Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
// for (int i = 0; i < 8; i++)
// emit valueChanged(uasId, str.arg(vect.address+(i*4)), "i32", mem2[i], time);
// break;
// case 6:
// for (int i = 0; i < 8; i++)
// emit valueChanged(uasId, str.arg(vect.address+(i*4)), "float", mem4[i], time);
// break;
// }
// }
// }
// break;
//#ifdef MAVLINK_ENABLED_PIXHAWK
// case MAVLINK_MSG_ID_POINT_OF_INTEREST:
// {
// mavlink_point_of_interest_t poi;
// mavlink_msg_point_of_interest_decode(&message, &poi);
// emit poiFound(this, poi.type, poi.color, QString((QChar*)poi.name, MAVLINK_MSG_POINT_OF_INTEREST_FIELD_NAME_LEN), poi.x, poi.y, poi.z);
// }
// break;
// case MAVLINK_MSG_ID_POINT_OF_INTEREST_CONNECTION:
// {
// mavlink_point_of_interest_connection_t poi;
// mavlink_msg_point_of_interest_connection_decode(&message, &poi);
// emit poiConnectionFound(this, poi.type, poi.color, QString((QChar*)poi.name, MAVLINK_MSG_POINT_OF_INTEREST_CONNECTION_FIELD_NAME_LEN), poi.x1, poi.y1, poi.z1, poi.x2, poi.y2, poi.z2);
// }
// break;
//#endif
case MAVLINK_MSG_ID_NAV_FILTER_BIAS:
{
mavlink_nav_filter_bias_t bias;
mavlink_msg_nav_filter_bias_decode(&message, &bias);
quint64 time = getUnixTime();
emit valueChanged(uasId, "b_f[0]", "raw", bias.accel_0, time);
emit valueChanged(uasId, "b_f[1]", "raw", bias.accel_1, time);
emit valueChanged(uasId, "b_f[2]", "raw", bias.accel_2, time);
emit valueChanged(uasId, "b_w[0]", "raw", bias.gyro_0, time);
emit valueChanged(uasId, "b_w[1]", "raw", bias.gyro_1, time);
emit valueChanged(uasId, "b_w[2]", "raw", bias.gyro_2, time);
}
break;
case MAVLINK_MSG_ID_RADIO_CALIBRATION:
{
mavlink_radio_calibration_t radioMsg;
mavlink_msg_radio_calibration_decode(&message, &radioMsg);
QVector<uint16_t> aileron;
QVector<uint16_t> elevator;
QVector<uint16_t> rudder;
QVector<uint16_t> gyro;
QVector<uint16_t> pitch;
QVector<uint16_t> throttle;
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_AILERON_LEN; ++i)
aileron << radioMsg.aileron[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_ELEVATOR_LEN; ++i)
elevator << radioMsg.elevator[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_RUDDER_LEN; ++i)
rudder << radioMsg.rudder[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_GYRO_LEN; ++i)
gyro << radioMsg.gyro[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_PITCH_LEN; ++i)
pitch << radioMsg.pitch[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_THROTTLE_LEN; ++i)
throttle << radioMsg.throttle[i];
QPointer<RadioCalibrationData> radioData = new RadioCalibrationData(aileron, elevator, rudder, gyro, pitch, throttle);
emit radioCalibrationReceived(radioData);
delete radioData;
}
break;
case MAVLINK_MSG_ID_LOCAL_POSITION_SETPOINT_SET:
default:
{
if (!unknownPackets.contains(message.msgid))
{
unknownPackets.append(message.msgid);
QString errString = tr("UNABLE TO DECODE MESSAGE NUMBER %1").arg(message.msgid);
GAudioOutput::instance()->say(errString+tr(", please check console for details."));
emit textMessageReceived(uasId, message.compid, 255, errString);
std::cout << "Unable to decode message from system " << std::dec << static_cast<int>(message.sysid) << " with message id:" << static_cast<int>(message.msgid) << std::endl;
//qDebug() << std::cerr << "Unable to decode message from system " << std::dec << static_cast<int>(message.acid) << " with message id:" << static_cast<int>(message.msgid) << std::endl;
}
void UAS::setHomePosition(double lat, double lon, double alt)
{
// Send new home position to UAS
mavlink_gps_set_global_origin_t home;
home.target_system = uasId;
home.target_component = 0; // ALL components
home.latitude = lat*1E7;
home.longitude = lon*1E7;
home.altitude = alt*1000;
Mariano Lizarraga
committed
qDebug() << "lat:" << home.latitude << " lon:" << home.longitude;
mavlink_message_t msg;
mavlink_msg_gps_set_global_origin_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &home);
sendMessage(msg);
}
void UAS::setLocalOriginAtCurrentGPSPosition()
{
bool result = false;
QMessageBox msgBox;
msgBox.setIcon(QMessageBox::Warning);
msgBox.setText("Setting new World Coordinate Frame Origin");
msgBox.setInformativeText("Do you want to set a new origin? Waypoints defined in the local frame will be shifted in their physical location");
msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel);
msgBox.setDefaultButton(QMessageBox::Cancel);
int ret = msgBox.exec();
// Close the message box shortly after the click to prevent accidental clicks
QTimer::singleShot(5000, &msgBox, SLOT(reject()));
if (ret == QMessageBox::Yes)
{
// FIXME MAVLINKV10PORTINGNEEDED
// mavlink_message_t msg;
// mavlink_msg_action_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), 0, MAV_ACTION_SET_ORIGIN);
// // Send message twice to increase chance that it reaches its goal
// sendMessage(msg);
// // Wait 5 ms
// MG::SLEEP::usleep(5000);
// // Send again
// sendMessage(msg);
result = true;
}
}
void UAS::setLocalPositionSetpoint(float x, float y, float z, float yaw)
{
#ifdef MAVLINK_ENABLED_PIXHAWK
mavlink_msg_position_control_setpoint_set_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, 0, x, y, z, yaw);
sendMessage(msg);
#else
Q_UNUSED(x);
Q_UNUSED(y);
Q_UNUSED(z);
Q_UNUSED(yaw);
#endif
void UAS::setLocalPositionOffset(float x, float y, float z, float yaw)
{
mavlink_message_t msg;
mavlink_msg_position_control_offset_set_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, x, y, z, yaw);
sendMessage(msg);
Q_UNUSED(x);
Q_UNUSED(y);
Q_UNUSED(z);
Q_UNUSED(yaw);
#endif
}
void UAS::startRadioControlCalibration()
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 0, 0, 1);
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_DO_CONTROL_VIDEO, 1, -1, -1, -1, 2);
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_DO_CONTROL_VIDEO, 1, -1, -1, -1, 0);
void UAS::startMagnetometerCalibration()
{
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 1, 0, 0);
}
void UAS::startGyroscopeCalibration()
{
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 1, 0, 0, 0);
}
void UAS::startPressureCalibration()
{
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 0, 1, 0);
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
quint64 UAS::getUnixReferenceTime(quint64 time)
{
// Same as getUnixTime, but does not react to attitudeStamped mode
if (time == 0)
{
// qDebug() << "XNEW time:" <<QGC::groundTimeMilliseconds();
return QGC::groundTimeMilliseconds();
}
// Check if time is smaller than 40 years,
// assuming no system without Unix timestamp
// runs longer than 40 years continuously without
// reboot. In worst case this will add/subtract the
// communication delay between GCS and MAV,
// it will never alter the timestamp in a safety
// critical way.
//
// Calculation:
// 40 years
// 365 days
// 24 hours
// 60 minutes
// 60 seconds
// 1000 milliseconds
// 1000 microseconds
#ifndef _MSC_VER
else if (time < 1261440000000000LLU)
#else
else if (time < 1261440000000000)
#endif
{
// qDebug() << "GEN time:" << time/1000 + onboardTimeOffset;
if (onboardTimeOffset == 0)
{
onboardTimeOffset = QGC::groundTimeMilliseconds() - time/1000;
}
return time/1000 + onboardTimeOffset;
}
else
{
// Time is not zero and larger than 40 years -> has to be
// a Unix epoch timestamp. Do nothing.
return time/1000;
}
}
/**
* @warning If attitudeStamped is enabled, this function will not actually return the precise time stamp
* of this measurement augmented to UNIX time, but will MOVE the timestamp IN TIME to match
* the last measured attitude. There is no reason why one would want this, except for
* system setups where the onboard clock is not present or broken and datasets should
* be collected that are still roughly synchronized. PLEASE NOTE THAT ENABLING ATTITUDE STAMPED
* RUINS THE SCIENTIFIC NATURE OF THE CORRECT LOGGING FUNCTIONS OF QGROUNDCONTROL!
*/
quint64 UAS::getUnixTime(quint64 time)
{
if (attitudeStamped)
{
return lastAttitude;
}
if (time == 0)
{
// qDebug() << "XNEW time:" <<QGC::groundTimeMilliseconds();
}
// Check if time is smaller than 40 years,
// assuming no system without Unix timestamp
// runs longer than 40 years continuously without
// reboot. In worst case this will add/subtract the
// communication delay between GCS and MAV,
// it will never alter the timestamp in a safety
// critical way.
//
// Calculation:
// 40 years
// 365 days
// 24 hours
// 60 minutes
// 60 seconds
// 1000 milliseconds
// 1000 microseconds
#ifndef _MSC_VER
else if (time < 1261440000000000LLU)
{
// qDebug() << "GEN time:" << time/1000 + onboardTimeOffset;
if (onboardTimeOffset == 0)
{
}
return time/1000 + onboardTimeOffset;
}
else
{
// Time is not zero and larger than 40 years -> has to be
// a Unix epoch timestamp. Do nothing.
return time/1000;
}
}
lm
committed
QList<QString> UAS::getParameterNames(int component)
{
if (parameters.contains(component))
{
lm
committed
return parameters.value(component)->keys();
}
else
{
lm
committed
return QList<QString>();
}
}
QList<int> UAS::getComponentIds()
{
return parameters.keys();
}
if (mode >= (int)MAV_MODE_PREFLIGHT && mode < (int)MAV_MODE_ENUM_END)
{
Mariano Lizarraga
committed
//this->mode = mode; //no call assignament, update receive message from UAS
mavlink_msg_set_mode_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, (uint8_t)uasId, (uint8_t)mode);
qDebug() << "SENDING REQUEST TO SET MODE TO SYSTEM" << uasId << ", REQUEST TO SET MODE " << (uint8_t)mode;
}
else
{
Mariano Lizarraga
committed
qDebug() << "uas Mode not assign: " << mode;
}
}
void UAS::sendMessage(mavlink_message_t message)
{
// Emit message on all links that are currently connected
foreach (LinkInterface* link, *links)
{
if (link)
{
sendMessage(link, message);
}
else
{
// Remove from list
links->removeAt(links->indexOf(link));
}
void UAS::forwardMessage(mavlink_message_t message)
{
// Emit message on all links that are currently connected
QList<LinkInterface*>link_list = LinkManager::instance()->getLinksForProtocol(mavlink);
foreach(LinkInterface* link, link_list)
{
if (link)
{
SerialLink* serial = dynamic_cast<SerialLink*>(link);
if(serial != 0)
{
for(int i=0; i<links->size(); i++)
{
if(serial != links->at(i))
{
qDebug()<<"Antenna tracking: Forwarding Over link: "<<serial->getName()<<" "<<serial;
sendMessage(serial, message);
}
}
}
}
}
}
void UAS::sendMessage(LinkInterface* link, mavlink_message_t message)
{
// Create buffer
uint8_t buffer[MAVLINK_MAX_PACKET_LEN];
// Write message into buffer, prepending start sign
int len = mavlink_msg_to_send_buffer(buffer, &message);
mavlink_finalize_message_chan(&message, mavlink->getSystemId(), mavlink->getComponentId(), link->getId(), message.len);
if (link->isConnected())
{
// Send the portion of the buffer now occupied by the message
link->writeBytes((const char*)buffer, len);
}
}
/**
* @param value battery voltage
*/
float UAS::filterVoltage(float value) const
return lpVoltage * 0.7f + value * 0.3f;
QString UAS::getNavModeText(int mode)
{
switch (mode)
{
case MAV_FLIGHT_MODE_PREFLIGHT:
return QString("PREFLIGHT");
case MAV_FLIGHT_MODE_MANUAL:
return QString("MANUAL");
case MAV_FLIGHT_MODE_AUTO_TAKEOFF:
return QString("TAKEOFF");
case MAV_FLIGHT_MODE_AUTO_HOLD:
return QString("HOLDING");
case MAV_FLIGHT_MODE_AUTO_MISSION:
return QString("MISSION");
case MAV_FLIGHT_MODE_AUTO_VECTOR:
return QString("VECTOR");
return QString("RETURNING");
break;
case MAV_FLIGHT_MODE_AUTO_LANDING:
return QString("LANDING");
break;
case MAV_FLIGHT_MODE_AUTO_LOST:
return QString("LOST");
break;
case MAV_FLIGHT_MODE_STABILIZE_RATES_ACRO:
return QString("S: RATE/ACRO");
break;
case MAV_FLIGHT_MODE_STABILIZE_LEVELING:
return QString("S: LEVELING");
break;
case MAV_FLIGHT_MODE_STABILIZE_ROLL_PITCH_ABSOLUTE:
return QString("S: R/P ABS");
break;
case MAV_FLIGHT_MODE_STABILIZE_ROLL_YAW_ALTITUDE:
return QString("S: R/Y ALT");
break;
case MAV_FLIGHT_MODE_STABILIZE_ROLL_PITCH_YAW_ALTITUDE:
return QString("S: R/P/Y ALT");
case MAV_FLIGHT_MODE_STABILIZE_CURSOR_CONTROL:
return QString("S: CURSOR");
break;
default:
return QString("UNKNOWN");
}
}
void UAS::getStatusForCode(int statusCode, QString& uasState, QString& stateDescription)
{
switch (statusCode)
{
stateDescription = tr("Unitialized, booting up.");
stateDescription = tr("Booting system, please wait.");
stateDescription = tr("Calibrating sensors, please wait.");
stateDescription = tr("Active, normal operation.");
stateDescription = tr("Standby mode, ready for liftoff.");
stateDescription = tr("FAILURE: Continuing operation.");
stateDescription = tr("EMERGENCY: Land Immediately!");
//uasState = tr("HIL SIM");
//stateDescription = tr("HIL Simulation, Sensors read from SIM");
//break;
Mariano Lizarraga
committed
stateDescription = tr("Powering off system.");
Mariano Lizarraga
committed
stateDescription = tr("Unknown system state");
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
#ifdef MAVLINK_ENABLED_PIXHAWK
qDebug() << "IMAGE TYPE:" << imageType;
// RAW greyscale
if (imageType == MAVLINK_DATA_STREAM_IMG_RAW8U)
{
// TODO FIXME Fabian
// RAW hardcoded to 22x22
int imgWidth = 22;
int imgHeight = 22;
int imgColors = 255;
//const int headerSize = 15;
// Construct PGM header
QString header("P5\n%1 %2\n%3\n");
header = header.arg(imgWidth).arg(imgHeight).arg(imgColors);
QByteArray tmpImage(header.toStdString().c_str(), header.toStdString().size());
tmpImage.append(imageRecBuffer);
//qDebug() << "IMAGE SIZE:" << tmpImage.size() << "HEADER SIZE: (15):" << header.size() << "HEADER: " << header;
if (imageRecBuffer.isNull())
{
qDebug()<< "could not convertToPGM()";
return QImage();
}
if (!image.loadFromData(tmpImage, "PGM"))
{
qDebug()<< "could not create extracted image";
return QImage();
}
}
// BMP with header
else if (imageType == MAVLINK_DATA_STREAM_IMG_BMP ||
imageType == MAVLINK_DATA_STREAM_IMG_JPEG ||
imageType == MAVLINK_DATA_STREAM_IMG_PGM ||
imageType == MAVLINK_DATA_STREAM_IMG_PNG)
{
if (!image.loadFromData(imageRecBuffer))
{
qDebug() << "Loading data from image buffer failed!";
}
}
// Restart statemachine
imagePacketsArrived = 0;
#else
return QImage();
}
void UAS::requestImage()
{
qDebug() << "trying to get an image from the uas...";
// check if there is already an image transmission going on
if (imagePacketsArrived == 0)
{
mavlink_message_t msg;
mavlink_msg_data_transmission_handshake_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, DATA_TYPE_JPEG_IMAGE, 0, 0, 0, 50);
sendMessage(msg);
}
#endif
/* MANAGEMENT */
/*
*
* @return The uptime in milliseconds
*
**/
quint64 UAS::getUptime() const
if(startTime == 0)
{
}
else
{
return MG::TIME::getGroundTimeNow() - startTime;
}
}
int UAS::getCommunicationStatus() const
void UAS::requestParameters()
{
mavlink_message_t msg;
mavlink_msg_param_request_list_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), 25);
}
{
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_PREFLIGHT_STORAGE, 1, 1, -1, -1, -1);
}
void UAS::readParametersFromStorage()
{
mavlink_msg_command_short_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_PREFLIGHT_STORAGE, 1, 0, -1, -1, -1);
void UAS::enableAllDataTransmission(int rate)
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
// 0 is a magic ID and will enable/disable the standard message set except for heartbeat
stream.req_stream_id = MAV_DATA_STREAM_ALL;
// Select the update rate in Hz the message should be send
// All messages will be send with their default rate
// TODO: use 0 to turn off and get rid of enable/disable? will require
// a different magic flag for turning on defaults, possibly something really high like 1111 ?
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
void UAS::enableRawSensorDataTransmission(int rate)
mavlink_request_data_stream_t stream;
stream.req_stream_id = MAV_DATA_STREAM_RAW_SENSORS;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
void UAS::enableExtendedSystemStatusTransmission(int rate)
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_EXTENDED_STATUS;
// Select the update rate in Hz the message should be send
// Start / stop the message
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
void UAS::enableRCChannelDataTransmission(int rate)
#if defined(MAVLINK_ENABLED_UALBERTA_MESSAGES)
mavlink_message_t msg;
mavlink_msg_request_rc_channels_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, enabled);
sendMessage(msg);
#else
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_RC_CHANNELS;
// Select the update rate in Hz the message should be send
// Start / stop the message
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
Mariano Lizarraga
committed
#endif
void UAS::enableRawControllerDataTransmission(int rate)
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_RAW_CONTROLLER;
// Select the update rate in Hz the message should be send
// Start / stop the message
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
//void UAS::enableRawSensorFusionTransmission(int rate)
//{
// // Buffers to write data to
// mavlink_message_t msg;
// mavlink_request_data_stream_t stream;
// // Select the message to request from now on
// stream.req_stream_id = MAV_DATA_STREAM_RAW_SENSOR_FUSION;
// // Select the update rate in Hz the message should be send
// stream.req_message_rate = rate;
// // Start / stop the message
// stream.start_stop = (rate) ? 1 : 0;
// // The system which should take this command
// stream.target_system = uasId;
// // The component / subsystem which should take this command
// stream.target_component = 0;
// // Encode and send the message
// mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// // Send message twice to increase chance of reception
// sendMessage(msg);
// sendMessage(msg);
//}
void UAS::enablePositionTransmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_POSITION;
// Select the update rate in Hz the message should be send
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_EXTRA1;
// Select the update rate in Hz the message should be send
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_EXTRA2;
// Select the update rate in Hz the message should be send
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_EXTRA3;
// Select the update rate in Hz the message should be send
// Start / stop the message
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
/**
* Set a parameter value onboard
*
* @param component The component to set the parameter
* @param id Name of the parameter
* @param value Parameter value
*/
void UAS::setParameter(const int component, const QString& id, const float value)
{
if (!id.isNull())
{
mavlink_message_t msg;
mavlink_param_set_t p;
p.param_value = value;
p.target_system = (uint8_t)uasId;
p.target_component = (uint8_t)component;
// Copy string into buffer, ensuring not to exceed the buffer size
for (unsigned int i = 0; i < sizeof(p.param_id); i++)
{
if ((int)i < id.length() && i < (sizeof(p.param_id) - 1))
{
p.param_id[i] = id.toAscii()[i];
}
// // Null termination at end of string or end of buffer
// else if ((int)i == id.length() || i == (sizeof(p.param_id) - 1))
// {
// p.param_id[i] = '\0';
// }
else
{
mavlink_msg_param_set_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &p);
sendMessage(msg);
void UAS::requestParameter(int component, int parameter)
{
mavlink_message_t msg;
mavlink_param_request_read_t read;
read.param_index = parameter;
read.target_system = uasId;
read.target_component = component;
mavlink_msg_param_request_read_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &read);
sendMessage(msg);
qDebug() << __FILE__ << __LINE__ << "REQUESTING PARAM RETRANSMISSION FROM COMPONENT" << component << "FOR PARAM ID" << parameter;
}
void UAS::setSystemType(int systemType)
{
type = systemType;
// If the airframe is still generic, change it to a close default type
if (airframe == 0)
{
switch (systemType)
{
airframe = QGC_AIRFRAME_EASYSTAR;
break;
airframe = QGC_AIRFRAME_MIKROKOPTER;
break;
}
}
emit systemSpecsChanged(uasId);
}
void UAS::setUASName(const QString& name)
{
this->name = name;
emit systemSpecsChanged(uasId);
void UAS::executeCommand(MAV_CMD command)
{
mavlink_message_t msg;
cmd.command = (uint8_t)command;
cmd.confirmation = 0;
cmd.param1 = 0.0f;
cmd.param2 = 0.0f;
cmd.param3 = 0.0f;
cmd.param4 = 0.0f;
cmd.target_system = uasId;
cmd.target_component = 0;
mavlink_msg_command_short_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &cmd);
sendMessage(msg);
}
void UAS::executeCommand(MAV_CMD command, int confirmation, float param1, float param2, float param3, float param4, int component)
{
mavlink_message_t msg;
mavlink_command_short_t cmd;
cmd.command = (uint8_t)command;
cmd.confirmation = confirmation;
cmd.param1 = param1;
cmd.param2 = param2;
cmd.param3 = param3;
cmd.param4 = param4;
cmd.target_system = uasId;
cmd.target_component = component;
mavlink_msg_command_short_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &cmd);
sendMessage(msg);
}
void UAS::executeCommand(MAV_CMD command, int confirmation, float param1, float param2, float param3, float param4, float param5, float param6, float param7, int component)
{
mavlink_message_t msg;
mavlink_command_long_t cmd;
cmd.command = (uint8_t)command;
cmd.confirmation = confirmation;
cmd.param1 = param1;
cmd.param2 = param2;
cmd.param3 = param3;
cmd.param4 = param4;
cmd.param5 = param5;
cmd.param6 = param6;
cmd.param7 = param7;
cmd.target_system = uasId;
cmd.target_component = component;
mavlink_msg_command_long_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &cmd);