tsp.cc 5.21 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// [START program]
// [START import]
#include <cmath>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
// [END import]

namespace operations_research {
// [START data_model]
struct DataModel {
  const std::vector<std::vector<int>> locations{
      {4, 4}, {2, 0}, {8, 0}, {0, 1}, {1, 1}, {5, 2}, {7, 2}, {3, 3}, {6, 3},
      {5, 5}, {8, 5}, {1, 6}, {2, 6}, {3, 7}, {6, 7}, {0, 8}, {7, 8},
  };
  const int num_vehicles = 1;
  const RoutingIndexManager::NodeIndex depot{0};
  DataModel() {
    // Convert locations in meters using a city block dimension of 114m x 80m.
    for (auto& it : const_cast<std::vector<std::vector<int>>&>(locations)) {
      it[0] *= 114;
      it[1] *= 80;
    }
  }
};
// [END data_model]

// [START manhattan_distance_matrix]
/*! @brief Generate Manhattan distance matrix.
 * @details It uses the data.locations to computes the Manhattan distance
 * between the two positions of two different indices.*/
std::vector<std::vector<int64>> GenerateManhattanDistanceMatrix(
    const std::vector<std::vector<int>>& locations) {
  std::vector<std::vector<int64>> distances = std::vector<std::vector<int64>>(
      locations.size(), std::vector<int64>(locations.size(), int64{0}));
  for (int fromNode = 0; fromNode < locations.size(); fromNode++) {
    for (int toNode = 0; toNode < locations.size(); toNode++) {
      if (fromNode != toNode)
        distances[fromNode][toNode] =
            int64{std::abs(locations[toNode][0] - locations[fromNode][0]) +
                  std::abs(locations[toNode][1] - locations[fromNode][1])};
    }
  }
  return distances;
}
// [END manhattan_distance_matrix]

// [START solution_printer]
//! @brief Print the solution
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  LOG(INFO) << "Objective: " << solution.ObjectiveValue();
  // Inspect solution.
  int64 index = routing.Start(0);
  LOG(INFO) << "Route for Vehicle 0:";
  int64 distance{0};
  std::stringstream route;
  while (routing.IsEnd(index) == false) {
    route << manager.IndexToNode(index).value() << " -> ";
    int64 previous_index = index;
    index = solution.Value(routing.NextVar(index));
    distance += routing.GetArcCostForVehicle(previous_index, index, int64{0});
  }
  LOG(INFO) << route.str() << manager.IndexToNode(index).value();
  LOG(INFO) << "Distance of the route: " << distance << "m";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}
// [END solution_printer]

void Tsp() {
  // Instantiate the data problem.
  // [START data]
  DataModel data;
  // [END data]

  // Create Routing Index Manager
  // [START index_manager]
  RoutingIndexManager manager(data.locations.size(), data.num_vehicles,
                              data.depot);
  // [END index_manager]

  // Create Routing Model.
  // [START routing_model]
  RoutingModel routing(manager);
  // [END routing_model]

  // Create and register a transit callback.
  // [START transit_callback]
  const auto distance_matrix = GenerateManhattanDistanceMatrix(data.locations);
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&distance_matrix, &manager](int64 from_index, int64 to_index) -> int64 {
        // Convert from routing variable Index to distance matrix NodeIndex.
        auto from_node = manager.IndexToNode(from_index).value();
        auto to_node = manager.IndexToNode(to_index).value();
        return distance_matrix[from_node][to_node];
      });
  // [END transit_callback]

  // Define cost of each arc.
  // [START arc_cost]
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
  // [END arc_cost]

  // Setting first solution heuristic.
  // [START parameters]
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);
  // [END parameters]

  // Solve the problem.
  // [START solve]
  const Assignment* solution = routing.SolveWithParameters(searchParameters);
  // [END solve]

  // Print solution on console.
  // [START print_solution]
  PrintSolution(manager, routing, *solution);
  // [END print_solution]
}

}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::Tsp();
  return EXIT_SUCCESS;
}
// [END program]