Newer
Older
case MAVLINK_MSG_ID_MISSION_ACK:
{
if (!qgcApp()->useNewMissionEditor()) {
mavlink_mission_ack_t ma;
mavlink_msg_mission_ack_decode(&message, &ma);
// Special case a 0 for the target system or component, it means that anyone is the target, so we should process this.
if (ma.target_system == 0) {
ma.target_system = mavlink->getSystemId();
}
if (ma.target_component == 0) {
ma.target_component = mavlink->getComponentId();
}
// Check that the ack pertains to this UAS.
if(ma.target_system == mavlink->getSystemId())
{
Lorenz Meier
committed
if (ma.target_component != mavlink->getComponentId()) {
qDebug() << tr("The target component ID is not set correctly. This is currently only a warning, but will be turned into an error.");
qDebug() << "Expecting" << mavlink->getComponentId() << "but got" << ma.target_component;
}
Lorenz Meier
committed
_waypointManager->handleWaypointAck(message.sysid, message.compid, &ma);
}
else
{
qDebug() << QString("Received mission ack message, but was wrong system id. Expected %1, received %2").arg(mavlink->getSystemId()).arg(ma.target_system);
}
}
}
break;
case MAVLINK_MSG_ID_MISSION_REQUEST:
{
if (!qgcApp()->useNewMissionEditor()) {
mavlink_mission_request_t mr;
mavlink_msg_mission_request_decode(&message, &mr);
// Special case a 0 for the target system or component, it means that anyone is the target, so we should process this.
if (mr.target_system == 0) {
mr.target_system = mavlink->getSystemId();
}
if (mr.target_component == 0) {
mr.target_component = mavlink->getComponentId();
}
// Check that the request pertains to this UAS.
if(mr.target_system == mavlink->getSystemId())
{
Lorenz Meier
committed
if (mr.target_component != mavlink->getComponentId()) {
qDebug() << QString("The target component ID is not set correctly. This is currently only a warning, but will be turned into an error.");
qDebug() << "Expecting" << mavlink->getComponentId() << "but got" << mr.target_component;
}
Lorenz Meier
committed
_waypointManager->handleWaypointRequest(message.sysid, message.compid, &mr);
}
else
{
qDebug() << QString("Received mission request message, but was wrong system id. Expected %1, received %2").arg(mavlink->getSystemId()).arg(mr.target_system);
}
}
}
break;
case MAVLINK_MSG_ID_MISSION_ITEM_REACHED:
{
if (!qgcApp()->useNewMissionEditor()) {
mavlink_mission_item_reached_t wpr;
mavlink_msg_mission_item_reached_decode(&message, &wpr);
_waypointManager->handleWaypointReached(message.sysid, message.compid, &wpr);
QString text = QString("System %1 reached waypoint %2").arg(getUASID()).arg(wpr.seq);
_say(text);
emit textMessageReceived(message.sysid, message.compid, MAV_SEVERITY_INFO, text);
}
}
break;
case MAVLINK_MSG_ID_MISSION_CURRENT:
{
if (!qgcApp()->useNewMissionEditor()) {
mavlink_mission_current_t wpc;
mavlink_msg_mission_current_decode(&message, &wpc);
_waypointManager->handleWaypointCurrent(message.sysid, message.compid, &wpc);
}
}
break;
Lorenz Meier
committed
case MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED:
{
if (multiComponentSourceDetected && wrongComponent)
{
break;
}
Lorenz Meier
committed
mavlink_position_target_local_ned_t p;
mavlink_msg_position_target_local_ned_decode(&message, &p);
quint64 time = getUnixTimeFromMs(p.time_boot_ms);
emit positionSetPointsChanged(uasId, p.x, p.y, p.z, 0/* XXX remove yaw and move it to attitude */, time);
Lorenz Meier
committed
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED:
Lorenz Meier
committed
mavlink_set_position_target_local_ned_t p;
mavlink_msg_set_position_target_local_ned_decode(&message, &p);
emit userPositionSetPointsChanged(uasId, p.x, p.y, p.z, 0/* XXX remove yaw and move it to attitude */);
}
break;
case MAVLINK_MSG_ID_STATUSTEXT:
{
QByteArray b;
Lorenz Meier
committed
b.resize(MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1);
mavlink_msg_statustext_get_text(&message, b.data());
Lorenz Meier
committed
// Ensure NUL-termination
b[b.length()-1] = '\0';
QString text = QString(b);
int severity = mavlink_msg_statustext_get_severity(&message);
// If the message is NOTIFY or higher severity, or starts with a '#',
// then read it aloud.
if (text.startsWith("#") || severity <= MAV_SEVERITY_NOTICE)
text.remove("#");
emit textMessageReceived(uasId, message.compid, severity, text);
}
else
{
emit textMessageReceived(uasId, message.compid, severity, text);
}
}
break;
case MAVLINK_MSG_ID_DATA_TRANSMISSION_HANDSHAKE:
{
mavlink_data_transmission_handshake_t p;
mavlink_msg_data_transmission_handshake_decode(&message, &p);
imageSize = p.size;
imagePackets = p.packets;
imagePayload = p.payload;
imageQuality = p.jpg_quality;
imageType = p.type;
imageWidth = p.width;
imageHeight = p.height;
imageStart = QGC::groundTimeMilliseconds();
}
break;
case MAVLINK_MSG_ID_ENCAPSULATED_DATA:
{
mavlink_encapsulated_data_t img;
mavlink_msg_encapsulated_data_decode(&message, &img);
int seq = img.seqnr;
int pos = seq * imagePayload;
// Check if we have a valid transaction
if (imagePackets == 0)
{
// NO VALID TRANSACTION - ABORT
// Restart statemachine
imagePacketsArrived = 0;
}
for (int i = 0; i < imagePayload; ++i)
{
if (pos <= imageSize) {
imageRecBuffer[pos] = img.data[i];
}
++pos;
}
++imagePacketsArrived;
// emit signal if all packets arrived
if (imagePacketsArrived >= imagePackets)
{
// Restart statemachine
emit imageReady(this);
}
}
break;
case MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT:
Michael Carpenter
committed
{
mavlink_nav_controller_output_t p;
mavlink_msg_nav_controller_output_decode(&message,&p);
setDistToWaypoint(p.wp_dist);
setBearingToWaypoint(p.nav_bearing);
emit navigationControllerErrorsChanged(this, p.alt_error, p.aspd_error, p.xtrack_error);
emit NavigationControllerDataChanged(this, p.nav_roll, p.nav_pitch, p.nav_bearing, p.target_bearing, p.wp_dist);
Michael Carpenter
committed
}
break;
// Messages to ignore
case MAVLINK_MSG_ID_RAW_IMU:
case MAVLINK_MSG_ID_SCALED_IMU:
case MAVLINK_MSG_ID_RAW_PRESSURE:
case MAVLINK_MSG_ID_SCALED_PRESSURE:
case MAVLINK_MSG_ID_OPTICAL_FLOW:
case MAVLINK_MSG_ID_DEBUG_VECT:
case MAVLINK_MSG_ID_DEBUG:
case MAVLINK_MSG_ID_NAMED_VALUE_FLOAT:
case MAVLINK_MSG_ID_NAMED_VALUE_INT:
case MAVLINK_MSG_ID_MANUAL_CONTROL:
case MAVLINK_MSG_ID_HIGHRES_IMU:
break;
default:
{
if (!unknownPackets.contains(message.msgid))
{
unknownPackets.append(message.msgid);
qDebug() << "Unknown message from system:" << uasId << "message:" << message.msgid;
}
}
break;
}
}
}
/**
* Set the home position of the UAS.
* @param lat The latitude fo the home position
* @param lon The longitude of the home position
* @param alt The altitude of the home position
*/
void UAS::setHomePosition(double lat, double lon, double alt)
{
if (!_vehicle || blockHomePositionChanges)
QString uasName = (getUASName() == "")?
tr("UAS") + QString::number(getUASID())
: getUASName();
QMessageBox::StandardButton button = QGCMessageBox::question(tr("Set a new home position for vehicle %1").arg(uasName),
tr("Do you want to set a new origin? Waypoints defined in the local frame will be shifted in their physical location"),
QMessageBox::Yes | QMessageBox::Cancel,
QMessageBox::Cancel);
if (button == QMessageBox::Yes)
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), 0, MAV_CMD_DO_SET_HOME, 1, 0, 0, 0, 0, lat, lon, alt);
// Send message twice to increase chance that it reaches its goal
// Send new home position to UAS
mavlink_set_gps_global_origin_t home;
home.target_system = uasId;
home.latitude = lat*1E7;
home.longitude = lon*1E7;
home.altitude = alt*1000;
qDebug() << "lat:" << home.latitude << " lon:" << home.longitude;
mavlink_msg_set_gps_global_origin_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &home);
} else {
blockHomePositionChanges = true;
void UAS::startCalibration(UASInterface::StartCalibrationType calType)
if (!_vehicle) {
return;
}
int gyroCal = 0;
int magCal = 0;
int airspeedCal = 0;
int radioCal = 0;
int accelCal = 0;
switch (calType) {
case StartCalibrationGyro:
gyroCal = 1;
break;
case StartCalibrationMag:
magCal = 1;
break;
case StartCalibrationAirspeed:
airspeedCal = 1;
break;
case StartCalibrationRadio:
radioCal = 1;
break;
case StartCalibrationCopyTrims:
radioCal = 2;
break;
case StartCalibrationAccel:
accelCal = 1;
break;
case StartCalibrationLevel:
accelCal = 2;
break;
case StartCalibrationEsc:
escCal = 1;
break;
case StartCalibrationUavcanEsc:
escCal = 2;
break;
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&msg,
uasId,
0, // target component
MAV_CMD_PREFLIGHT_CALIBRATION, // command id
0, // 0=first transmission of command
gyroCal, // gyro cal
magCal, // mag cal
0, // ground pressure
radioCal, // radio cal
accelCal, // accel cal
airspeedCal, // airspeed cal
Lorenz Meier
committed
}
Lorenz Meier
committed
{
if (!_vehicle) {
return;
}
Lorenz Meier
committed
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&msg,
uasId,
0, // target component
MAV_CMD_PREFLIGHT_CALIBRATION, // command id
0, // 0=first transmission of command
0, // gyro cal
0, // mag cal
0, // ground pressure
0, // radio cal
0, // accel cal
0, // airspeed cal
0); // unused
void UAS::startBusConfig(UASInterface::StartBusConfigType calType)
{
if (!_vehicle) {
return;
}
int actuatorCal = 0;
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
switch (calType) {
case StartBusConfigActuators:
actuatorCal = 1;
break;
}
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&msg,
uasId,
0, // target component
MAV_CMD_PREFLIGHT_UAVCAN, // command id
0, // 0=first transmission of command
actuatorCal, // actuators
0,
0,
0,
0,
0,
0);
}
void UAS::stopBusConfig(void)
{
if (!_vehicle) {
return;
}
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&msg,
uasId,
0, // target component
MAV_CMD_PREFLIGHT_UAVCAN, // command id
0, // 0=first transmission of command
0,
0,
0,
0,
0,
0,
0);
/**
* Check if time is smaller than 40 years, assuming no system without Unix
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
* timestamp runs longer than 40 years continuously without reboot. In worst case
* this will add/subtract the communication delay between GCS and MAV, it will
* never alter the timestamp in a safety critical way.
*/
quint64 UAS::getUnixReferenceTime(quint64 time)
{
// Same as getUnixTime, but does not react to attitudeStamped mode
if (time == 0)
{
// qDebug() << "XNEW time:" <<QGC::groundTimeMilliseconds();
return QGC::groundTimeMilliseconds();
}
// Check if time is smaller than 40 years,
// assuming no system without Unix timestamp
// runs longer than 40 years continuously without
// reboot. In worst case this will add/subtract the
// communication delay between GCS and MAV,
// it will never alter the timestamp in a safety
// critical way.
//
// Calculation:
// 40 years
// 365 days
// 24 hours
// 60 minutes
// 60 seconds
// 1000 milliseconds
// 1000 microseconds
#ifndef _MSC_VER
else if (time < 1261440000000000LLU)
#else
else if (time < 1261440000000000)
#endif
{
// qDebug() << "GEN time:" << time/1000 + onboardTimeOffset;
if (onboardTimeOffset == 0)
{
onboardTimeOffset = QGC::groundTimeMilliseconds() - time/1000;
}
return time/1000 + onboardTimeOffset;
}
else
{
// Time is not zero and larger than 40 years -> has to be
// a Unix epoch timestamp. Do nothing.
return time/1000;
}
}
/**
* @warning If attitudeStamped is enabled, this function will not actually return
* the precise time stamp of this measurement augmented to UNIX time, but will
* MOVE the timestamp IN TIME to match the last measured attitude. There is no
* reason why one would want this, except for system setups where the onboard
* clock is not present or broken and datasets should be collected that are still
* roughly synchronized. PLEASE NOTE THAT ENABLING ATTITUDE STAMPED RUINS THE
* SCIENTIFIC NATURE OF THE CORRECT LOGGING FUNCTIONS OF QGROUNDCONTROL!
*/
quint64 UAS::getUnixTimeFromMs(quint64 time)
{
return getUnixTime(time*1000);
}
/**
* @warning If attitudeStamped is enabled, this function will not actually return
* the precise time stam of this measurement augmented to UNIX time, but will
* MOVE the timestamp IN TIME to match the last measured attitude. There is no
* reason why one would want this, except for system setups where the onboard
* clock is not present or broken and datasets should be collected that are
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
* still roughly synchronized. PLEASE NOTE THAT ENABLING ATTITUDE STAMPED
* RUINS THE SCIENTIFIC NATURE OF THE CORRECT LOGGING FUNCTIONS OF QGROUNDCONTROL!
*/
quint64 UAS::getUnixTime(quint64 time)
{
quint64 ret = 0;
if (attitudeStamped)
{
ret = lastAttitude;
}
if (time == 0)
{
ret = QGC::groundTimeMilliseconds();
}
// Check if time is smaller than 40 years,
// assuming no system without Unix timestamp
// runs longer than 40 years continuously without
// reboot. In worst case this will add/subtract the
// communication delay between GCS and MAV,
// it will never alter the timestamp in a safety
// critical way.
//
// Calculation:
// 40 years
// 365 days
// 24 hours
// 60 minutes
// 60 seconds
// 1000 milliseconds
// 1000 microseconds
#ifndef _MSC_VER
else if (time < 1261440000000000LLU)
#else
else if (time < 1261440000000000)
#endif
{
// qDebug() << "GEN time:" << time/1000 + onboardTimeOffset;
if (onboardTimeOffset == 0 || time < (lastNonNullTime - 100))
{
lastNonNullTime = time;
onboardTimeOffset = QGC::groundTimeMilliseconds() - time/1000;
}
if (time > lastNonNullTime) lastNonNullTime = time;
ret = time/1000 + onboardTimeOffset;
}
else
{
// Time is not zero and larger than 40 years -> has to be
// a Unix epoch timestamp. Do nothing.
ret = time/1000;
}
return ret;
}
/**
* @param value battery voltage
*/
float UAS::filterVoltage(float value) const
{
/**
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
* Get the status of the code and a description of the status.
* Status can be unitialized, booting up, calibrating sensors, active
* standby, cirtical, emergency, shutdown or unknown.
*/
void UAS::getStatusForCode(int statusCode, QString& uasState, QString& stateDescription)
{
switch (statusCode)
{
case MAV_STATE_UNINIT:
uasState = tr("UNINIT");
stateDescription = tr("Unitialized, booting up.");
break;
case MAV_STATE_BOOT:
uasState = tr("BOOT");
stateDescription = tr("Booting system, please wait.");
break;
case MAV_STATE_CALIBRATING:
uasState = tr("CALIBRATING");
stateDescription = tr("Calibrating sensors, please wait.");
break;
case MAV_STATE_ACTIVE:
uasState = tr("ACTIVE");
stateDescription = tr("Active, normal operation.");
break;
case MAV_STATE_STANDBY:
uasState = tr("STANDBY");
stateDescription = tr("Standby mode, ready for launch.");
break;
case MAV_STATE_CRITICAL:
uasState = tr("CRITICAL");
stateDescription = tr("FAILURE: Continuing operation.");
break;
case MAV_STATE_EMERGENCY:
uasState = tr("EMERGENCY");
stateDescription = tr("EMERGENCY: Land Immediately!");
break;
//case MAV_STATE_HILSIM:
//uasState = tr("HIL SIM");
//stateDescription = tr("HIL Simulation, Sensors read from SIM");
//break;
case MAV_STATE_POWEROFF:
uasState = tr("SHUTDOWN");
stateDescription = tr("Powering off system.");
break;
default:
uasState = tr("UNKNOWN");
stateDescription = tr("Unknown system state");
break;
}
}
QImage UAS::getImage()
{
// qDebug() << "IMAGE TYPE:" << imageType;
// RAW greyscale
if (imageType == MAVLINK_DATA_STREAM_IMG_RAW8U)
{
// Construct PGM header
QString header("P5\n%1 %2\n%3\n");
header = header.arg(imageWidth).arg(imageHeight).arg(imgColors);
QByteArray tmpImage(header.toStdString().c_str(), header.length());
tmpImage.append(imageRecBuffer);
//qDebug() << "IMAGE SIZE:" << tmpImage.size() << "HEADER SIZE: (15):" << header.size() << "HEADER: " << header;
if (imageRecBuffer.isNull())
{
qDebug()<< "could not convertToPGM()";
return QImage();
}
if (!image.loadFromData(tmpImage, "PGM"))
{
qDebug()<< __FILE__ << __LINE__ << "could not create extracted image";
return QImage();
}
}
// BMP with header
else if (imageType == MAVLINK_DATA_STREAM_IMG_BMP ||
imageType == MAVLINK_DATA_STREAM_IMG_JPEG ||
imageType == MAVLINK_DATA_STREAM_IMG_PGM ||
imageType == MAVLINK_DATA_STREAM_IMG_PNG)
{
if (!image.loadFromData(imageRecBuffer))
{
qDebug() << __FILE__ << __LINE__ << "Loading data from image buffer failed!";
// Restart statemachine
imagePacketsArrived = 0;
imagePackets = 0;
imageRecBuffer.clear();
return image;
}
void UAS::requestImage()
{
if (!_vehicle) {
return;
}
qDebug() << "trying to get an image from the uas...";
// check if there is already an image transmission going on
if (imagePacketsArrived == 0)
{
mavlink_message_t msg;
mavlink_msg_data_transmission_handshake_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, MAVLINK_DATA_STREAM_IMG_JPEG, 0, 0, 0, 0, 0, 50);
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
}
}
/* MANAGEMENT */
/**
*
* @return The uptime in milliseconds
*
*/
quint64 UAS::getUptime() const
{
if(startTime == 0)
{
return 0;
}
else
{
return QGC::groundTimeMilliseconds() - startTime;
}
}
bool UAS::isRotaryWing()
{
Thomas Gubler
committed
switch (type) {
case MAV_TYPE_QUADROTOR:
/* fallthrough */
case MAV_TYPE_COAXIAL:
case MAV_TYPE_HELICOPTER:
case MAV_TYPE_HEXAROTOR:
case MAV_TYPE_OCTOROTOR:
case MAV_TYPE_TRICOPTER:
return true;
default:
return false;
}
}
bool UAS::isFixedWing()
{
Thomas Gubler
committed
switch (type) {
case MAV_TYPE_FIXED_WING:
return true;
default:
return false;
}
}
//TODO update this to use the parameter manager / param data model instead
void UAS::processParamValueMsg(mavlink_message_t& msg, const QString& paramName, const mavlink_param_value_t& rawValue, mavlink_param_union_t& paramUnion)
{
int compId = msg.compid;
// Insert with correct type
switch (rawValue.param_type) {
case MAV_PARAM_TYPE_REAL32:
case MAV_PARAM_TYPE_UINT8:
case MAV_PARAM_TYPE_INT16:
case MAV_PARAM_TYPE_UINT32:
case MAV_PARAM_TYPE_INT32:
default:
qCritical() << "INVALID DATA TYPE USED AS PARAMETER VALUE: " << rawValue.param_type;
qCDebug(UASLog) << "Received PARAM_VALUE" << paramName << paramValue << rawValue.param_type;
emit parameterUpdate(uasId, compId, paramName, rawValue.param_count, rawValue.param_index, rawValue.param_type, paramValue);
}
/**
* @param systemType Type of MAV.
*/
void UAS::setSystemType(int systemType)
{
if((systemType >= MAV_TYPE_GENERIC) && (systemType < MAV_TYPE_ENUM_END))
{
type = systemType;
// If the airframe is still generic, change it to a close default type
if (airframe == 0)
{
switch (type)
{
case MAV_TYPE_FIXED_WING:
setAirframe(UASInterface::QGC_AIRFRAME_EASYSTAR);
break;
case MAV_TYPE_QUADROTOR:
setAirframe(UASInterface::QGC_AIRFRAME_CHEETAH);
break;
case MAV_TYPE_HEXAROTOR:
setAirframe(UASInterface::QGC_AIRFRAME_HEXCOPTER);
break;
default:
// Do nothing
break;
}
}
emit systemSpecsChanged(uasId);
emit systemTypeSet(this, type);
qDebug() << "TYPE CHANGED TO:" << type;
}
}
void UAS::executeCommand(MAV_CMD command, int confirmation, float param1, float param2, float param3, float param4, float param5, float param6, float param7, int component)
{
if (!_vehicle) {
return;
}
mavlink_message_t msg;
mavlink_command_long_t cmd;
cmd.command = (uint16_t)command;
cmd.confirmation = confirmation;
cmd.param1 = param1;
cmd.param2 = param2;
cmd.param3 = param3;
cmd.param4 = param4;
cmd.param5 = param5;
cmd.param6 = param6;
cmd.param7 = param7;
cmd.target_system = uasId;
cmd.target_component = component;
mavlink_msg_command_long_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &cmd);
/**
* Set the manual control commands.
* This can only be done if the system has manual inputs enabled and is armed.
*/
void UAS::setExternalControlSetpoint(float roll, float pitch, float yaw, float thrust, quint16 buttons, int joystickMode)
if (!_vehicle) {
return;
}
Bryant Mairs
committed
// Store the previous manual commands
static float manualRollAngle = 0.0;
static float manualPitchAngle = 0.0;
static float manualYawAngle = 0.0;
static float manualThrust = 0.0;
static quint16 manualButtons = 0;
static quint8 countSinceLastTransmission = 0; // Track how many calls to this function have occurred since the last MAVLink transmission
// Transmit the external setpoints only if they've changed OR if it's been a little bit since they were last transmit. To make sure there aren't issues with
// response rate, we make sure that a message is transmit when the commands have changed, then one more time, and then switch to the lower transmission rate
// if no command inputs have changed.
// The default transmission rate is 25Hz, but when no inputs have changed it drops down to 5Hz.
bool sendCommand = false;
if (countSinceLastTransmission++ >= 5) {
sendCommand = true;
countSinceLastTransmission = 0;
} else if ((!isnan(roll) && roll != manualRollAngle) || (!isnan(pitch) && pitch != manualPitchAngle) ||
(!isnan(yaw) && yaw != manualYawAngle) || (!isnan(thrust) && thrust != manualThrust) ||
buttons != manualButtons) {
sendCommand = true;
// Ensure that another message will be sent the next time this function is called
countSinceLastTransmission = 10;
}
Julian Oes
committed
// Now if we should trigger an update, let's do that
if (sendCommand) {
// Save the new manual control inputs
manualRollAngle = roll;
manualPitchAngle = pitch;
manualYawAngle = yaw;
manualThrust = thrust;
manualButtons = buttons;
mavlink_message_t message;
if (joystickMode == Vehicle::JoystickModeAttitude) {
// send an external attitude setpoint command (rate control disabled)
float attitudeQuaternion[4];
mavlink_euler_to_quaternion(roll, pitch, yaw, attitudeQuaternion);
uint8_t typeMask = 0x7; // disable rate control
mavlink_msg_set_attitude_target_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&message,
QGC::groundTimeUsecs(),
this->uasId,
0,
typeMask,
attitudeQuaternion,
0,
0,
0,
thrust
);
} else if (joystickMode == Vehicle::JoystickModePosition) {
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
// Send the the local position setpoint (local pos sp external message)
static float px = 0;
static float py = 0;
static float pz = 0;
//XXX: find decent scaling
px -= pitch;
py += roll;
pz -= 2.0f*(thrust-0.5);
uint16_t typeMask = (1<<11)|(7<<6)|(7<<3); // select only POSITION control
mavlink_msg_set_position_target_local_ned_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&message,
QGC::groundTimeUsecs(),
this->uasId,
0,
MAV_FRAME_LOCAL_NED,
typeMask,
px,
py,
pz,
0,
0,
0,
0,
0,
0,
yaw,
0
);
} else if (joystickMode == Vehicle::JoystickModeForce) {
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
// Send the the force setpoint (local pos sp external message)
float dcm[3][3];
mavlink_euler_to_dcm(roll, pitch, yaw, dcm);
const float fx = -dcm[0][2] * thrust;
const float fy = -dcm[1][2] * thrust;
const float fz = -dcm[2][2] * thrust;
uint16_t typeMask = (3<<10)|(7<<3)|(7<<0)|(1<<9); // select only FORCE control (disable everything else)
mavlink_msg_set_position_target_local_ned_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&message,
QGC::groundTimeUsecs(),
this->uasId,
0,
MAV_FRAME_LOCAL_NED,
typeMask,
0,
0,
0,
0,
0,
0,
fx,
fy,
fz,
0,
0
);
} else if (joystickMode == Vehicle::JoystickModeVelocity) {
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
// Send the the local velocity setpoint (local pos sp external message)
static float vx = 0;
static float vy = 0;
static float vz = 0;
static float yawrate = 0;
//XXX: find decent scaling
vx -= pitch;
vy += roll;
vz -= 2.0f*(thrust-0.5);
yawrate += yaw; //XXX: not sure what scale to apply here
uint16_t typeMask = (1<<10)|(7<<6)|(7<<0); // select only VELOCITY control
mavlink_msg_set_position_target_local_ned_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&message,
QGC::groundTimeUsecs(),
this->uasId,
0,
MAV_FRAME_LOCAL_NED,
typeMask,
0,
0,
0,
vx,
vy,
vz,
0,
0,
0,
0,
yawrate
);
} else if (joystickMode == Vehicle::JoystickModeRC) {
// Save the new manual control inputs
manualRollAngle = roll;
manualPitchAngle = pitch;
manualYawAngle = yaw;
manualThrust = thrust;
manualButtons = buttons;
// Store scaling values for all 3 axes
const float axesScaling = 1.0 * 1000.0;
// Calculate the new commands for roll, pitch, yaw, and thrust
const float newRollCommand = roll * axesScaling;
// negate pitch value because pitch is negative for pitching forward but mavlink message argument is positive for forward
const float newPitchCommand = -pitch * axesScaling;
const float newYawCommand = yaw * axesScaling;
const float newThrustCommand = thrust * axesScaling;
//qDebug() << newRollCommand << newPitchCommand << newYawCommand << newThrustCommand;
// Send the MANUAL_COMMAND message
mavlink_msg_manual_control_pack(mavlink->getSystemId(), mavlink->getComponentId(), &message, this->uasId, newPitchCommand, newRollCommand, newThrustCommand, newYawCommand, buttons);
// Emit an update in control values to other UI elements, like the HSI display
emit attitudeThrustSetPointChanged(this, roll, pitch, yaw, thrust, QGC::groundTimeMilliseconds());