatorList.at(index);
if (g.get() == this->_pGenerator.get()) {
if (index > 0) {
_switchToGenerator(this->_generatorList.at(index - 1));
} else {
_switchToGenerator(nullptr);
qCWarning(CircularSurveyLog)
<< "unregisterGenerator(): last generator unregistered.";
}
}
this->_generatorNameList.removeAt(index);
this->_generatorList.removeAt(index);
emit generatorNameListChanged();
return true;
} else {
qCWarning(CircularSurveyLog)
<< "unregisterGenerator(): generator " << name << " not registered.";
return false;
}
}
bool CircularSurvey::unregisterGenerator(int index) {
if (index > 0 && index < this->_generatorNameList.size()) {
return unregisterGenerator(this->_generatorNameList.at(index));
} else {
qCWarning(CircularSurveyLog) << "unregisterGenerator(): index (" << index
<< ") out"
"of bounds ( "
<< this->_generatorList.size() << " ).";
return false;
}
}
bool CircularSurvey::switchToGenerator(const QString &name) {
auto index = this->_generatorNameList.indexOf(name);
if (index >= 0) {
_switchToGenerator(this->_generatorList.at(index));
return true;
} else {
qCWarning(CircularSurveyLog)
<< "switchToGenerator(): generator " << name << " not registered.";
return false;
}
}
bool CircularSurvey::switchToGenerator(int index) {
if (index >= 0) {
_switchToGenerator(this->_generatorList.at(index));
return true;
} else {
qCWarning(CircularSurveyLog) << "unregisterGenerator(): index (" << index
<< ") out"
"of bounds ( "
<< this->_generatorNameList.size() << " ).";
return false;
}
}
QList<QString> CircularSurvey::generatorNameList() {
return this->_generatorNameList;
}
void CircularSurvey::_rebuildTransectsPhase1(void) {
auto start = std::chrono::high_resolution_clock::now();
switch (this->_state) {
case STATE::STORE:
qCWarning(CircularSurveyLog) << "rebuildTransectsPhase1: store.";
this->_storeWorker();
break;
case STATE::VARIANT_CHANGE:
qCWarning(CircularSurveyLog) << "rebuildTransectsPhase1: variant change.";
qCWarning(CircularSurveyLog) << "rebuildTransectsPhase1: run change.";
break;
case STATE::REVERSE:
qCWarning(CircularSurveyLog) << "rebuildTransectsPhase1: reverse.";
this->_reverseWorker();
break;
qCWarning(CircularSurveyLog) << "rebuildTransectsPhase1: update.";
this->_updateWorker();
break;
<< std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - start)
.count()
<< " ms";
}
void CircularSurvey::_recalcComplexDistance() {
_complexDistance = 0;
if (_transectsDirty)
return;
for (int i = 0; i < _visualTransectPoints.count() - 1; i++) {
_complexDistance +=
_visualTransectPoints[i].value<QGeoCoordinate>().distanceTo(
_visualTransectPoints[i + 1].value<QGeoCoordinate>());
}
emit complexDistanceChanged();
}
// no cameraShots in Circular Survey, add if desired
void CircularSurvey::_recalcCameraShots() { _cameraShots = 0; }
void CircularSurvey::_setTransects(CircularSurvey::PtrRoutingData pRoute) {
this->_state = STATE::STORE;
this->_rebuildTransects();
Fact *CircularSurvey::type() { return &_type; }
Fact *CircularSurvey::variant() { return &_variant; }
Fact *CircularSurvey::numRuns() { return &_numRuns; }
Fact *CircularSurvey::run() { return &_run; }
int CircularSurvey::typeCount() const { return int(integral(Type::Count)); }
bool CircularSurvey::calculating() const {
return this->_pWorker->calculating();
}
bool circularTransects(const snake::FPolygon &polygon,
const std::vector<snake::FPolygon> &tiles,
snake::Length deltaR, snake::Angle deltaAlpha,
snake::Length minLength, snake::Transects &transects) {
auto s1 = std::chrono::high_resolution_clock::now();
if (polygon.outer().size() >= 3) {
using namespace boost::units;
// Convert geo polygon to ENU polygon.
std::string error;
// Check validity.
if (!bg::is_valid(polygon, error)) {
qCWarning(CircularSurveyLog) << "circularTransects(): "
"invalid polygon.";
qCWarning(CircularSurveyLog) << error.c_str();
ss << bg::wkt(polygon);
qCWarning(CircularSurveyLog) << ss.str().c_str();
} else {
// Calculate polygon distances and angles.
std::vector<snake::Length> distances;
distances.reserve(polygon.outer().size());
std::vector<snake::Angle> angles;
angles.reserve(polygon.outer().size());
//#ifdef DEBUG_CIRCULAR_SURVEY
// qCWarning(CircularSurveyLog) << "circularTransects():";
for (const auto &p : polygon.outer()) {
snake::Length distance = bg::distance(origin, p) * si::meter;
distances.push_back(distance);
snake::Angle alpha = (std::atan2(p.get<1>(), p.get<0>())) * si::radian;
alpha = alpha < 0 * si::radian ? alpha + 2 * M_PI * si::radian : alpha;
angles.push_back(alpha);
//#ifdef DEBUG_CIRCULAR_SURVEY
// qCWarning(CircularSurveyLog) << "distances, angles,
// coordinates:"; qCWarning(CircularSurveyLog) <<
// to_string(distance).c_str(); qCWarning(CircularSurveyLog) <<
// to_string(snake::Degree(alpha)).c_str();
// qCWarning(CircularSurveyLog) << "x = " << p.get<0>() << "y = "
// << p.get<1>();
//#endif
}
auto rMin = deltaR; // minimal circle radius
snake::Angle alpha1(0 * degree::degree);
snake::Angle alpha2(360 * degree::degree);
// Determine r_min by successive approximation
if (!bg::within(origin, polygon.outer())) {
rMin = bg::distance(origin, polygon) * si::meter;
}
auto rMax = (*std::max_element(distances.begin(),
distances.end())); // maximal circle radius
// Scale parameters and coordinates.
const auto rMinScaled =
ClipperLib::cInt(std::round(rMin.value() * CLIPPER_SCALE));
const auto deltaRScaled =
ClipperLib::cInt(std::round(deltaR.value() * CLIPPER_SCALE));
auto originScaled =
ClipperLib::IntPoint{ClipperLib::cInt(std::round(origin.get<0>())),
ClipperLib::cInt(std::round(origin.get<1>()))};
// Generate circle sectors.
auto rScaled = rMinScaled;
const auto nTran = long(std::ceil(((rMax - rMin) / deltaR).value()));
vector<ClipperLib::Path> sectors(nTran, ClipperLib::Path());
const auto nSectors =
long(std::round(((alpha2 - alpha1) / deltaAlpha).value()));
//#ifdef DEBUG_CIRCULAR_SURVEY
// qCWarning(CircularSurveyLog) << "circularTransects(): sector
// parameres:"; qCWarning(CircularSurveyLog) << "alpha1: " <<
// to_string(snake::Degree(alpha1)).c_str();
// qCWarning(CircularSurveyLog) << "alpha2:
// << to_string(snake::Degree(alpha2)).c_str();
// qCWarning(CircularSurveyLog) << "n: "
// << to_string((alpha2 - alpha1) / deltaAlpha).c_str();
// qCWarning(CircularSurveyLog)
// << "nSectors: " << nSectors; qCWarning(CircularSurveyLog) <<
// "rMin: " << to_string(rMin).c_str(); qCWarning(CircularSurveyLog)
// << "rMax: " << to_string(rMax).c_str();
// qCWarning(CircularSurveyLog) << "nTran: " << nTran;
//#endif
using ClipperCircle =
GenericCircle<ClipperLib::cInt, ClipperLib::IntPoint>;
for (auto §or : sectors) {
ClipperCircle circle(rScaled, originScaled);
approximate(circle, nSectors, sector);
rScaled += deltaRScaled;
}
// Clip sectors to polygonENU.
ClipperLib::Path polygonClipper;
snake::offsetPolygon(polygon, shrinked, -0.3);
auto &outer = shrinked.outer();
for (auto it = outer.begin(); it < outer.end() - 1; ++it) {
auto x = ClipperLib::cInt(std::round(it->get<0>() * CLIPPER_SCALE));
auto y = ClipperLib::cInt(std::round(it->get<1>() * CLIPPER_SCALE));
polygonClipper.push_back(ClipperLib::IntPoint{x, y});
}
ClipperLib::Clipper clipper;
clipper.AddPath(polygonClipper, ClipperLib::ptClip, true);
clipper.AddPaths(sectors, ClipperLib::ptSubject, false);
ClipperLib::PolyTree transectsClipper;
clipper.Execute(ClipperLib::ctIntersection, transectsClipper,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
vector<ClipperLib::Path> processedTiles;
path.push_back(ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(v.get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(v.get<1>() * CLIPPER_SCALE)});
}
}
clipper.Clear();
for (const auto &child : transectsClipper.Childs) {
clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
}
clipper.AddPaths(processedTiles, ClipperLib::ptClip, true);
transectsClipper.Clear();
clipper.Execute(ClipperLib::ctDifference, transectsClipper,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
}
// Extract transects from PolyTree and convert them to
// BoostLineString
for (const auto &child : transectsClipper.Childs) {
transect.reserve(child->Contour.size());
for (const auto &vertex : child->Contour) {
auto x = static_cast<double>(vertex.X) / CLIPPER_SCALE;
auto y = static_cast<double>(vertex.Y) / CLIPPER_SCALE;
transect.push_back(snake::FPoint(x, y));
}
transects.push_back(transect);
}
// Join sectors which where slit due to clipping.
const double th = 0.01;
for (auto ito = transects.begin(); ito < transects.end(); ++ito) {
for (auto iti = ito + 1; iti < transects.end(); ++iti) {
auto dist1 = bg::distance(ito->front(), iti->front());
if (dist1 < th) {
for (auto it = iti->end() - 1; it >= iti->begin(); --it) {
temp.push_back(*it);
}
temp.insert(temp.end(), ito->begin(), ito->end());
*ito = temp;
transects.erase(iti);
break;
}
auto dist2 = bg::distance(ito->front(), iti->back());
if (dist2 < th) {
temp.insert(temp.end(), iti->begin(), iti->end());
temp.insert(temp.end(), ito->begin(), ito->end());
*ito = temp;
transects.erase(iti);
break;
}
auto dist3 = bg::distance(ito->back(), iti->front());
if (dist3 < th) {
temp.insert(temp.end(), ito->begin(), ito->end());
temp.insert(temp.end(), iti->begin(), iti->end());
*ito = temp;
transects.erase(iti);
break;
}
auto dist4 = bg::distance(ito->back(), iti->back());
if (dist4 < th) {
temp.insert(temp.end(), ito->begin(), ito->end());
for (auto it = iti->end() - 1; it >= iti->begin(); --it) {
temp.push_back(*it);
}
*ito = temp;
transects.erase(iti);
break;
}
}
}
for (auto it = transects.begin(); it < transects.end();) {
if (bg::length(*it) < minLength.value()) {
it = transects.erase(it);
} else {
++it;
}
}
<< std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - s1)
.count()
<< " ms";
return true;
}
}
return false;
}
bool linearTransects(const snake::FPolygon &polygon,
const std::vector<snake::FPolygon> &tiles,
snake::Length distance, snake::Angle angle,
snake::Length minLength, snake::Transects &transects) {
namespace tr = bg::strategy::transform;
auto s1 = std::chrono::high_resolution_clock::now();
if (polygon.outer().size() >= 3) {
// Convert to ENU system.
std::string error;
// Check validity.
if (!bg::is_valid(polygon, error)) {
qCWarning(CircularSurveyLog) << "linearTransects(): "