Skip to content
Snippets Groups Projects
Select Git revision
  • master default protected
  • dev1
  • merge_branch_alt
  • original
  • rc1
  • phil
6 results

ComplexSchur.h

Blame
    • DonLakeFlyer's avatar
      1b700391
      · 1b700391
      DonLakeFlyer authored
      Update to latest Eigen to get rid of compiler warnings
      1b700391
      History
      DonLakeFlyer authored
      Update to latest Eigen to get rid of compiler warnings
    ComplexSchur.h 16.62 KiB
    // This file is part of Eigen, a lightweight C++ template library
    // for linear algebra.
    //
    // Copyright (C) 2009 Claire Maurice
    // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
    // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
    //
    // This Source Code Form is subject to the terms of the Mozilla
    // Public License v. 2.0. If a copy of the MPL was not distributed
    // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
    
    #ifndef EIGEN_COMPLEX_SCHUR_H
    #define EIGEN_COMPLEX_SCHUR_H
    
    #include "./HessenbergDecomposition.h"
    
    namespace Eigen { 
    
    namespace internal {
    template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
    }
    
    /** \eigenvalues_module \ingroup Eigenvalues_Module
      *
      *
      * \class ComplexSchur
      *
      * \brief Performs a complex Schur decomposition of a real or complex square matrix
      *
      * \tparam _MatrixType the type of the matrix of which we are
      * computing the Schur decomposition; this is expected to be an
      * instantiation of the Matrix class template.
      *
      * Given a real or complex square matrix A, this class computes the
      * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
      * complex matrix, and T is a complex upper triangular matrix.  The
      * diagonal of the matrix T corresponds to the eigenvalues of the
      * matrix A.
      *
      * Call the function compute() to compute the Schur decomposition of
      * a given matrix. Alternatively, you can use the 
      * ComplexSchur(const MatrixType&, bool) constructor which computes
      * the Schur decomposition at construction time. Once the
      * decomposition is computed, you can use the matrixU() and matrixT()
      * functions to retrieve the matrices U and V in the decomposition.
      *
      * \note This code is inspired from Jampack
      *
      * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
      */
    template<typename _MatrixType> class ComplexSchur
    {
      public:
        typedef _MatrixType MatrixType;
        enum {
          RowsAtCompileTime = MatrixType::RowsAtCompileTime,
          ColsAtCompileTime = MatrixType::ColsAtCompileTime,
          Options = MatrixType::Options,
          MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
          MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
        };
    
        /** \brief Scalar type for matrices of type \p _MatrixType. */
        typedef typename MatrixType::Scalar Scalar;
        typedef typename NumTraits<Scalar>::Real RealScalar;
        typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
    
        /** \brief Complex scalar type for \p _MatrixType. 
          *
          * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
          * \c float or \c double) and just \c Scalar if #Scalar is
          * complex.
          */
        typedef std::complex<RealScalar> ComplexScalar;
    
        /** \brief Type for the matrices in the Schur decomposition.
          *
          * This is a square matrix with entries of type #ComplexScalar. 
          * The size is the same as the size of \p _MatrixType.
          */
        typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
    
        /** \brief Default constructor.
          *
          * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
          *
          * The default constructor is useful in cases in which the user
          * intends to perform decompositions via compute().  The \p size
          * parameter is only used as a hint. It is not an error to give a
          * wrong \p size, but it may impair performance.
          *
          * \sa compute() for an example.
          */
        explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
          : m_matT(size,size),
            m_matU(size,size),
            m_hess(size),
            m_isInitialized(false),
            m_matUisUptodate(false),
            m_maxIters(-1)
        {}
    
        /** \brief Constructor; computes Schur decomposition of given matrix. 
          * 
          * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
          * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
          *
          * This constructor calls compute() to compute the Schur decomposition.
          *
          * \sa matrixT() and matrixU() for examples.
          */
        template<typename InputType>
        explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true)
          : m_matT(matrix.rows(),matrix.cols()),
            m_matU(matrix.rows(),matrix.cols()),
            m_hess(matrix.rows()),
            m_isInitialized(false),
            m_matUisUptodate(false),
            m_maxIters(-1)
        {
          compute(matrix.derived(), computeU);
        }
    
        /** \brief Returns the unitary matrix in the Schur decomposition. 
          *
          * \returns A const reference to the matrix U.
          *
          * It is assumed that either the constructor
          * ComplexSchur(const MatrixType& matrix, bool computeU) or the
          * member function compute(const MatrixType& matrix, bool computeU)
          * has been called before to compute the Schur decomposition of a
          * matrix, and that \p computeU was set to true (the default
          * value).
          *
          * Example: \include ComplexSchur_matrixU.cpp
          * Output: \verbinclude ComplexSchur_matrixU.out
          */
        const ComplexMatrixType& matrixU() const
        {
          eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
          eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
          return m_matU;
        }
    
        /** \brief Returns the triangular matrix in the Schur decomposition. 
          *
          * \returns A const reference to the matrix T.
          *
          * It is assumed that either the constructor
          * ComplexSchur(const MatrixType& matrix, bool computeU) or the
          * member function compute(const MatrixType& matrix, bool computeU)
          * has been called before to compute the Schur decomposition of a
          * matrix.
          *
          * Note that this function returns a plain square matrix. If you want to reference
          * only the upper triangular part, use:
          * \code schur.matrixT().triangularView<Upper>() \endcode 
          *
          * Example: \include ComplexSchur_matrixT.cpp
          * Output: \verbinclude ComplexSchur_matrixT.out
          */
        const ComplexMatrixType& matrixT() const
        {
          eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
          return m_matT;
        }
    
        /** \brief Computes Schur decomposition of given matrix. 
          * 
          * \param[in]  matrix  Square matrix whose Schur decomposition is to be computed.
          * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
    
          * \returns    Reference to \c *this
          *
          * The Schur decomposition is computed by first reducing the
          * matrix to Hessenberg form using the class
          * HessenbergDecomposition. The Hessenberg matrix is then reduced
          * to triangular form by performing QR iterations with a single
          * shift. The cost of computing the Schur decomposition depends
          * on the number of iterations; as a rough guide, it may be taken
          * on the number of iterations; as a rough guide, it may be taken
          * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
          * if \a computeU is false.
          *
          * Example: \include ComplexSchur_compute.cpp
          * Output: \verbinclude ComplexSchur_compute.out
          *
          * \sa compute(const MatrixType&, bool, Index)
          */
        template<typename InputType>
        ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
        
        /** \brief Compute Schur decomposition from a given Hessenberg matrix
         *  \param[in] matrixH Matrix in Hessenberg form H
         *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
         *  \param computeU Computes the matriX U of the Schur vectors
         * \return Reference to \c *this
         * 
         *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
         *  using either the class HessenbergDecomposition or another mean. 
         *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
         *  When computeU is true, this routine computes the matrix U such that 
         *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
         * 
         * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
         * is not available, the user should give an identity matrix (Q.setIdentity())
         * 
         * \sa compute(const MatrixType&, bool)
         */
        template<typename HessMatrixType, typename OrthMatrixType>
        ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU=true);
    
        /** \brief Reports whether previous computation was successful.
          *
          * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
          */
        ComputationInfo info() const
        {
          eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
          return m_info;
        }
    
        /** \brief Sets the maximum number of iterations allowed. 
          *
          * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
          * of the matrix.
          */
        ComplexSchur& setMaxIterations(Index maxIters)
        {
          m_maxIters = maxIters;
          return *this;
        }
    
        /** \brief Returns the maximum number of iterations. */
        Index getMaxIterations()
        {
          return m_maxIters;
        }
    
        /** \brief Maximum number of iterations per row.
          *
          * If not otherwise specified, the maximum number of iterations is this number times the size of the
          * matrix. It is currently set to 30.
          */
        static const int m_maxIterationsPerRow = 30;
    
      protected:
        ComplexMatrixType m_matT, m_matU;
        HessenbergDecomposition<MatrixType> m_hess;
        ComputationInfo m_info;
        bool m_isInitialized;
        bool m_matUisUptodate;
        Index m_maxIters;
    
      private:  
        bool subdiagonalEntryIsNeglegible(Index i);
        ComplexScalar computeShift(Index iu, Index iter);
        void reduceToTriangularForm(bool computeU);
        friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
    };
    
    /** If m_matT(i+1,i) is neglegible in floating point arithmetic
      * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
      * return true, else return false. */
    template<typename MatrixType>
    inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
    {
      RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
      RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
      if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
      {
        m_matT.coeffRef(i+1,i) = ComplexScalar(0);
        return true;
      }
      return false;
    }
    
    
    /** Compute the shift in the current QR iteration. */
    template<typename MatrixType>
    typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
    {
      using std::abs;
      if (iter == 10 || iter == 20) 
      {
        // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
        return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
      }
    
      // compute the shift as one of the eigenvalues of t, the 2x2
      // diagonal block on the bottom of the active submatrix
      Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
      RealScalar normt = t.cwiseAbs().sum();
      t /= normt;     // the normalization by sf is to avoid under/overflow
    
      ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
      ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
      ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
      ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
      ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
      ComplexScalar eival1 = (trace + disc) / RealScalar(2);
      ComplexScalar eival2 = (trace - disc) / RealScalar(2);
    
      if(numext::norm1(eival1) > numext::norm1(eival2))
        eival2 = det / eival1;
      else
        eival1 = det / eival2;
    
      // choose the eigenvalue closest to the bottom entry of the diagonal
      if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
        return normt * eival1;
      else
        return normt * eival2;
    }
    
    
    template<typename MatrixType>
    template<typename InputType>
    ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
    {
      m_matUisUptodate = false;
      eigen_assert(matrix.cols() == matrix.rows());
    
      if(matrix.cols() == 1)
      {
        m_matT = matrix.derived().template cast<ComplexScalar>();
        if(computeU)  m_matU = ComplexMatrixType::Identity(1,1);
        m_info = Success;
        m_isInitialized = true;
        m_matUisUptodate = computeU;
        return *this;
      }
    
      internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU);
      computeFromHessenberg(m_matT, m_matU, computeU);
      return *this;
    }
    
    template<typename MatrixType>
    template<typename HessMatrixType, typename OrthMatrixType>
    ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
    {
      m_matT = matrixH;
      if(computeU)
        m_matU = matrixQ;
      reduceToTriangularForm(computeU);
      return *this;
    }
    namespace internal {
    
    /* Reduce given matrix to Hessenberg form */
    template<typename MatrixType, bool IsComplex>
    struct complex_schur_reduce_to_hessenberg
    {
      // this is the implementation for the case IsComplex = true
      static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
      {
        _this.m_hess.compute(matrix);
        _this.m_matT = _this.m_hess.matrixH();
        if(computeU)  _this.m_matU = _this.m_hess.matrixQ();
      }
    };
    
    template<typename MatrixType>
    struct complex_schur_reduce_to_hessenberg<MatrixType, false>
    {
      static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
      {
        typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
    
        // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
        _this.m_hess.compute(matrix);
        _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
        if(computeU)  
        {
          // This may cause an allocation which seems to be avoidable
          MatrixType Q = _this.m_hess.matrixQ(); 
          _this.m_matU = Q.template cast<ComplexScalar>();
        }
      }
    };
    
    } // end namespace internal
    
    // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
    template<typename MatrixType>
    void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
    {  
      Index maxIters = m_maxIters;
      if (maxIters == -1)
        maxIters = m_maxIterationsPerRow * m_matT.rows();
    
      // The matrix m_matT is divided in three parts. 
      // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. 
      // Rows il,...,iu is the part we are working on (the active submatrix).
      // Rows iu+1,...,end are already brought in triangular form.
      Index iu = m_matT.cols() - 1;
      Index il;
      Index iter = 0; // number of iterations we are working on the (iu,iu) element
      Index totalIter = 0; // number of iterations for whole matrix
    
      while(true)
      {
        // find iu, the bottom row of the active submatrix
        while(iu > 0)
        {
          if(!subdiagonalEntryIsNeglegible(iu-1)) break;
          iter = 0;
          --iu;
        }
    
        // if iu is zero then we are done; the whole matrix is triangularized
        if(iu==0) break;
    
        // if we spent too many iterations, we give up
        iter++;
        totalIter++;
        if(totalIter > maxIters) break;
    
        // find il, the top row of the active submatrix
        il = iu-1;
        while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
        {
          --il;
        }
    
        /* perform the QR step using Givens rotations. The first rotation
           creates a bulge; the (il+2,il) element becomes nonzero. This
           bulge is chased down to the bottom of the active submatrix. */
    
        ComplexScalar shift = computeShift(iu, iter);
        JacobiRotation<ComplexScalar> rot;
        rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
        m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
        m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
        if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
    
        for(Index i=il+1 ; i<iu ; i++)
        {
          rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
          m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
          m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
          m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
          if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
        }
      }
    
      if(totalIter <= maxIters)
        m_info = Success;
      else
        m_info = NoConvergence;
    
      m_isInitialized = true;
      m_matUisUptodate = computeU;
    }
    
    } // end namespace Eigen
    
    #endif // EIGEN_COMPLEX_SCHUR_H