Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <algorithm>
#include <iostream>
#include "snake.h"
#include <mapbox/geometry.hpp>
#include <mapbox/polylabel.hpp>
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/adapted/boost_tuple.hpp>
#include <boost/geometry/geometries/box.hpp>
#include <boost/geometry/geometries/polygon.hpp>
#include "clipper/clipper.hpp"
#define CLIPPER_SCALE 1000000
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
using namespace operations_research;
#ifndef NDEBUG
//#define SNAKE_SHOW_TIME
#endif
namespace bg = boost::geometry;
namespace trans = bg::strategy::transform;
BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(bg::cs::cartesian)
namespace snake {
static const IntType stdScale = 1000000;
//=========================================================================
// Geometry stuff.
//=========================================================================
void polygonCenter(const FPolygon &polygon, FPoint ¢er) {
using namespace mapbox;
if (polygon.outer().empty())
return;
geometry::polygon<double> p;
geometry::linear_ring<double> lr1;
for (size_t i = 0; i < polygon.outer().size(); ++i) {
geometry::point<double> vertex(polygon.outer()[i].get<0>(),
polygon.outer()[i].get<1>());
lr1.push_back(vertex);
}
p.push_back(lr1);
geometry::point<double> c = polylabel(p);
center.set<0>(c.x);
center.set<1>(c.y);
}
bool minimalBoundingBox(const FPolygon &polygon, BoundingBox &minBBox) {
/*
Find the minimum-area bounding box of a set of 2D points
The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates.
The first and last points points must be the same, making a closed polygon.
This program finds the rotation angles of each edge of the convex polygon,
then tests the area of a bounding box aligned with the unique angles in
90 degrees of the 1st Quadrant.
Returns the
Tested with Python 2.6.5 on Ubuntu 10.04.4 (original version)
Results verified using Matlab
Copyright (c) 2013, David Butterworth, University of Queensland
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Willow Garage, Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
if (polygon.outer().empty() || polygon.outer().size() < 3)
return false;
FPolygon convex_hull;
bg::convex_hull(polygon, convex_hull);
// cout << "Convex hull: " << bg::wkt<BoostPolygon2D>(convex_hull) << endl;
//# Compute edges (x2-x1,y2-y1)
std::vector<FPoint> edges;
const auto &convex_hull_outer = convex_hull.outer();
for (long i = 0; i < long(convex_hull_outer.size()) - 1; ++i) {
FPoint p1 = convex_hull_outer.at(i);
FPoint p2 = convex_hull_outer.at(i + 1);
double edge_x = p2.get<0>() - p1.get<0>();
double edge_y = p2.get<1>() - p1.get<1>();
edges.push_back(FPoint{edge_x, edge_y});
}
// cout << "Edges: ";
// for (auto e : edges)
// cout << e.get<0>() << " " << e.get<1>() << ",";
// cout << endl;
// Calculate unique edge angles atan2(y/x)
double angle_scale = 1e3;
std::set<long> angles_long;
for (auto vertex : edges) {
double angle = std::fmod(atan2(vertex.get<1>(), vertex.get<0>()), M_PI / 2);
angle =
angle < 0 ? angle + M_PI / 2 : angle; // want strictly positive answers
angles_long.insert(long(round(angle * angle_scale)));
}
std::vector<double> edge_angles;
for (auto a : angles_long)
edge_angles.push_back(double(a) / angle_scale);
// cout << "Unique angles: ";
// for (auto e : edge_angles)
// cout << e*180/M_PI << ",";
// cout << endl;
double min_area = std::numeric_limits<double>::infinity();
// Test each angle to find bounding box with smallest area
// print "Testing", len(edge_angles), "possible rotations for bounding box...
// \n"
for (double angle : edge_angles) {
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle * 180 /
M_PI);
FPolygon hull_rotated;
bg::transform(convex_hull, hull_rotated, rotate);
// cout << "Convex hull rotated: " << bg::wkt<BoostPolygon2D>(hull_rotated)
// << endl;
bg::model::box<FPoint> box;
bg::envelope(hull_rotated, box);
// cout << "Bounding box: " <<
// bg::wkt<bg::model::box<BoostPoint2D>>(box) << endl;
//# print "Rotated hull points are \n", rot_points
FPoint min_corner = box.min_corner();
FPoint max_corner = box.max_corner();
double min_x = min_corner.get<0>();
double max_x = max_corner.get<0>();
double min_y = min_corner.get<1>();
double max_y = max_corner.get<1>();
// cout << "min_x: " << min_x << endl;
// cout << "max_x: " << max_x << endl;
// cout << "min_y: " << min_y << endl;
// cout << "max_y: " << max_y << endl;
// Calculate height/width/area of this bounding rectangle
double width = max_x - min_x;
double height = max_y - min_y;
double area = width * height;
// cout << "Width: " << width << endl;
// cout << "Height: " << height << endl;
// cout << "area: " << area << endl;
// cout << "angle: " << angle*180/M_PI << endl;
// Store the smallest rect found first (a simple convex hull might have 2
// answers with same area)
if (area < min_area) {
min_area = area;
minBBox.angle = angle;
minBBox.width = width;
minBBox.height = height;
minBBox.corners.clear();
minBBox.corners.outer().push_back(FPoint{min_x, min_y});
minBBox.corners.outer().push_back(FPoint{min_x, max_y});
minBBox.corners.outer().push_back(FPoint{max_x, max_y});
minBBox.corners.outer().push_back(FPoint{max_x, min_y});
minBBox.corners.outer().push_back(FPoint{min_x, min_y});
}
// cout << endl << endl;
}
// Transform corners of minimal bounding box.
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(-minBBox.angle *
180 / M_PI);
FPolygon rotated_polygon;
bg::transform(minBBox.corners, rotated_polygon, rotate);
minBBox.corners = rotated_polygon;
return true;
}
void offsetPolygon(const FPolygon &polygon, FPolygon &polygonOffset,
double offset) {
bg::strategy::buffer::distance_symmetric<double> distance_strategy(offset);
bg::strategy::buffer::join_miter join_strategy(3);
bg::strategy::buffer::end_flat end_strategy;
bg::strategy::buffer::point_square point_strategy;
bg::strategy::buffer::side_straight side_strategy;
bg::model::multi_polygon<FPolygon> result;
bg::buffer(polygon, result, distance_strategy, side_strategy, join_strategy,
end_strategy, point_strategy);
if (result.size() > 0)
polygonOffset = result[0];
}
void graphFromPolygon(const FPolygon &polygon, const FLineString &vertices,
Matrix<double> &graph) {
size_t n = graph.n();
for (size_t i = 0; i < n; ++i) {
FPoint v1 = vertices[i];
for (size_t j = i + 1; j < n; ++j) {
FPoint v2 = vertices[j];
FLineString path{v1, v2};
double distance = 0;
if (!bg::within(path, polygon))
distance = std::numeric_limits<double>::infinity();
else
distance = bg::length(path);
graph(i, j) = distance;
graph(j, i) = distance;
}
}
}
bool toDistanceMatrix(Matrix<double> &graph) {
size_t n = graph.n();
auto distance = [&graph](size_t i, size_t j) -> double {
return graph(i, j);
};
for (size_t i = 0; i < n; ++i) {
for (size_t j = i + 1; j < n; ++j) {
double d = graph(i, j);
if (!std::isinf(d))
continue;
std::vector<size_t> path;
if (!dijkstraAlgorithm(n, i, j, path, d, distance)) {
return false;
}
// cout << "(" << i << "," << j << ") d: " << d << endl;
// cout << "Path size: " << path.size() << endl;
// for (auto idx : path)
// cout << idx << " ";
// cout << endl;
graph(i, j) = d;
graph(j, i) = d;
}
}
return true;
}
bool tiles(const FPolygon &area, Length tileHeight, Length tileWidth,
Area minTileArea, std::vector<FPolygon> &tiles, BoundingBox &bbox,
string &errorString) {
if (area.outer().empty() || area.outer().size() < 4) {
errorString = "Area has to few vertices.";
return false;
}
if (tileWidth <= 0 * bu::si::meter || tileHeight <= 0 * bu::si::meter ||
minTileArea < 0 * bu::si::meter * bu::si::meter) {
std::stringstream ss;
ss << "Parameters tileWidth (" << tileWidth << "), tileHeight ("
<< tileHeight << "), minTileArea (" << minTileArea
<< ") must be positive.";
errorString = ss.str();
return false;
}
if (bbox.corners.outer().size() != 5) {
bbox.corners.clear();
minimalBoundingBox(area, bbox);
}
if (bbox.corners.outer().size() < 5)
return false;
double bboxWidth = bbox.width;
double bboxHeight = bbox.height;
FPoint origin = bbox.corners.outer()[0];
// cout << "Origin: " << origin[0] << " " << origin[1] << endl;
// Transform _mArea polygon to bounding box coordinate system.
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate(
bbox.angle * 180 / M_PI);
trans::translate_transformer<double, 2, 2> translate(-origin.get<0>(),
-origin.get<1>());
FPolygon translated_polygon;
FPolygon rotated_polygon;
boost::geometry::transform(area, translated_polygon, translate);
boost::geometry::transform(translated_polygon, rotated_polygon, rotate);
bg::correct(rotated_polygon);
// cout << bg::wkt<BoostPolygon2D>(rotated_polygon) << endl;
size_t iMax = ceil(bboxWidth / tileWidth.value());
size_t jMax = ceil(bboxHeight / tileHeight.value());
if (iMax < 1 || jMax < 1) {
std::stringstream ss;
ss << "Tile width (" << tileWidth << ") or tile height (" << tileHeight
<< ") to large for measurement area.";
errorString = ss.str();
return false;
}
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(
-bbox.angle * 180 / M_PI);
trans::translate_transformer<double, 2, 2> translate_back(origin.get<0>(),
origin.get<1>());
for (size_t i = 0; i < iMax; ++i) {
double x_min = tileWidth.value() * i;
double x_max = x_min + tileWidth.value();
for (size_t j = 0; j < jMax; ++j) {
double y_min = tileHeight.value() * j;
double y_max = y_min + tileHeight.value();
FPolygon tile_unclipped;
tile_unclipped.outer().push_back(FPoint{x_min, y_min});
tile_unclipped.outer().push_back(FPoint{x_min, y_max});
tile_unclipped.outer().push_back(FPoint{x_max, y_max});
tile_unclipped.outer().push_back(FPoint{x_max, y_min});
tile_unclipped.outer().push_back(FPoint{x_min, y_min});
std::deque<FPolygon> boost_tiles;
if (!boost::geometry::intersection(tile_unclipped, rotated_polygon,
boost_tiles))
continue;
for (FPolygon t : boost_tiles) {
if (bg::area(t) > minTileArea.value()) {
// Transform boost_tile to world coordinate system.
FPolygon rotated_tile;
FPolygon translated_tile;
boost::geometry::transform(t, rotated_tile, rotate_back);
boost::geometry::transform(rotated_tile, translated_tile,
translate_back);
// Store tile and calculate center point.
tiles.push_back(translated_tile);
}
}
}
}
if (tiles.size() < 1) {
std::stringstream ss;
ss << "No tiles calculated. Is the minTileArea (" << minTileArea
<< ") parameter large enough?";
errorString = ss.str();
return false;
}
return true;
}
bool joinedArea(const FPolygon &mArea, const FPolygon &sArea,
const FPolygon &corridor, FPolygon &jArea,
std::string &errorString) {
// Measurement area and service area overlapping?
bool overlapingSerMeas = bg::intersects(mArea, sArea) ? true : false;
bool corridorValid = corridor.outer().size() > 0 ? true : false;
// Check if corridor is connecting measurement area and service area.
bool corridor_is_connection = false;
if (corridorValid) {
// Corridor overlaping with measurement area?
if (bg::intersects(corridor, mArea)) {
// Corridor overlaping with service area?
if (bg::intersects(corridor, sArea)) {
corridor_is_connection = true;
}
}
}
// Are areas joinable?
std::deque<FPolygon> sol;
FPolygon partialArea = mArea;
if (overlapingSerMeas) {
if (corridor_is_connection) {
bg::union_(partialArea, corridor, sol);
}
} else if (corridor_is_connection) {
bg::union_(partialArea, corridor, sol);
} else {
std::stringstream ss;
auto printPoint = [&ss](const FPoint &p) {
ss << " (" << p.get<0>() << ", " << p.get<1>() << ")";
};
ss << "Areas are not overlapping." << std::endl;
ss << "Measurement area:";
bg::for_each_point(mArea, printPoint);
ss << std::endl;
ss << "Service area:";
bg::for_each_point(sArea, printPoint);
ss << std::endl;
ss << "Corridor:";
bg::for_each_point(corridor, printPoint);
ss << std::endl;
errorString = ss.str();
return false;
}
if (sol.size() > 0) {
partialArea = sol[0];
sol.clear();
}
// Join areas.
bg::union_(partialArea, sArea, sol);
if (sol.size() > 0) {
jArea = sol[0];
} else {
std::stringstream ss;
auto printPoint = [&ss](const FPoint &p) {
ss << " (" << p.get<0>() << ", " << p.get<1>() << ")";
};
ss << "Areas not joinable." << std::endl;
ss << "Measurement area:";
bg::for_each_point(mArea, printPoint);
ss << std::endl;
ss << "Service area:";
bg::for_each_point(sArea, printPoint);
ss << std::endl;
ss << "Corridor:";
bg::for_each_point(corridor, printPoint);
ss << std::endl;
errorString = ss.str();
return false;
}
return true;
}
bool joinedArea(const std::vector<FPolygon *> &areas, FPolygon &joinedArea) {
if (areas.size() < 1)
return false;
joinedArea = *areas[0];
std::deque<std::size_t> idxList;
for (size_t i = 1; i < areas.size(); ++i)
idxList.push_back(i);
std::deque<FPolygon> sol;
while (idxList.size() > 0) {
bool success = false;
for (auto it = idxList.begin(); it != idxList.end(); ++it) {
bg::union_(joinedArea, *areas[*it], sol);
if (sol.size() > 0) {
joinedArea = sol[0];
sol.clear();
idxList.erase(it);
success = true;
break;
}
}
if (!success)
return false;
}
return true;
}
BoundingBox::BoundingBox() : width(0), height(0), angle(0) {}
void BoundingBox::clear() {
width = 0;
height = 0;
angle = 0;
corners.clear();
}
bool transectsFromScenario(Length distance, Length minLength, Angle angle,
const FPolygon &mArea,
const std::vector<FPolygon> &tiles,
const Progress &p, Transects &t,
string &errorString) {
// Rotate measurement area by angle and calculate bounding box.
FPolygon mAreaRotated;
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle.value() *
180 / M_PI);
bg::transform(mArea, mAreaRotated, rotate);
FBox box;
boost::geometry::envelope(mAreaRotated, box);
double x0 = box.min_corner().get<0>();
double y0 = box.min_corner().get<1>();
double x1 = box.max_corner().get<0>();
double y1 = box.max_corner().get<1>();
// Generate transects and convert them to clipper path.
size_t num_t = int(ceil((y1 - y0) / distance.value())); // number of transects
vector<ClipperLib::Path> transectsClipper;
transectsClipper.reserve(num_t);
for (size_t i = 0; i < num_t; ++i) {
// calculate transect
FPoint v1{x0, y0 + i * distance.value()};
FPoint v2{x1, y0 + i * distance.value()};
FLineString transect;
transect.push_back(v1);
transect.push_back(v2);
// transform back
FLineString temp_transect;
trans::rotate_transformer<bg::degree, double, 2, 2> rotate_back(
-angle.value() * 180 / M_PI);
bg::transform(transect, temp_transect, rotate_back);
// to clipper
ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(
temp_transect[0].get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(
temp_transect[0].get<1>() * CLIPPER_SCALE)};
ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(
temp_transect[1].get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(
temp_transect[1].get<1>() * CLIPPER_SCALE)};
ClipperLib::Path path{c1, c2};
transectsClipper.push_back(path);
}
if (transectsClipper.size() == 0) {
std::stringstream ss;
ss << "Not able to generate transects. Parameter: distance = " << distance
<< std::endl;
errorString = ss.str();
return false;
}
// Convert measurement area to clipper path.
ClipperLib::Path mAreaClipper;
for (auto vertex : mArea.outer()) {
mAreaClipper.push_back(ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
}
// Perform clipping.
// Clip transects to measurement area.
ClipperLib::Clipper clipper;
clipper.AddPath(mAreaClipper, ClipperLib::ptClip, true);
clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
ClipperLib::PolyTree clippedTransecs;
clipper.Execute(ClipperLib::ctIntersection, clippedTransecs,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
const auto *transects = &clippedTransecs;
bool ignoreProgress = p.size() != tiles.size();
ClipperLib::PolyTree clippedTransecs2;
if (!ignoreProgress) {
// Calculate processed tiles (_progress[i] == 100) and subtract them from
// measurement area.
size_t numTiles = p.size();
vector<FPolygon> processedTiles;
for (size_t i = 0; i < numTiles; ++i) {
if (p[i] == 100) {
processedTiles.push_back(tiles[i]);
}
}
if (processedTiles.size() != numTiles) {
vector<ClipperLib::Path> processedTilesClipper;
for (const auto &t : processedTiles) {
ClipperLib::Path path;
for (const auto &vertex : t.outer()) {
path.push_back(ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
}
processedTilesClipper.push_back(path);
}
// Subtract holes (tiles with measurement_progress == 100) from transects.
clipper.Clear();
for (const auto &child : clippedTransecs.Childs) {
clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
}
clipper.AddPaths(processedTilesClipper, ClipperLib::ptClip, true);
clipper.Execute(ClipperLib::ctDifference, clippedTransecs2,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
transects = &clippedTransecs2;
} else {
// All tiles processed (t.size() not changed).
return true;
}
}
// Extract transects from PolyTree and convert them to BoostLineString
for (const auto &child : transects->Childs) {
const auto &clipperTransect = child->Contour;
FPoint v1{static_cast<double>(clipperTransect[0].X) / CLIPPER_SCALE,
static_cast<double>(clipperTransect[0].Y) / CLIPPER_SCALE};
FPoint v2{static_cast<double>(clipperTransect[1].X) / CLIPPER_SCALE,
static_cast<double>(clipperTransect[1].Y) / CLIPPER_SCALE};
FLineString transect{v1, v2};
if (bg::length(transect) >= minLength.value()) {
t.push_back(transect);
}
}
if (t.size() == 0) {
std::stringstream ss;
ss << "Not able to generate transects. Parameter: minLength = " << minLength
<< std::endl;
errorString = ss.str();
return false;
}
return true;
}
bool route(const FPolygon &area, const Transects &transects,
std::vector<Solution> &solutionVector, const RouteParameter &par) {
#ifdef SNAKE_SHOW_TIME
auto start = std::chrono::high_resolution_clock::now();
#endif
//================================================================
// Create routing model.
//================================================================
// Use integer polygons to increase numerical robustness.
// Convert area;
IPolygon intArea;
for (const auto &v : area.outer()) {
auto p = float2Int(v);
intArea.outer().push_back(p);
}
for (const auto &ring : area.inners()) {
IRing intRing;
for (const auto &v : ring) {
auto p = float2Int(v);
intRing.push_back(p);
}
intArea.inners().push_back(std::move(intRing));
}
// Helper classes.
struct VirtualNode {
VirtualNode(std::size_t f, std::size_t t) : fromIndex(f), toIndex(t) {}
std::size_t fromIndex; // index for leaving node
std::size_t toIndex; // index for entering node
};
struct NodeToTransect {
NodeToTransect(std::size_t i, bool r) : transectsIndex(i), reversed(r) {}
std::size_t transectsIndex; // transects index
bool reversed; // transect reversed?
};
// Create vertex and node list
std::vector<IPoint> vertices;
std::vector<std::pair<std::size_t, std::size_t>> disjointNodes;
std::vector<VirtualNode> nodeList;
std::vector<NodeToTransect> nodeToTransectList;
for (std::size_t i = 0; i < transects.size(); ++i) {
const auto &t = transects[i];
// Copy line edges only.
if (t.size() == 1 || i == 0) {
auto p = float2Int(t.back());
vertices.push_back(p);
nodeToTransectList.emplace_back(i, false);
auto idx = vertices.size() - 1;
nodeList.emplace_back(idx, idx);
} else if (t.size() > 1) {
auto p1 = float2Int(t.front());
auto p2 = float2Int(t.back());
vertices.push_back(p1);
vertices.push_back(p2);
nodeToTransectList.emplace_back(i, false);
nodeToTransectList.emplace_back(i, true);
auto fromIdx = vertices.size() - 1;
auto toIdx = fromIdx - 1;
nodeList.emplace_back(fromIdx, toIdx);
nodeList.emplace_back(toIdx, fromIdx);
disjointNodes.emplace_back(toIdx, fromIdx);
} else { // transect empty
std::cout << "ignoring empty transect with index " << i << std::endl;
}
}
#ifdef SNAKE_DEBUG
// Print.
std::cout << "nodeToTransectList:" << std::endl;
std::cout << "node:transectIndex:reversed" << std::endl;
std::size_t c = 0;
for (const auto &n2t : nodeToTransectList) {
std::cout << c++ << ":" << n2t.transectsIndex << ":" << n2t.reversed
<< std::endl;
}
std::cout << "nodeList:" << std::endl;
std::cout << "node:fromIndex:toIndex" << std::endl;
c = 0;
for (const auto &n : nodeList) {
std::cout << c++ << ":" << n.fromIndex << ":" << n.toIndex << std::endl;
}
std::cout << "disjoint nodes:" << std::endl;
std::cout << "number:nodes" << std::endl;
c = 0;
for (const auto &d : disjointNodes) {
std::cout << c++ << ":" << d.first << "," << d.second << std::endl;
}
#endif
// Add polygon vertices.
for (auto &v : intArea.outer()) {
vertices.push_back(v);
}
for (auto &ring : intArea.inners()) {
for (auto &v : ring) {
vertices.push_back(v);
}
}
// Create connection graph (inf == no connection between vertices).
// Note: graph is not symmetric.
auto n = vertices.size();
// Matrix must be double since integers don't have infinity and nan
Matrix<double> connectionGraph(n, n);
for (std::size_t i = 0; i < n; ++i) {
auto &fromVertex = vertices[i];
for (std::size_t j = 0; j < n; ++j) {
auto &toVertex = vertices[j];
ILineString line{fromVertex, toVertex};
if (bg::covered_by(line, intArea)) {
connectionGraph(i, j) = bg::length(line);
} else {
connectionGraph(i, j) = std::numeric_limits<double>::infinity();
}
}
}
#ifdef SNAKE_DEBUG
std::cout << "connection grah:" << std::endl;
std::cout << connectionGraph << std::endl;
#endif
// Create distance matrix.
auto distLambda = [&connectionGraph](std::size_t i, std::size_t j) -> double {
return connectionGraph(i, j);
};
auto nNodes = nodeList.size();
Matrix<IntType> distanceMatrix(nNodes, nNodes);
for (std::size_t i = 0; i < nNodes; ++i) {
distanceMatrix(i, i) = 0;
for (std::size_t j = i + 1; j < nNodes; ++j) {
auto dist = connectionGraph(i, j);
if (std::isinf(dist)) {
std::vector<std::size_t> route;
if (!dijkstraAlgorithm(n, i, j, route, dist, distLambda)) {
std::stringstream ss;
ss << "Distance matrix calculation failed. connection graph: "
<< connectionGraph << std::endl;
ss << "area: " << bg::wkt(area) << std::endl;
ss << "transects:" << std::endl;
for (const auto &t : transects) {
ss << bg::wkt(t) << std::endl;
}
par.errorString = ss.str();
return false;
}
(void)route;
}
distanceMatrix(i, j) = dist;
distanceMatrix(j, i) = dist;
}
}
#ifdef SNAKE_DEBUG
std::cout << "distance matrix:" << std::endl;
std::cout << distanceMatrix << std::endl;
#endif
// Create (asymmetric) routing matrix.
Matrix<IntType> routingMatrix(nNodes, nNodes);
for (std::size_t i = 0; i < nNodes; ++i) {
auto fromNode = nodeList[i];
for (std::size_t j = 0; j < nNodes; ++j) {
auto toNode = nodeList[j];
routingMatrix(i, j) = distanceMatrix(fromNode.fromIndex, toNode.toIndex);
}
}
// Insert max for disjoint nodes.
for (const auto &d : disjointNodes) {
auto i = d.first;
auto j = d.second;
routingMatrix(i, j) = std::numeric_limits<IntType>::max();
routingMatrix(j, i) = std::numeric_limits<IntType>::max();
}
#ifdef SNAKE_DEBUG
std::cout << "routing matrix:" << std::endl;
std::cout << routingMatrix << std::endl;
#endif
// Create Routing Index Manager.
auto minNumTransectsPerRun =
std::max<std::size_t>(1, par.minNumTransectsPerRun);
auto maxRuns = std::max<std::size_t>(
1, std::floor(double(transects.size()) / minNumTransectsPerRun));
auto numRuns = std::max<std::size_t>(1, par.numRuns);
numRuns = std::min<std::size_t>(numRuns, maxRuns);
RoutingIndexManager::NodeIndex depot(0);
// std::vector<RoutingIndexManager::NodeIndex> depots(numRuns, depot);
// RoutingIndexManager manager(nNodes, numRuns, depots, depots);
RoutingIndexManager manager(nNodes, numRuns, depot);
// Create Routing Model.
RoutingModel routing(manager);
// Create and register a transit callback.
const int transitCallbackIndex = routing.RegisterTransitCallback(
[&routingMatrix, &manager](int64 from_index, int64 to_index) -> int64 {
// Convert from routing variable Index to distance matrix NodeIndex.
auto from_node = manager.IndexToNode(from_index).value();
auto to_node = manager.IndexToNode(to_index).value();
return routingMatrix(from_node, to_node);
});
// Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
// Add distance dimension.
if (numRuns > 1) {
routing.AddDimension(transitCallbackIndex, 0, 300000000,
true, // start cumul to zero
"Distance");
routing.GetMutableDimension("Distance")
->SetGlobalSpanCostCoefficient(100000000);
}
// Define disjunctions.
#ifdef SNAKE_DEBUG
std::cout << "disjunctions:" << std::endl;
#endif
for (const auto &d : disjointNodes) {
auto i = d.first;
auto j = d.second;
#ifdef SNAKE_DEBUG
std::cout << i << "," << j << std::endl;
#endif
auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(j));
std::vector<int64> disj{idx0, idx1};
routing.AddDisjunction(disj, -1 /*force cardinality*/, 1 /*cardinality*/);
}
// Set first solution heuristic.
auto searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
FirstSolutionStrategy::PATH_CHEAPEST_ARC);
// Number of solutions.
auto numSolutionsPerRun = std::max<std::size_t>(1, par.numSolutionsPerRun);
searchParameters.set_number_of_solutions_to_collect(numSolutionsPerRun);
// Set costume limit.
auto *solver = routing.solver();
auto *limit = solver->MakeCustomLimit(par.stop);
routing.AddSearchMonitor(limit);
#ifdef SNAKE_SHOW_TIME
auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - start);
cout << "create routing model: " << delta.count() << " ms" << endl;
#endif
//================================================================
// Solve model.
//================================================================
#ifdef SNAKE_SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
auto pSolutions = std::make_unique<std::vector<const Assignment *>>();
(void)routing.SolveWithParameters(searchParameters, pSolutions.get());
#ifdef SNAKE_SHOW_TIME
delta = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - start);
cout << "solve routing model: " << delta.count() << " ms" << endl;
#endif
if (par.stop()) {
par.errorString = "User terminated.";
return false;
}
if (pSolutions->size() == 0) {
std::stringstream ss;
ss << "No solution found." << std::endl;
par.errorString = ss.str();
return false;
}
//================================================================
// Construc route.
//================================================================
#ifdef SNAKE_SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
long long counter = -1;
// Note: route number 0 corresponds to the best route which is the last entry
// of *pSolutions.
for (auto solution = pSolutions->end() - 1; solution >= pSolutions->begin();
--solution) {
++counter;
if (!*solution || (*solution)->Size() <= 1) {
std::stringstream ss;
ss << par.errorString << "Solution " << counter << "invalid."
<< std::endl;
par.errorString = ss.str();
continue;
}
// Iterate over all routes.
Solution routeVector;
for (std::size_t vehicle = 0; vehicle < numRuns; ++vehicle) {
if (!routing.IsVehicleUsed(**solution, vehicle))
continue;
// Create index list.
auto index = routing.Start(vehicle);
std::vector<size_t> route_idx;
route_idx.push_back(manager.IndexToNode(index).value());
while (!routing.IsEnd(index)) {
index = (*solution)->Value(routing.NextVar(index));
route_idx.push_back(manager.IndexToNode(index).value());
}
#ifdef SNAKE_DEBUG
// Print route.
std::cout << "route " << counter
<< " route_idx.size() = " << route_idx.size() << std::endl;
std::cout << "route: ";
for (const auto &idx : route_idx) {
std::cout << idx << ", ";
}
std::cout << std::endl;
#endif
if (route_idx.size() < 2) {
std::stringstream ss;
ss << par.errorString
<< "Error while assembling route (solution = " << counter
<< ", run = " << vehicle << ")." << std::endl;
par.errorString = ss.str();
continue;
}
// Assemble route.
Route r;
auto &path = r.path;
auto &info = r.info;
for (size_t i = 0; i < route_idx.size() - 1; ++i) {
size_t nodeIndex0 = route_idx[i];
size_t nodeIndex1 = route_idx[i + 1];
const auto &n2t0 = nodeToTransectList[nodeIndex0];
info.emplace_back(n2t0.transectsIndex, n2t0.reversed);
// Copy transect to route.
const auto &t = transects[n2t0.transectsIndex];
if (n2t0.reversed) { // transect reversal needed?
for (auto it = t.end() - 1; it > t.begin(); --it) {
path.push_back(*it);
}
} else {
for (auto it = t.begin(); it < t.end() - 1; ++it) {
path.push_back(*it);
}
}
// Connect transects.
std::vector<size_t> idxList;
if (!shortestPathFromGraph(connectionGraph,
nodeList[nodeIndex0].fromIndex,
nodeList[nodeIndex1].toIndex, idxList)) {
std::stringstream ss;
ss << par.errorString
<< "Error while assembling route (solution = " << counter
<< ", run = " << vehicle << ")." << std::endl;
par.errorString = ss.str();
continue;
}
if (i != route_idx.size() - 2) {
idxList.pop_back();
}
for (auto idx : idxList) {
auto p = int2Float(vertices[idx]);
path.push_back(p);
}
}
// Append last transect info.
const auto &n2t0 = nodeToTransectList.back();
info.emplace_back(n2t0.transectsIndex, n2t0.reversed);
if (path.size() < 2 || info.size() < 2) {
std::stringstream ss;
ss << par.errorString << "Route empty (solution = " << counter
<< ", run = " << vehicle << ")." << std::endl;
par.errorString = ss.str();