Newer
Older
case StartCalibrationLevel:
accelCal = 2;
break;
case StartCalibrationEsc:
escCal = 1;
break;
case StartCalibrationUavcanEsc:
escCal = 2;
break;
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&msg,
uasId,
0, // target component
MAV_CMD_PREFLIGHT_CALIBRATION, // command id
0, // 0=first transmission of command
gyroCal, // gyro cal
magCal, // mag cal
0, // ground pressure
radioCal, // radio cal
accelCal, // accel cal
airspeedCal, // airspeed cal
Lorenz Meier
committed
}
Lorenz Meier
committed
{
if (!_vehicle) {
return;
}
Lorenz Meier
committed
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&msg,
uasId,
0, // target component
MAV_CMD_PREFLIGHT_CALIBRATION, // command id
0, // 0=first transmission of command
0, // gyro cal
0, // mag cal
0, // ground pressure
0, // radio cal
0, // accel cal
0, // airspeed cal
0); // unused
void UAS::startBusConfig(UASInterface::StartBusConfigType calType)
{
if (!_vehicle) {
return;
}
switch (calType) {
case StartBusConfigActuators:
actuatorCal = 1;
break;
case EndBusConfigActuators:
actuatorCal = 0;
break;
}
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&msg,
uasId,
0, // target component
MAV_CMD_PREFLIGHT_UAVCAN, // command id
0, // 0=first transmission of command
actuatorCal, // actuators
0,
0,
0,
0,
0,
0);
}
void UAS::stopBusConfig(void)
{
if (!_vehicle) {
return;
}
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&msg,
uasId,
0, // target component
MAV_CMD_PREFLIGHT_UAVCAN, // command id
0, // 0=first transmission of command
0,
0,
0,
0,
0,
0,
0);
/**
* Check if time is smaller than 40 years, assuming no system without Unix
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
* timestamp runs longer than 40 years continuously without reboot. In worst case
* this will add/subtract the communication delay between GCS and MAV, it will
* never alter the timestamp in a safety critical way.
*/
quint64 UAS::getUnixReferenceTime(quint64 time)
{
// Same as getUnixTime, but does not react to attitudeStamped mode
if (time == 0)
{
// qDebug() << "XNEW time:" <<QGC::groundTimeMilliseconds();
return QGC::groundTimeMilliseconds();
}
// Check if time is smaller than 40 years,
// assuming no system without Unix timestamp
// runs longer than 40 years continuously without
// reboot. In worst case this will add/subtract the
// communication delay between GCS and MAV,
// it will never alter the timestamp in a safety
// critical way.
//
// Calculation:
// 40 years
// 365 days
// 24 hours
// 60 minutes
// 60 seconds
// 1000 milliseconds
// 1000 microseconds
#ifndef _MSC_VER
else if (time < 1261440000000000LLU)
#else
else if (time < 1261440000000000)
#endif
{
// qDebug() << "GEN time:" << time/1000 + onboardTimeOffset;
if (onboardTimeOffset == 0)
{
onboardTimeOffset = QGC::groundTimeMilliseconds() - time/1000;
}
return time/1000 + onboardTimeOffset;
}
else
{
// Time is not zero and larger than 40 years -> has to be
// a Unix epoch timestamp. Do nothing.
return time/1000;
}
}
/**
* @warning If attitudeStamped is enabled, this function will not actually return
* the precise time stamp of this measurement augmented to UNIX time, but will
* MOVE the timestamp IN TIME to match the last measured attitude. There is no
* reason why one would want this, except for system setups where the onboard
* clock is not present or broken and datasets should be collected that are still
* roughly synchronized. PLEASE NOTE THAT ENABLING ATTITUDE STAMPED RUINS THE
* SCIENTIFIC NATURE OF THE CORRECT LOGGING FUNCTIONS OF QGROUNDCONTROL!
*/
quint64 UAS::getUnixTimeFromMs(quint64 time)
{
return getUnixTime(time*1000);
}
/**
* @warning If attitudeStamped is enabled, this function will not actually return
* the precise time stam of this measurement augmented to UNIX time, but will
* MOVE the timestamp IN TIME to match the last measured attitude. There is no
* reason why one would want this, except for system setups where the onboard
* clock is not present or broken and datasets should be collected that are
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
* still roughly synchronized. PLEASE NOTE THAT ENABLING ATTITUDE STAMPED
* RUINS THE SCIENTIFIC NATURE OF THE CORRECT LOGGING FUNCTIONS OF QGROUNDCONTROL!
*/
quint64 UAS::getUnixTime(quint64 time)
{
quint64 ret = 0;
if (attitudeStamped)
{
ret = lastAttitude;
}
if (time == 0)
{
ret = QGC::groundTimeMilliseconds();
}
// Check if time is smaller than 40 years,
// assuming no system without Unix timestamp
// runs longer than 40 years continuously without
// reboot. In worst case this will add/subtract the
// communication delay between GCS and MAV,
// it will never alter the timestamp in a safety
// critical way.
//
// Calculation:
// 40 years
// 365 days
// 24 hours
// 60 minutes
// 60 seconds
// 1000 milliseconds
// 1000 microseconds
#ifndef _MSC_VER
else if (time < 1261440000000000LLU)
#else
else if (time < 1261440000000000)
#endif
{
// qDebug() << "GEN time:" << time/1000 + onboardTimeOffset;
if (onboardTimeOffset == 0 || time < (lastNonNullTime - 100))
{
lastNonNullTime = time;
onboardTimeOffset = QGC::groundTimeMilliseconds() - time/1000;
}
if (time > lastNonNullTime) lastNonNullTime = time;
ret = time/1000 + onboardTimeOffset;
}
else
{
// Time is not zero and larger than 40 years -> has to be
// a Unix epoch timestamp. Do nothing.
ret = time/1000;
}
return ret;
}
/**
* @param value battery voltage
*/
Lorenz Meier
committed
float UAS::filterVoltage(float value)
Lorenz Meier
committed
if (lpVoltage < 0.0f) {
lpVoltage = value;
}
lpVoltage = lpVoltage * 0.6f + value * 0.4f;
return lpVoltage;
/**
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
* Get the status of the code and a description of the status.
* Status can be unitialized, booting up, calibrating sensors, active
* standby, cirtical, emergency, shutdown or unknown.
*/
void UAS::getStatusForCode(int statusCode, QString& uasState, QString& stateDescription)
{
switch (statusCode)
{
case MAV_STATE_UNINIT:
uasState = tr("UNINIT");
stateDescription = tr("Unitialized, booting up.");
break;
case MAV_STATE_BOOT:
uasState = tr("BOOT");
stateDescription = tr("Booting system, please wait.");
break;
case MAV_STATE_CALIBRATING:
uasState = tr("CALIBRATING");
stateDescription = tr("Calibrating sensors, please wait.");
break;
case MAV_STATE_ACTIVE:
uasState = tr("ACTIVE");
stateDescription = tr("Active, normal operation.");
break;
case MAV_STATE_STANDBY:
uasState = tr("STANDBY");
stateDescription = tr("Standby mode, ready for launch.");
break;
case MAV_STATE_CRITICAL:
uasState = tr("CRITICAL");
stateDescription = tr("FAILURE: Continuing operation.");
break;
case MAV_STATE_EMERGENCY:
uasState = tr("EMERGENCY");
stateDescription = tr("EMERGENCY: Land Immediately!");
break;
//case MAV_STATE_HILSIM:
//uasState = tr("HIL SIM");
//stateDescription = tr("HIL Simulation, Sensors read from SIM");
//break;
case MAV_STATE_POWEROFF:
uasState = tr("SHUTDOWN");
stateDescription = tr("Powering off system.");
break;
default:
uasState = tr("UNKNOWN");
stateDescription = tr("Unknown system state");
break;
}
}
QImage UAS::getImage()
{
// qDebug() << "IMAGE TYPE:" << imageType;
// RAW greyscale
if (imageType == MAVLINK_DATA_STREAM_IMG_RAW8U)
{
// Construct PGM header
QString header("P5\n%1 %2\n%3\n");
header = header.arg(imageWidth).arg(imageHeight).arg(imgColors);
QByteArray tmpImage(header.toStdString().c_str(), header.length());
tmpImage.append(imageRecBuffer);
//qDebug() << "IMAGE SIZE:" << tmpImage.size() << "HEADER SIZE: (15):" << header.size() << "HEADER: " << header;
if (imageRecBuffer.isNull())
{
qDebug()<< "could not convertToPGM()";
return QImage();
}
if (!image.loadFromData(tmpImage, "PGM"))
{
qDebug()<< __FILE__ << __LINE__ << "could not create extracted image";
return QImage();
}
}
// BMP with header
else if (imageType == MAVLINK_DATA_STREAM_IMG_BMP ||
imageType == MAVLINK_DATA_STREAM_IMG_JPEG ||
imageType == MAVLINK_DATA_STREAM_IMG_PGM ||
imageType == MAVLINK_DATA_STREAM_IMG_PNG)
{
if (!image.loadFromData(imageRecBuffer))
{
qDebug() << __FILE__ << __LINE__ << "Loading data from image buffer failed!";
// Restart statemachine
imagePacketsArrived = 0;
imagePackets = 0;
imageRecBuffer.clear();
return image;
}
void UAS::requestImage()
{
if (!_vehicle) {
return;
}
qDebug() << "trying to get an image from the uas...";
// check if there is already an image transmission going on
if (imagePacketsArrived == 0)
{
mavlink_message_t msg;
mavlink_msg_data_transmission_handshake_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, MAVLINK_DATA_STREAM_IMG_JPEG, 0, 0, 0, 0, 0, 50);
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
}
}
/* MANAGEMENT */
/**
*
* @return The uptime in milliseconds
*
*/
quint64 UAS::getUptime() const
{
if(startTime == 0)
{
return 0;
}
else
{
return QGC::groundTimeMilliseconds() - startTime;
}
}
//TODO update this to use the parameter manager / param data model instead
void UAS::processParamValueMsg(mavlink_message_t& msg, const QString& paramName, const mavlink_param_value_t& rawValue, mavlink_param_union_t& paramUnion)
{
int compId = msg.compid;
// Insert with correct type
switch (rawValue.param_type) {
case MAV_PARAM_TYPE_REAL32:
case MAV_PARAM_TYPE_UINT8:
case MAV_PARAM_TYPE_INT16:
case MAV_PARAM_TYPE_UINT32:
case MAV_PARAM_TYPE_INT32:
default:
qCritical() << "INVALID DATA TYPE USED AS PARAMETER VALUE: " << rawValue.param_type;
qCDebug(UASLog) << "Received PARAM_VALUE" << paramName << paramValue << rawValue.param_type;
emit parameterUpdate(uasId, compId, paramName, rawValue.param_count, rawValue.param_index, rawValue.param_type, paramValue);
}
void UAS::executeCommand(MAV_CMD command, int confirmation, float param1, float param2, float param3, float param4, float param5, float param6, float param7, int component)
{
if (!_vehicle) {
return;
}
mavlink_message_t msg;
mavlink_command_long_t cmd;
cmd.command = (uint16_t)command;
cmd.confirmation = confirmation;
cmd.param1 = param1;
cmd.param2 = param2;
cmd.param3 = param3;
cmd.param4 = param4;
cmd.param5 = param5;
cmd.param6 = param6;
cmd.param7 = param7;
cmd.target_system = uasId;
cmd.target_component = component;
mavlink_msg_command_long_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &cmd);
/**
* Set the manual control commands.
* This can only be done if the system has manual inputs enabled and is armed.
*/
void UAS::setExternalControlSetpoint(float roll, float pitch, float yaw, float thrust, quint16 buttons, int joystickMode)
if (!_vehicle) {
return;
}
Bryant Mairs
committed
// Store the previous manual commands
static float manualRollAngle = 0.0;
static float manualPitchAngle = 0.0;
static float manualYawAngle = 0.0;
static float manualThrust = 0.0;
static quint16 manualButtons = 0;
static quint8 countSinceLastTransmission = 0; // Track how many calls to this function have occurred since the last MAVLink transmission
// Transmit the external setpoints only if they've changed OR if it's been a little bit since they were last transmit. To make sure there aren't issues with
// response rate, we make sure that a message is transmit when the commands have changed, then one more time, and then switch to the lower transmission rate
// if no command inputs have changed.
// The default transmission rate is 25Hz, but when no inputs have changed it drops down to 5Hz.
bool sendCommand = false;
if (countSinceLastTransmission++ >= 5) {
sendCommand = true;
countSinceLastTransmission = 0;
} else if ((!isnan(roll) && roll != manualRollAngle) || (!isnan(pitch) && pitch != manualPitchAngle) ||
(!isnan(yaw) && yaw != manualYawAngle) || (!isnan(thrust) && thrust != manualThrust) ||
buttons != manualButtons) {
sendCommand = true;
// Ensure that another message will be sent the next time this function is called
countSinceLastTransmission = 10;
}
Julian Oes
committed
// Now if we should trigger an update, let's do that
if (sendCommand) {
// Save the new manual control inputs
manualRollAngle = roll;
manualPitchAngle = pitch;
manualYawAngle = yaw;
manualThrust = thrust;
manualButtons = buttons;
mavlink_message_t message;
if (joystickMode == Vehicle::JoystickModeAttitude) {
// send an external attitude setpoint command (rate control disabled)
float attitudeQuaternion[4];
mavlink_euler_to_quaternion(roll, pitch, yaw, attitudeQuaternion);
uint8_t typeMask = 0x7; // disable rate control
mavlink_msg_set_attitude_target_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&message,
QGC::groundTimeUsecs(),
this->uasId,
0,
typeMask,
attitudeQuaternion,
0,
0,
0,
thrust
);
} else if (joystickMode == Vehicle::JoystickModePosition) {
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
// Send the the local position setpoint (local pos sp external message)
static float px = 0;
static float py = 0;
static float pz = 0;
//XXX: find decent scaling
px -= pitch;
py += roll;
pz -= 2.0f*(thrust-0.5);
uint16_t typeMask = (1<<11)|(7<<6)|(7<<3); // select only POSITION control
mavlink_msg_set_position_target_local_ned_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&message,
QGC::groundTimeUsecs(),
this->uasId,
0,
MAV_FRAME_LOCAL_NED,
typeMask,
px,
py,
pz,
0,
0,
0,
0,
0,
0,
yaw,
0
);
} else if (joystickMode == Vehicle::JoystickModeForce) {
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
// Send the the force setpoint (local pos sp external message)
float dcm[3][3];
mavlink_euler_to_dcm(roll, pitch, yaw, dcm);
const float fx = -dcm[0][2] * thrust;
const float fy = -dcm[1][2] * thrust;
const float fz = -dcm[2][2] * thrust;
uint16_t typeMask = (3<<10)|(7<<3)|(7<<0)|(1<<9); // select only FORCE control (disable everything else)
mavlink_msg_set_position_target_local_ned_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&message,
QGC::groundTimeUsecs(),
this->uasId,
0,
MAV_FRAME_LOCAL_NED,
typeMask,
0,
0,
0,
0,
0,
0,
fx,
fy,
fz,
0,
0
);
} else if (joystickMode == Vehicle::JoystickModeVelocity) {
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
// Send the the local velocity setpoint (local pos sp external message)
static float vx = 0;
static float vy = 0;
static float vz = 0;
static float yawrate = 0;
//XXX: find decent scaling
vx -= pitch;
vy += roll;
vz -= 2.0f*(thrust-0.5);
yawrate += yaw; //XXX: not sure what scale to apply here
uint16_t typeMask = (1<<10)|(7<<6)|(7<<0); // select only VELOCITY control
mavlink_msg_set_position_target_local_ned_pack(mavlink->getSystemId(),
mavlink->getComponentId(),
&message,
QGC::groundTimeUsecs(),
this->uasId,
0,
MAV_FRAME_LOCAL_NED,
typeMask,
0,
0,
0,
vx,
vy,
vz,
0,
0,
0,
0,
yawrate
);
} else if (joystickMode == Vehicle::JoystickModeRC) {
// Save the new manual control inputs
manualRollAngle = roll;
manualPitchAngle = pitch;
manualYawAngle = yaw;
manualThrust = thrust;
manualButtons = buttons;
// Store scaling values for all 3 axes
const float axesScaling = 1.0 * 1000.0;
// Calculate the new commands for roll, pitch, yaw, and thrust
const float newRollCommand = roll * axesScaling;
// negate pitch value because pitch is negative for pitching forward but mavlink message argument is positive for forward
const float newPitchCommand = -pitch * axesScaling;
const float newYawCommand = yaw * axesScaling;
const float newThrustCommand = thrust * axesScaling;
//qDebug() << newRollCommand << newPitchCommand << newYawCommand << newThrustCommand;
// Send the MANUAL_COMMAND message
mavlink_msg_manual_control_pack(mavlink->getSystemId(), mavlink->getComponentId(), &message, this->uasId, newPitchCommand, newRollCommand, newThrustCommand, newYawCommand, buttons);
// Emit an update in control values to other UI elements, like the HSI display
emit attitudeThrustSetPointChanged(this, roll, pitch, yaw, thrust, QGC::groundTimeMilliseconds());
void UAS::setManual6DOFControlCommands(double x, double y, double z, double roll, double pitch, double yaw)
{
if (!_vehicle) {
return;
}
// If system has manual inputs enabled and is armed
if(((base_mode & MAV_MODE_FLAG_DECODE_POSITION_MANUAL) && (base_mode & MAV_MODE_FLAG_DECODE_POSITION_SAFETY)) || (base_mode & MAV_MODE_FLAG_HIL_ENABLED))
{
mavlink_message_t message;
Lorenz Meier
committed
float q[4];
mavlink_euler_to_quaternion(roll, pitch, yaw, q);
Lorenz Meier
committed
// Do not control rates and throttle
quint8 mask = (1 << 0) | (1 << 1) | (1 << 2); // ignore rates
Lorenz Meier
committed
mask |= (1 << 6); // ignore throttle
mavlink_msg_set_attitude_target_pack(mavlink->getSystemId(), mavlink->getComponentId(),
&message, QGC::groundTimeMilliseconds(), this->uasId, 0,
mask, q, 0, 0, 0, 0);
quint16 position_mask = (1 << 3) | (1 << 4) | (1 << 5) |
Lorenz Meier
committed
mavlink_msg_set_position_target_local_ned_pack(mavlink->getSystemId(), mavlink->getComponentId(),
&message, QGC::groundTimeMilliseconds(), this->uasId, 0,
MAV_FRAME_LOCAL_NED, position_mask, x, y, z, 0, 0, 0, 0, 0, 0, yaw, yawrate);
Lorenz Meier
committed
qDebug() << __FILE__ << __LINE__ << ": SENT 6DOF CONTROL MESSAGES: x" << x << " y: " << y << " z: " << z << " roll: " << roll << " pitch: " << pitch << " yaw: " << yaw;
//emit attitudeThrustSetPointChanged(this, roll, pitch, yaw, thrust, QGC::groundTimeMilliseconds());
}
else
{
qDebug() << "3DMOUSE/MANUAL CONTROL: IGNORING COMMANDS: Set mode to MANUAL to send 3DMouse commands first";
}
*/
void UAS::pairRX(int rxType, int rxSubType)
{
if (!_vehicle) {
return;
}
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_START_RX_PAIR, 0, rxType, rxSubType, 0, 0, 0, 0, 0);
/**
* If enabled, connect the flight gear link.
*/
void UAS::enableHilFlightGear(bool enable, QString options, bool sensorHil, QObject * configuration)
QGCFlightGearLink* link = dynamic_cast<QGCFlightGearLink*>(simulation);
// Delete wrong sim
if (simulation) {
stopHil();
delete simulation;
}
simulation = new QGCFlightGearLink(_vehicle, options);
Lorenz Meier
committed
xacc_var = noise_scaler * 0.2914f;
yacc_var = noise_scaler * 0.2914f;
zacc_var = noise_scaler * 0.9577f;
rollspeed_var = noise_scaler * 0.8126f;
pitchspeed_var = noise_scaler * 0.6145f;
yawspeed_var = noise_scaler * 0.5852f;
xmag_var = noise_scaler * 0.0786f;
ymag_var = noise_scaler * 0.0566f;
zmag_var = noise_scaler * 0.0333f;
abs_pressure_var = noise_scaler * 0.5604f;
diff_pressure_var = noise_scaler * 0.2604f;
pressure_alt_var = noise_scaler * 0.5604f;
temperature_var = noise_scaler * 0.7290f;
Lorenz Meier
committed
// Connect Flight Gear Link
link = dynamic_cast<QGCFlightGearLink*>(simulation);
link->setStartupArguments(options);
// FIXME: this signal is not on the base hil configuration widget, only on the FG widget
//QObject::connect(configuration, SIGNAL(barometerOffsetChanged(float)), link, SLOT(setBarometerOffset(float)));
Lorenz Meier
committed
if (enable)
{
startHil();
}
else
{
stopHil();
}
}
Lorenz Meier
committed
/**
* If enabled, connect the JSBSim link.
*/
Lorenz Meier
committed
void UAS::enableHilJSBSim(bool enable, QString options)
{
QGCJSBSimLink* link = dynamic_cast<QGCJSBSimLink*>(simulation);
Lorenz Meier
committed
// Delete wrong sim
if (simulation) {
stopHil();
delete simulation;
}
simulation = new QGCJSBSimLink(_vehicle, options);
Lorenz Meier
committed
}
// Connect Flight Gear Link
link = dynamic_cast<QGCJSBSimLink*>(simulation);
link->setStartupArguments(options);
if (enable)
{
startHil();
}
else
{
stopHil();
}
}
/**
* If enabled, connect the X-plane gear link.
*/
void UAS::enableHilXPlane(bool enable)
{
QGCXPlaneLink* link = dynamic_cast<QGCXPlaneLink*>(simulation);
if (simulation) {
stopHil();
delete simulation;
}
simulation = new QGCXPlaneLink(_vehicle);
Lorenz Meier
committed
xacc_var = noise_scaler * 0.2914f;
yacc_var = noise_scaler * 0.2914f;
zacc_var = noise_scaler * 0.9577f;
rollspeed_var = noise_scaler * 0.8126f;
pitchspeed_var = noise_scaler * 0.6145f;
yawspeed_var = noise_scaler * 0.5852f;
xmag_var = noise_scaler * 0.0786f;
ymag_var = noise_scaler * 0.0566f;
zmag_var = noise_scaler * 0.0333f;
abs_pressure_var = noise_scaler * 0.5604f;
diff_pressure_var = noise_scaler * 0.2604f;
pressure_alt_var = noise_scaler * 0.5604f;
temperature_var = noise_scaler * 0.7290f;
}
// Connect X-Plane Link
if (enable)
{
startHil();
}
else
{
stopHil();
}
}
/**
* @param time_us Timestamp (microseconds since UNIX epoch or microseconds since system boot)
* @param roll Roll angle (rad)
* @param pitch Pitch angle (rad)
* @param yaw Yaw angle (rad)
* @param rollspeed Roll angular speed (rad/s)
* @param pitchspeed Pitch angular speed (rad/s)
* @param yawspeed Yaw angular speed (rad/s)
* @param lat Latitude, expressed as * 1E7
* @param lon Longitude, expressed as * 1E7
* @param alt Altitude in meters, expressed as * 1000 (millimeters)
* @param vx Ground X Speed (Latitude), expressed as m/s * 100
* @param vy Ground Y Speed (Longitude), expressed as m/s * 100
* @param vz Ground Z Speed (Altitude), expressed as m/s * 100
* @param xacc X acceleration (mg)
* @param yacc Y acceleration (mg)
* @param zacc Z acceleration (mg)
*/
void UAS::sendHilGroundTruth(quint64 time_us, float roll, float pitch, float yaw, float rollspeed,
float pitchspeed, float yawspeed, double lat, double lon, double alt,
float vx, float vy, float vz, float ind_airspeed, float true_airspeed, float xacc, float yacc, float zacc)
{
Don Gagne
committed
Q_UNUSED(time_us);
Q_UNUSED(xacc);
Q_UNUSED(yacc);
Q_UNUSED(zacc);
// Emit attitude for cross-check
emit valueChanged(uasId, "roll sim", "rad", roll, getUnixTime());
emit valueChanged(uasId, "pitch sim", "rad", pitch, getUnixTime());
emit valueChanged(uasId, "yaw sim", "rad", yaw, getUnixTime());
emit valueChanged(uasId, "roll rate sim", "rad/s", rollspeed, getUnixTime());
emit valueChanged(uasId, "pitch rate sim", "rad/s", pitchspeed, getUnixTime());
emit valueChanged(uasId, "yaw rate sim", "rad/s", yawspeed, getUnixTime());
emit valueChanged(uasId, "lat sim", "deg", lat*1e7, getUnixTime());
emit valueChanged(uasId, "lon sim", "deg", lon*1e7, getUnixTime());
emit valueChanged(uasId, "alt sim", "deg", alt*1e3, getUnixTime());
emit valueChanged(uasId, "vx sim", "m/s", vx*1e2, getUnixTime());
emit valueChanged(uasId, "vy sim", "m/s", vy*1e2, getUnixTime());
emit valueChanged(uasId, "vz sim", "m/s", vz*1e2, getUnixTime());
emit valueChanged(uasId, "IAS sim", "m/s", ind_airspeed, getUnixTime());
emit valueChanged(uasId, "TAS sim", "m/s", true_airspeed, getUnixTime());
}
/**
* @param time_us Timestamp (microseconds since UNIX epoch or microseconds since system boot)
* @param roll Roll angle (rad)
* @param pitch Pitch angle (rad)
* @param yaw Yaw angle (rad)
* @param rollspeed Roll angular speed (rad/s)
* @param pitchspeed Pitch angular speed (rad/s)
* @param yawspeed Yaw angular speed (rad/s)
* @param lat Latitude, expressed as * 1E7
* @param lon Longitude, expressed as * 1E7
* @param alt Altitude in meters, expressed as * 1000 (millimeters)
* @param vx Ground X Speed (Latitude), expressed as m/s * 100
* @param vy Ground Y Speed (Longitude), expressed as m/s * 100
* @param vz Ground Z Speed (Altitude), expressed as m/s * 100
* @param xacc X acceleration (mg)
* @param yacc Y acceleration (mg)
* @param zacc Z acceleration (mg)
*/
void UAS::sendHilState(quint64 time_us, float roll, float pitch, float yaw, float rollspeed,
float pitchspeed, float yawspeed, double lat, double lon, double alt,
float vx, float vy, float vz, float ind_airspeed, float true_airspeed, float xacc, float yacc, float zacc)
if (!_vehicle) {
return;
}
if (this->base_mode & MAV_MODE_FLAG_HIL_ENABLED)
float q[4];
double cosPhi_2 = cos(double(roll) / 2.0);
double sinPhi_2 = sin(double(roll) / 2.0);
double cosTheta_2 = cos(double(pitch) / 2.0);
double sinTheta_2 = sin(double(pitch) / 2.0);
double cosPsi_2 = cos(double(yaw) / 2.0);
double sinPsi_2 = sin(double(yaw) / 2.0);
q[0] = (cosPhi_2 * cosTheta_2 * cosPsi_2 +
sinPhi_2 * sinTheta_2 * sinPsi_2);
q[1] = (sinPhi_2 * cosTheta_2 * cosPsi_2 -
cosPhi_2 * sinTheta_2 * sinPsi_2);
q[2] = (cosPhi_2 * sinTheta_2 * cosPsi_2 +
sinPhi_2 * cosTheta_2 * sinPsi_2);
q[3] = (cosPhi_2 * cosTheta_2 * sinPsi_2 -
sinPhi_2 * sinTheta_2 * cosPsi_2);
mavlink_message_t msg;
Lorenz Meier
committed
mavlink_msg_hil_state_quaternion_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg,
time_us, q, rollspeed, pitchspeed, yawspeed,
lat*1e7f, lon*1e7f, alt*1000, vx*100, vy*100, vz*100, ind_airspeed*100, true_airspeed*100, xacc*1000/9.81, yacc*1000/9.81, zacc*1000/9.81);
}
else
{
// Attempt to set HIL mode
qDebug() << __FILE__ << __LINE__ << "HIL is onboard not enabled, trying to enable.";
}
}
#ifndef __mobile__
float UAS::addZeroMeanNoise(float truth_meas, float noise_var)
{
/* Calculate normally distributed variable noise with mean = 0 and variance = noise_var. Calculated according to
Box-Muller transform */
static const float epsilon = std::numeric_limits<float>::min(); //used to ensure non-zero uniform numbers
static float z0; //calculated normal distribution random variables with mu = 0, var = 1;
float u1, u2; //random variables generated from c++ rand();
/*Generate random variables in range (0 1] */
do
{
//TODO seed rand() with srand(time) but srand(time should be called once on startup)
//currently this will generate repeatable random noise
u1 = rand() * (1.0 / RAND_MAX);
u2 = rand() * (1.0 / RAND_MAX);
}
while ( u1 <= epsilon ); //Have a catch to ensure non-zero for log()
Lorenz Meier
committed
z0 = sqrt(-2.0 * log(u1)) * cos(2.0f * M_PI * u2); //calculate normally distributed variable with mu = 0, var = 1
//TODO add bias term that changes randomly to simulate accelerometer and gyro bias the exf should handle these
//as well
Lorenz Meier
committed
float noise = z0 * sqrt(noise_var); //calculate normally distributed variable with mu = 0, std = var^2
//Finally gaurd against any case where the noise is not real
Lorenz Meier
committed
if(std::isfinite(noise)) {
return truth_meas + noise;
Lorenz Meier
committed
} else {
return truth_meas;
}
}
#endif
Thomas Gubler
committed
/*
* @param abs_pressure Absolute Pressure (hPa)
* @param diff_pressure Differential Pressure (hPa)
*/
void UAS::sendHilSensors(quint64 time_us, float xacc, float yacc, float zacc, float rollspeed, float pitchspeed, float yawspeed,
float xmag, float ymag, float zmag, float abs_pressure, float diff_pressure, float pressure_alt, float temperature, quint32 fields_changed)
if (!_vehicle) {
return;
}
if (this->base_mode & MAV_MODE_FLAG_HIL_ENABLED)
float xacc_corrupt = addZeroMeanNoise(xacc, xacc_var);
float yacc_corrupt = addZeroMeanNoise(yacc, yacc_var);
float zacc_corrupt = addZeroMeanNoise(zacc, zacc_var);
float rollspeed_corrupt = addZeroMeanNoise(rollspeed,rollspeed_var);
float pitchspeed_corrupt = addZeroMeanNoise(pitchspeed,pitchspeed_var);
float yawspeed_corrupt = addZeroMeanNoise(yawspeed,yawspeed_var);
float xmag_corrupt = addZeroMeanNoise(xmag, xmag_var);
float ymag_corrupt = addZeroMeanNoise(ymag, ymag_var);
float zmag_corrupt = addZeroMeanNoise(zmag, zmag_var);
float abs_pressure_corrupt = addZeroMeanNoise(abs_pressure,abs_pressure_var);
float diff_pressure_corrupt = addZeroMeanNoise(diff_pressure, diff_pressure_var);
float pressure_alt_corrupt = addZeroMeanNoise(pressure_alt, pressure_alt_var);
float temperature_corrupt = addZeroMeanNoise(temperature,temperature_var);
mavlink_msg_hil_sensor_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg,
time_us, xacc_corrupt, yacc_corrupt, zacc_corrupt, rollspeed_corrupt, pitchspeed_corrupt,
yawspeed_corrupt, xmag_corrupt, ymag_corrupt, zmag_corrupt, abs_pressure_corrupt,