SparseMatrix.h 51.1 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
4
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
Don Gagne's avatar
Don Gagne committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H

namespace Eigen { 

/** \ingroup SparseCore_Module
  *
  * \class SparseMatrix
  *
  * \brief A versatible sparse matrix representation
  *
  * This class implements a more versatile variants of the common \em compressed row/column storage format.
  * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
  * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
  * space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
  * can be done with limited memory reallocation and copies.
  *
  * A call to the function makeCompressed() turns the matrix into the standard \em compressed format
  * compatible with many library.
  *
  * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
  *
  * \tparam _Scalar the scalar type, i.e. the type of the coefficients
  * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
  *                 is ColMajor or RowMajor. The default is 0 which means column-major.
35 36 37 38 39
  * \tparam _StorageIndex the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
  *
  * \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int),
  *          whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index.
  *          Codes making use of \c SparseMatrix::Index, might thus likely have to be changed to use \c SparseMatrix::StorageIndex instead.
Don Gagne's avatar
Don Gagne committed
40 41
  *
  * This class can be extended with the help of the plugin mechanism described on the page
42
  * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
Don Gagne's avatar
Don Gagne committed
43 44 45
  */

namespace internal {
46 47
template<typename _Scalar, int _Options, typename _StorageIndex>
struct traits<SparseMatrix<_Scalar, _Options, _StorageIndex> >
Don Gagne's avatar
Don Gagne committed
48 49
{
  typedef _Scalar Scalar;
50
  typedef _StorageIndex StorageIndex;
Don Gagne's avatar
Don Gagne committed
51 52 53 54 55 56 57
  typedef Sparse StorageKind;
  typedef MatrixXpr XprKind;
  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = Dynamic,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = Dynamic,
58
    Flags = _Options | NestByRefBit | LvalueBit | CompressedAccessBit,
Don Gagne's avatar
Don Gagne committed
59 60 61 62
    SupportedAccessPatterns = InnerRandomAccessPattern
  };
};

63 64
template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
struct traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
Don Gagne's avatar
Don Gagne committed
65
{
66 67
  typedef SparseMatrix<_Scalar, _Options, _StorageIndex> MatrixType;
  typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
Don Gagne's avatar
Don Gagne committed
68 69 70 71
  typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;

  typedef _Scalar Scalar;
  typedef Dense StorageKind;
72
  typedef _StorageIndex StorageIndex;
Don Gagne's avatar
Don Gagne committed
73 74 75 76 77 78 79
  typedef MatrixXpr XprKind;

  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = 1,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = 1,
80 81 82 83 84 85 86 87 88 89
    Flags = LvalueBit
  };
};

template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
 : public traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
{
  enum {
    Flags = 0
Don Gagne's avatar
Don Gagne committed
90 91 92 93 94
  };
};

} // end namespace internal

95
template<typename _Scalar, int _Options, typename _StorageIndex>
Don Gagne's avatar
Don Gagne committed
96
class SparseMatrix
97
  : public SparseCompressedBase<SparseMatrix<_Scalar, _Options, _StorageIndex> >
Don Gagne's avatar
Don Gagne committed
98
{
99 100 101
    typedef SparseCompressedBase<SparseMatrix> Base;
    using Base::convert_index;
    friend class SparseVector<_Scalar,0,_StorageIndex>;
Don Gagne's avatar
Don Gagne committed
102
  public:
103 104
    using Base::isCompressed;
    using Base::nonZeros;
Don Gagne's avatar
Don Gagne committed
105
    EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
106 107
    using Base::operator+=;
    using Base::operator-=;
Don Gagne's avatar
Don Gagne committed
108 109

    typedef MappedSparseMatrix<Scalar,Flags> Map;
110 111 112 113 114 115
    typedef Diagonal<SparseMatrix> DiagonalReturnType;
    typedef Diagonal<const SparseMatrix> ConstDiagonalReturnType;
    typedef typename Base::InnerIterator InnerIterator;
    typedef typename Base::ReverseInnerIterator ReverseInnerIterator;
    

Don Gagne's avatar
Don Gagne committed
116
    using Base::IsRowMajor;
117
    typedef internal::CompressedStorage<Scalar,StorageIndex> Storage;
Don Gagne's avatar
Don Gagne committed
118 119 120 121
    enum {
      Options = _Options
    };

122 123
    typedef typename Base::IndexVector IndexVector;
    typedef typename Base::ScalarVector ScalarVector;
Don Gagne's avatar
Don Gagne committed
124 125 126 127 128
  protected:
    typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;

    Index m_outerSize;
    Index m_innerSize;
129 130
    StorageIndex* m_outerIndex;
    StorageIndex* m_innerNonZeros;     // optional, if null then the data is compressed
Don Gagne's avatar
Don Gagne committed
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    Storage m_data;

  public:
    
    /** \returns the number of rows of the matrix */
    inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
    /** \returns the number of columns of the matrix */
    inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }

    /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */
    inline Index innerSize() const { return m_innerSize; }
    /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */
    inline Index outerSize() const { return m_outerSize; }
    
    /** \returns a const pointer to the array of values.
      * This function is aimed at interoperability with other libraries.
      * \sa innerIndexPtr(), outerIndexPtr() */
148
    inline const Scalar* valuePtr() const { return m_data.valuePtr(); }
Don Gagne's avatar
Don Gagne committed
149 150 151
    /** \returns a non-const pointer to the array of values.
      * This function is aimed at interoperability with other libraries.
      * \sa innerIndexPtr(), outerIndexPtr() */
152
    inline Scalar* valuePtr() { return m_data.valuePtr(); }
Don Gagne's avatar
Don Gagne committed
153 154 155 156

    /** \returns a const pointer to the array of inner indices.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), outerIndexPtr() */
157
    inline const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); }
Don Gagne's avatar
Don Gagne committed
158 159 160
    /** \returns a non-const pointer to the array of inner indices.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), outerIndexPtr() */
161
    inline StorageIndex* innerIndexPtr() { return m_data.indexPtr(); }
Don Gagne's avatar
Don Gagne committed
162 163 164 165

    /** \returns a const pointer to the array of the starting positions of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), innerIndexPtr() */
166
    inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; }
Don Gagne's avatar
Don Gagne committed
167 168 169
    /** \returns a non-const pointer to the array of the starting positions of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), innerIndexPtr() */
170
    inline StorageIndex* outerIndexPtr() { return m_outerIndex; }
Don Gagne's avatar
Don Gagne committed
171 172 173 174

    /** \returns a const pointer to the array of the number of non zeros of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \warning it returns the null pointer 0 in compressed mode */
175
    inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; }
Don Gagne's avatar
Don Gagne committed
176 177 178
    /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \warning it returns the null pointer 0 in compressed mode */
179
    inline StorageIndex* innerNonZeroPtr() { return m_innerNonZeros; }
Don Gagne's avatar
Don Gagne committed
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

    /** \internal */
    inline Storage& data() { return m_data; }
    /** \internal */
    inline const Storage& data() const { return m_data; }

    /** \returns the value of the matrix at position \a i, \a j
      * This function returns Scalar(0) if the element is an explicit \em zero */
    inline Scalar coeff(Index row, Index col) const
    {
      eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
      
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;
      Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
195
      return m_data.atInRange(m_outerIndex[outer], end, StorageIndex(inner));
Don Gagne's avatar
Don Gagne committed
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    }

    /** \returns a non-const reference to the value of the matrix at position \a i, \a j
      *
      * If the element does not exist then it is inserted via the insert(Index,Index) function
      * which itself turns the matrix into a non compressed form if that was not the case.
      *
      * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
      * function if the element does not already exist.
      */
    inline Scalar& coeffRef(Index row, Index col)
    {
      eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
      
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      Index start = m_outerIndex[outer];
      Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
      eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
      if(end<=start)
        return insert(row,col);
218
      const Index p = m_data.searchLowerIndex(start,end-1,StorageIndex(inner));
Don Gagne's avatar
Don Gagne committed
219 220 221 222 223 224 225 226 227 228
      if((p<end) && (m_data.index(p)==inner))
        return m_data.value(p);
      else
        return insert(row,col);
    }

    /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
      * The non zero coefficient must \b not already exist.
      *
      * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
229 230 231 232 233 234
      * mode while reserving room for 2 x this->innerSize() non zeros if reserve(Index) has not been called earlier.
      * In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be
      * inserted by increasing outer-indices.
      * 
      * If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first
      * call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector.
Don Gagne's avatar
Don Gagne committed
235
      *
236 237
      * Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1)
      * if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
Don Gagne's avatar
Don Gagne committed
238 239
      *
      */
240
    Scalar& insert(Index row, Index col);
Don Gagne's avatar
Don Gagne committed
241 242 243

  public:

244 245 246 247 248 249 250
    /** Removes all non zeros but keep allocated memory
      *
      * This function does not free the currently allocated memory. To release as much as memory as possible,
      * call \code mat.data().squeeze(); \endcode after resizing it.
      * 
      * \sa resize(Index,Index), data()
      */
Don Gagne's avatar
Don Gagne committed
251 252 253
    inline void setZero()
    {
      m_data.clear();
254
      memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
Don Gagne's avatar
Don Gagne committed
255
      if(m_innerNonZeros)
256
        memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
Don Gagne's avatar
Don Gagne committed
257 258 259 260 261 262 263 264 265 266 267 268 269 270
    }

    /** Preallocates \a reserveSize non zeros.
      *
      * Precondition: the matrix must be in compressed mode. */
    inline void reserve(Index reserveSize)
    {
      eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
      m_data.reserve(reserveSize);
    }
    
    #ifdef EIGEN_PARSED_BY_DOXYGEN
    /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
      *
271 272 273 274 275 276 277 278 279 280
      * This function turns the matrix in non-compressed mode.
      * 
      * The type \c SizesType must expose the following interface:
        \code
        typedef value_type;
        const value_type& operator[](i) const;
        \endcode
      * for \c i in the [0,this->outerSize()[ range.
      * Typical choices include std::vector<int>, Eigen::VectorXi, Eigen::VectorXi::Constant, etc.
      */
Don Gagne's avatar
Don Gagne committed
281 282 283 284
    template<class SizesType>
    inline void reserve(const SizesType& reserveSizes);
    #else
    template<class SizesType>
285 286
    inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif =
    #if (!EIGEN_COMP_MSVC) || (EIGEN_COMP_MSVC>=1500) // MSVC 2005 fails to compile with this typename
Don Gagne's avatar
Don Gagne committed
287 288
        typename
    #endif
289
        SizesType::value_type())
Don Gagne's avatar
Don Gagne committed
290 291 292 293 294 295 296 297 298 299 300
    {
      EIGEN_UNUSED_VARIABLE(enableif);
      reserveInnerVectors(reserveSizes);
    }
    #endif // EIGEN_PARSED_BY_DOXYGEN
  protected:
    template<class SizesType>
    inline void reserveInnerVectors(const SizesType& reserveSizes)
    {
      if(isCompressed())
      {
301
        Index totalReserveSize = 0;
Don Gagne's avatar
Don Gagne committed
302
        // turn the matrix into non-compressed mode
303
        m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
Don Gagne's avatar
Don Gagne committed
304 305 306
        if (!m_innerNonZeros) internal::throw_std_bad_alloc();
        
        // temporarily use m_innerSizes to hold the new starting points.
307
        StorageIndex* newOuterIndex = m_innerNonZeros;
Don Gagne's avatar
Don Gagne committed
308
        
309
        StorageIndex count = 0;
Don Gagne's avatar
Don Gagne committed
310 311 312 313 314 315 316
        for(Index j=0; j<m_outerSize; ++j)
        {
          newOuterIndex[j] = count;
          count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
          totalReserveSize += reserveSizes[j];
        }
        m_data.reserve(totalReserveSize);
317
        StorageIndex previousOuterIndex = m_outerIndex[m_outerSize];
Don Gagne's avatar
Don Gagne committed
318 319
        for(Index j=m_outerSize-1; j>=0; --j)
        {
320
          StorageIndex innerNNZ = previousOuterIndex - m_outerIndex[j];
Don Gagne's avatar
Don Gagne committed
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
          for(Index i=innerNNZ-1; i>=0; --i)
          {
            m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
            m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
          }
          previousOuterIndex = m_outerIndex[j];
          m_outerIndex[j] = newOuterIndex[j];
          m_innerNonZeros[j] = innerNNZ;
        }
        m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
        
        m_data.resize(m_outerIndex[m_outerSize]);
      }
      else
      {
336
        StorageIndex* newOuterIndex = static_cast<StorageIndex*>(std::malloc((m_outerSize+1)*sizeof(StorageIndex)));
Don Gagne's avatar
Don Gagne committed
337 338
        if (!newOuterIndex) internal::throw_std_bad_alloc();
        
339
        StorageIndex count = 0;
Don Gagne's avatar
Don Gagne committed
340 341 342
        for(Index j=0; j<m_outerSize; ++j)
        {
          newOuterIndex[j] = count;
343 344
          StorageIndex alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
          StorageIndex toReserve = std::max<StorageIndex>(reserveSizes[j], alreadyReserved);
Don Gagne's avatar
Don Gagne committed
345 346 347 348 349 350 351 352 353 354
          count += toReserve + m_innerNonZeros[j];
        }
        newOuterIndex[m_outerSize] = count;
        
        m_data.resize(count);
        for(Index j=m_outerSize-1; j>=0; --j)
        {
          Index offset = newOuterIndex[j] - m_outerIndex[j];
          if(offset>0)
          {
355
            StorageIndex innerNNZ = m_innerNonZeros[j];
Don Gagne's avatar
Don Gagne committed
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
            for(Index i=innerNNZ-1; i>=0; --i)
            {
              m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
              m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
            }
          }
        }
        
        std::swap(m_outerIndex, newOuterIndex);
        std::free(newOuterIndex);
      }
      
    }
  public:

    //--- low level purely coherent filling ---

    /** \internal
      * \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
      * - the nonzero does not already exist
      * - the new coefficient is the last one according to the storage order
      *
      * Before filling a given inner vector you must call the statVec(Index) function.
      *
      * After an insertion session, you should call the finalize() function.
      *
      * \sa insert, insertBackByOuterInner, startVec */
    inline Scalar& insertBack(Index row, Index col)
    {
      return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
    }

    /** \internal
      * \sa insertBack, startVec */
    inline Scalar& insertBackByOuterInner(Index outer, Index inner)
    {
392
      eigen_assert(Index(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
Don Gagne's avatar
Don Gagne committed
393 394 395
      eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];
396
      m_data.append(Scalar(0), inner);
Don Gagne's avatar
Don Gagne committed
397 398 399 400 401 402 403 404 405
      return m_data.value(p);
    }

    /** \internal
      * \warning use it only if you know what you are doing */
    inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
    {
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];
406
      m_data.append(Scalar(0), inner);
Don Gagne's avatar
Don Gagne committed
407 408 409 410 411 412 413
      return m_data.value(p);
    }

    /** \internal
      * \sa insertBack, insertBackByOuterInner */
    inline void startVec(Index outer)
    {
414
      eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
Don Gagne's avatar
Don Gagne committed
415 416 417 418 419 420 421 422 423 424 425
      eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
      m_outerIndex[outer+1] = m_outerIndex[outer];
    }

    /** \internal
      * Must be called after inserting a set of non zero entries using the low level compressed API.
      */
    inline void finalize()
    {
      if(isCompressed())
      {
426
        StorageIndex size = internal::convert_index<StorageIndex>(m_data.size());
Don Gagne's avatar
Don Gagne committed
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        Index i = m_outerSize;
        // find the last filled column
        while (i>=0 && m_outerIndex[i]==0)
          --i;
        ++i;
        while (i<=m_outerSize)
        {
          m_outerIndex[i] = size;
          ++i;
        }
      }
    }

    //---

    template<typename InputIterators>
    void setFromTriplets(const InputIterators& begin, const InputIterators& end);

445 446 447 448 449 450 451
    template<typename InputIterators,typename DupFunctor>
    void setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func);

    void sumupDuplicates() { collapseDuplicates(internal::scalar_sum_op<Scalar,Scalar>()); }

    template<typename DupFunctor>
    void collapseDuplicates(DupFunctor dup_func = DupFunctor());
Don Gagne's avatar
Don Gagne committed
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

    //---
    
    /** \internal
      * same as insert(Index,Index) except that the indices are given relative to the storage order */
    Scalar& insertByOuterInner(Index j, Index i)
    {
      return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
    }

    /** Turns the matrix into the \em compressed format.
      */
    void makeCompressed()
    {
      if(isCompressed())
        return;
      
469 470
      eigen_internal_assert(m_outerIndex!=0 && m_outerSize>0);
      
Don Gagne's avatar
Don Gagne committed
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
      Index oldStart = m_outerIndex[1];
      m_outerIndex[1] = m_innerNonZeros[0];
      for(Index j=1; j<m_outerSize; ++j)
      {
        Index nextOldStart = m_outerIndex[j+1];
        Index offset = oldStart - m_outerIndex[j];
        if(offset>0)
        {
          for(Index k=0; k<m_innerNonZeros[j]; ++k)
          {
            m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
            m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
          }
        }
        m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
        oldStart = nextOldStart;
      }
      std::free(m_innerNonZeros);
      m_innerNonZeros = 0;
      m_data.resize(m_outerIndex[m_outerSize]);
      m_data.squeeze();
    }

    /** Turns the matrix into the uncompressed mode */
    void uncompress()
    {
      if(m_innerNonZeros != 0)
        return; 
499
      m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
500
      for (Index i = 0; i < m_outerSize; i++)
Don Gagne's avatar
Don Gagne committed
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
      {
        m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; 
      }
    }
    
    /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
    void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
    {
      prune(default_prunning_func(reference,epsilon));
    }
    
    /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep.
      * The functor type \a KeepFunc must implement the following function:
      * \code
      * bool operator() (const Index& row, const Index& col, const Scalar& value) const;
      * \endcode
      * \sa prune(Scalar,RealScalar)
      */
    template<typename KeepFunc>
    void prune(const KeepFunc& keep = KeepFunc())
    {
      // TODO optimize the uncompressed mode to avoid moving and allocating the data twice
      makeCompressed();

525
      StorageIndex k = 0;
Don Gagne's avatar
Don Gagne committed
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
      for(Index j=0; j<m_outerSize; ++j)
      {
        Index previousStart = m_outerIndex[j];
        m_outerIndex[j] = k;
        Index end = m_outerIndex[j+1];
        for(Index i=previousStart; i<end; ++i)
        {
          if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
          {
            m_data.value(k) = m_data.value(i);
            m_data.index(k) = m_data.index(i);
            ++k;
          }
        }
      }
      m_outerIndex[m_outerSize] = k;
      m_data.resize(k,0);
    }

    /** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched.
546 547 548 549 550 551
      *
      * If the sizes of the matrix are decreased, then the matrix is turned to \b uncompressed-mode
      * and the storage of the out of bounds coefficients is kept and reserved.
      * Call makeCompressed() to pack the entries and squeeze extra memory.
      *
      * \sa reserve(), setZero(), makeCompressed()
Don Gagne's avatar
Don Gagne committed
552 553 554 555 556 557 558 559 560 561 562
      */
    void conservativeResize(Index rows, Index cols) 
    {
      // No change
      if (this->rows() == rows && this->cols() == cols) return;
      
      // If one dimension is null, then there is nothing to be preserved
      if(rows==0 || cols==0) return resize(rows,cols);

      Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows();
      Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols();
563
      StorageIndex newInnerSize = convert_index(IsRowMajor ? cols : rows);
Don Gagne's avatar
Don Gagne committed
564 565 566 567 568

      // Deals with inner non zeros
      if (m_innerNonZeros)
      {
        // Resize m_innerNonZeros
569
        StorageIndex *newInnerNonZeros = static_cast<StorageIndex*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(StorageIndex)));
Don Gagne's avatar
Don Gagne committed
570 571 572 573 574 575 576 577 578
        if (!newInnerNonZeros) internal::throw_std_bad_alloc();
        m_innerNonZeros = newInnerNonZeros;
        
        for(Index i=m_outerSize; i<m_outerSize+outerChange; i++)          
          m_innerNonZeros[i] = 0;
      } 
      else if (innerChange < 0) 
      {
        // Inner size decreased: allocate a new m_innerNonZeros
579
        m_innerNonZeros = static_cast<StorageIndex*>(std::malloc((m_outerSize+outerChange+1) * sizeof(StorageIndex)));
Don Gagne's avatar
Don Gagne committed
580 581 582 583 584 585 586 587 588 589
        if (!m_innerNonZeros) internal::throw_std_bad_alloc();
        for(Index i = 0; i < m_outerSize; i++)
          m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
      }
      
      // Change the m_innerNonZeros in case of a decrease of inner size
      if (m_innerNonZeros && innerChange < 0)
      {
        for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
        {
590 591
          StorageIndex &n = m_innerNonZeros[i];
          StorageIndex start = m_outerIndex[i];
Don Gagne's avatar
Don Gagne committed
592 593 594 595 596 597 598 599 600 601
          while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n; 
        }
      }
      
      m_innerSize = newInnerSize;

      // Re-allocate outer index structure if necessary
      if (outerChange == 0)
        return;
          
602
      StorageIndex *newOuterIndex = static_cast<StorageIndex*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(StorageIndex)));
Don Gagne's avatar
Don Gagne committed
603 604 605 606
      if (!newOuterIndex) internal::throw_std_bad_alloc();
      m_outerIndex = newOuterIndex;
      if (outerChange > 0)
      {
607
        StorageIndex last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize];
Don Gagne's avatar
Don Gagne committed
608 609 610 611 612 613 614
        for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++)          
          m_outerIndex[i] = last; 
      }
      m_outerSize += outerChange;
    }
    
    /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
615 616 617 618 619
      * 
      * This function does not free the currently allocated memory. To release as much as memory as possible,
      * call \code mat.data().squeeze(); \endcode after resizing it.
      * 
      * \sa reserve(), setZero()
Don Gagne's avatar
Don Gagne committed
620 621 622 623 624 625 626 627 628
      */
    void resize(Index rows, Index cols)
    {
      const Index outerSize = IsRowMajor ? rows : cols;
      m_innerSize = IsRowMajor ? cols : rows;
      m_data.clear();
      if (m_outerSize != outerSize || m_outerSize==0)
      {
        std::free(m_outerIndex);
629
        m_outerIndex = static_cast<StorageIndex*>(std::malloc((outerSize + 1) * sizeof(StorageIndex)));
Don Gagne's avatar
Don Gagne committed
630 631 632 633 634 635 636 637 638
        if (!m_outerIndex) internal::throw_std_bad_alloc();
        
        m_outerSize = outerSize;
      }
      if(m_innerNonZeros)
      {
        std::free(m_innerNonZeros);
        m_innerNonZeros = 0;
      }
639
      memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
Don Gagne's avatar
Don Gagne committed
640 641 642 643 644 645 646 647 648
    }

    /** \internal
      * Resize the nonzero vector to \a size */
    void resizeNonZeros(Index size)
    {
      m_data.resize(size);
    }

649 650 651 652 653 654 655 656
    /** \returns a const expression of the diagonal coefficients. */
    const ConstDiagonalReturnType diagonal() const { return ConstDiagonalReturnType(*this); }
    
    /** \returns a read-write expression of the diagonal coefficients.
      * \warning If the diagonal entries are written, then all diagonal
      * entries \b must already exist, otherwise an assertion will be raised.
      */
    DiagonalReturnType diagonal() { return DiagonalReturnType(*this); }
Don Gagne's avatar
Don Gagne committed
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

    /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
    inline SparseMatrix()
      : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      resize(0, 0);
    }

    /** Constructs a \a rows \c x \a cols empty matrix */
    inline SparseMatrix(Index rows, Index cols)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      resize(rows, cols);
    }

    /** Constructs a sparse matrix from the sparse expression \a other */
    template<typename OtherDerived>
    inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
      check_template_parameters();
682 683 684 685 686 687 688 689 690 691
      const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
      if (needToTranspose)
        *this = other.derived();
      else
      {
        #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
          EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
        #endif
        internal::call_assignment_no_alias(*this, other.derived());
      }
Don Gagne's avatar
Don Gagne committed
692 693 694 695 696 697 698 699
    }
    
    /** Constructs a sparse matrix from the sparse selfadjoint view \a other */
    template<typename OtherDerived, unsigned int UpLo>
    inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
700
      Base::operator=(other);
Don Gagne's avatar
Don Gagne committed
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
    }

    /** Copy constructor (it performs a deep copy) */
    inline SparseMatrix(const SparseMatrix& other)
      : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      *this = other.derived();
    }

    /** \brief Copy constructor with in-place evaluation */
    template<typename OtherDerived>
    SparseMatrix(const ReturnByValue<OtherDerived>& other)
      : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      initAssignment(other);
      other.evalTo(*this);
    }
720 721 722 723 724 725 726 727 728
    
    /** \brief Copy constructor with in-place evaluation */
    template<typename OtherDerived>
    explicit SparseMatrix(const DiagonalBase<OtherDerived>& other)
      : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      *this = other.derived();
    }
Don Gagne's avatar
Don Gagne committed
729 730 731 732 733 734 735 736 737 738 739 740 741

    /** Swaps the content of two sparse matrices of the same type.
      * This is a fast operation that simply swaps the underlying pointers and parameters. */
    inline void swap(SparseMatrix& other)
    {
      //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
      std::swap(m_outerIndex, other.m_outerIndex);
      std::swap(m_innerSize, other.m_innerSize);
      std::swap(m_outerSize, other.m_outerSize);
      std::swap(m_innerNonZeros, other.m_innerNonZeros);
      m_data.swap(other.m_data);
    }

742 743
    /** Sets *this to the identity matrix.
      * This function also turns the matrix into compressed mode, and drop any reserved memory. */
Don Gagne's avatar
Don Gagne committed
744 745 746 747
    inline void setIdentity()
    {
      eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
      this->m_data.resize(rows());
748 749 750
      Eigen::Map<IndexVector>(this->m_data.indexPtr(), rows()).setLinSpaced(0, StorageIndex(rows()-1));
      Eigen::Map<ScalarVector>(this->m_data.valuePtr(), rows()).setOnes();
      Eigen::Map<IndexVector>(this->m_outerIndex, rows()+1).setLinSpaced(0, StorageIndex(rows()));
751 752
      std::free(m_innerNonZeros);
      m_innerNonZeros = 0;
Don Gagne's avatar
Don Gagne committed
753 754 755 756 757 758 759 760 761
    }
    inline SparseMatrix& operator=(const SparseMatrix& other)
    {
      if (other.isRValue())
      {
        swap(other.const_cast_derived());
      }
      else if(this!=&other)
      {
762 763 764
        #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
          EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
        #endif
Don Gagne's avatar
Don Gagne committed
765 766 767
        initAssignment(other);
        if(other.isCompressed())
        {
768
          internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex);
Don Gagne's avatar
Don Gagne committed
769 770 771 772 773 774 775 776 777 778
          m_data = other.m_data;
        }
        else
        {
          Base::operator=(other);
        }
      }
      return *this;
    }

779
#ifndef EIGEN_PARSED_BY_DOXYGEN
Don Gagne's avatar
Don Gagne committed
780 781 782
    template<typename OtherDerived>
    inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
    { return Base::operator=(other.derived()); }
783
#endif // EIGEN_PARSED_BY_DOXYGEN
Don Gagne's avatar
Don Gagne committed
784 785 786 787 788 789 790 791 792

    template<typename OtherDerived>
    EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);

    friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
    {
      EIGEN_DBG_SPARSE(
        s << "Nonzero entries:\n";
        if(m.isCompressed())
793
        {
Don Gagne's avatar
Don Gagne committed
794 795
          for (Index i=0; i<m.nonZeros(); ++i)
            s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
796
        }
Don Gagne's avatar
Don Gagne committed
797
        else
798
        {
Don Gagne's avatar
Don Gagne committed
799 800
          for (Index i=0; i<m.outerSize(); ++i)
          {
801 802
            Index p = m.m_outerIndex[i];
            Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
Don Gagne's avatar
Don Gagne committed
803
            Index k=p;
804
            for (; k<pe; ++k) {
Don Gagne's avatar
Don Gagne committed
805
              s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
806 807
            }
            for (; k<m.m_outerIndex[i+1]; ++k) {
Don Gagne's avatar
Don Gagne committed
808
              s << "(_,_) ";
809
            }
Don Gagne's avatar
Don Gagne committed
810
          }
811
        }
Don Gagne's avatar
Don Gagne committed
812 813 814
        s << std::endl;
        s << std::endl;
        s << "Outer pointers:\n";
815
        for (Index i=0; i<m.outerSize(); ++i) {
Don Gagne's avatar
Don Gagne committed
816
          s << m.m_outerIndex[i] << " ";
817
        }
Don Gagne's avatar
Don Gagne committed
818 819 820 821
        s << " $" << std::endl;
        if(!m.isCompressed())
        {
          s << "Inner non zeros:\n";
822
          for (Index i=0; i<m.outerSize(); ++i) {
Don Gagne's avatar
Don Gagne committed
823
            s << m.m_innerNonZeros[i] << " ";
824
          }
Don Gagne's avatar
Don Gagne committed
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
          s << " $" << std::endl;
        }
        s << std::endl;
      );
      s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
      return s;
    }

    /** Destructor */
    inline ~SparseMatrix()
    {
      std::free(m_outerIndex);
      std::free(m_innerNonZeros);
    }

    /** Overloaded for performance */
    Scalar sum() const;
    
#   ifdef EIGEN_SPARSEMATRIX_PLUGIN
#     include EIGEN_SPARSEMATRIX_PLUGIN
#   endif

protected:

    template<typename Other>
    void initAssignment(const Other& other)
    {
      resize(other.rows(), other.cols());
      if(m_innerNonZeros)
      {
        std::free(m_innerNonZeros);
        m_innerNonZeros = 0;
      }
    }

    /** \internal
      * \sa insert(Index,Index) */
    EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col);

    /** \internal
      * A vector object that is equal to 0 everywhere but v at the position i */
    class SingletonVector
    {
868 869
        StorageIndex m_index;
        StorageIndex m_value;
Don Gagne's avatar
Don Gagne committed
870
      public:
871
        typedef StorageIndex value_type;
Don Gagne's avatar
Don Gagne committed
872
        SingletonVector(Index i, Index v)
873
          : m_index(convert_index(i)), m_value(convert_index(v))
Don Gagne's avatar
Don Gagne committed
874 875
        {}

876
        StorageIndex operator[](Index i) const { return i==m_index ? m_value : 0; }
Don Gagne's avatar
Don Gagne committed
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    };

    /** \internal
      * \sa insert(Index,Index) */
    EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col);

public:
    /** \internal
      * \sa insert(Index,Index) */
    EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      eigen_assert(!isCompressed());
      eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer]));

      Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++;
895 896
      m_data.index(p) = convert_index(inner);
      return (m_data.value(p) = Scalar(0));
Don Gagne's avatar
Don Gagne committed
897 898 899 900 901
    }

private:
  static void check_template_parameters()
  {
902
    EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
Don Gagne's avatar
Don Gagne committed
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
    EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
  }

  struct default_prunning_func {
    default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {}
    inline bool operator() (const Index&, const Index&, const Scalar& value) const
    {
      return !internal::isMuchSmallerThan(value, reference, epsilon);
    }
    Scalar reference;
    RealScalar epsilon;
  };
};

namespace internal {

919 920
template<typename InputIterator, typename SparseMatrixType, typename DupFunctor>
void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, DupFunctor dup_func)
Don Gagne's avatar
Don Gagne committed
921 922 923
{
  enum { IsRowMajor = SparseMatrixType::IsRowMajor };
  typedef typename SparseMatrixType::Scalar Scalar;
924 925
  typedef typename SparseMatrixType::StorageIndex StorageIndex;
  SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,StorageIndex> trMat(mat.rows(),mat.cols());
Don Gagne's avatar
Don Gagne committed
926

927
  if(begin!=end)
Don Gagne's avatar
Don Gagne committed
928 929
  {
    // pass 1: count the nnz per inner-vector
930
    typename SparseMatrixType::IndexVector wi(trMat.outerSize());
Don Gagne's avatar
Don Gagne committed
931 932 933 934 935 936 937 938 939 940 941 942 943
    wi.setZero();
    for(InputIterator it(begin); it!=end; ++it)
    {
      eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols());
      wi(IsRowMajor ? it->col() : it->row())++;
    }

    // pass 2: insert all the elements into trMat
    trMat.reserve(wi);
    for(InputIterator it(begin); it!=end; ++it)
      trMat.insertBackUncompressed(it->row(),it->col()) = it->value();

    // pass 3:
944
    trMat.collapseDuplicates(dup_func);
Don Gagne's avatar
Don Gagne committed
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
  }

  // pass 4: transposed copy -> implicit sorting
  mat = trMat;
}

}


/** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end.
  *
  * A \em triplet is a tuple (i,j,value) defining a non-zero element.
  * The input list of triplets does not have to be sorted, and can contains duplicated elements.
  * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up.
  * This is a \em O(n) operation, with \em n the number of triplet elements.
  * The initial contents of \c *this is destroyed.
  * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor,
  * or the resize(Index,Index) method. The sizes are not extracted from the triplet list.
  *
  * The \a InputIterators value_type must provide the following interface:
  * \code
  * Scalar value() const; // the value
  * Scalar row() const;   // the row index i
  * Scalar col() const;   // the column index j
  * \endcode
  * See for instance the Eigen::Triplet template class.
  *
  * Here is a typical usage example:
  * \code
    typedef Triplet<double> T;
    std::vector<T> tripletList;
    triplets.reserve(estimation_of_entries);
    for(...)
    {
      // ...
      tripletList.push_back(T(i,j,v_ij));
    }
    SparseMatrixType m(rows,cols);
    m.setFromTriplets(tripletList.begin(), tripletList.end());
    // m is ready to go!
  * \endcode
  *
  * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define
  * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather
  * be explicitely stored into a std::vector for instance.
  */
991
template<typename Scalar, int _Options, typename _StorageIndex>
Don Gagne's avatar
Don Gagne committed
992
template<typename InputIterators>
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
{
  internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex> >(begin, end, *this, internal::scalar_sum_op<Scalar,Scalar>());
}

/** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied:
  * \code
  * value = dup_func(OldValue, NewValue)
  * \endcode 
  * Here is a C++11 example keeping the latest entry only:
  * \code
  * mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; });
  * \endcode
  */
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename InputIterators,typename DupFunctor>
void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func)
Don Gagne's avatar
Don Gagne committed
1010
{
1011
  internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex>, DupFunctor>(begin, end, *this, dup_func);
Don Gagne's avatar
Don Gagne committed
1012 1013 1014
}

/** \internal */
1015 1016 1017
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename DupFunctor>
void SparseMatrix<Scalar,_Options,_StorageIndex>::collapseDuplicates(DupFunctor dup_func)
Don Gagne's avatar
Don Gagne committed
1018 1019 1020
{
  eigen_assert(!isCompressed());
  // TODO, in practice we should be able to use m_innerNonZeros for that task
1021
  IndexVector wi(innerSize());
Don Gagne's avatar
Don Gagne committed
1022
  wi.fill(-1);
1023
  StorageIndex count = 0;
Don Gagne's avatar
Don Gagne committed
1024
  // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
1025
  for(Index j=0; j<outerSize(); ++j)
Don Gagne's avatar
Don Gagne committed
1026
  {
1027
    StorageIndex start   = count;
Don Gagne's avatar
Don Gagne committed
1028 1029 1030 1031 1032 1033 1034
    Index oldEnd  = m_outerIndex[j]+m_innerNonZeros[j];
    for(Index k=m_outerIndex[j]; k<oldEnd; ++k)
    {
      Index i = m_data.index(k);
      if(wi(i)>=start)
      {
        // we already meet this entry => accumulate it
1035
        m_data.value(wi(i)) = dup_func(m_data.value(wi(i)), m_data.value(k));
Don Gagne's avatar
Don Gagne committed
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
      }
      else
      {
        m_data.value(count) = m_data.value(k);
        m_data.index(count) = m_data.index(k);
        wi(i) = count;
        ++count;
      }
    }
    m_outerIndex[j] = start;
  }
  m_outerIndex[m_outerSize] = count;

  // turn the matrix into compressed form
  std::free(m_innerNonZeros);
  m_innerNonZeros = 0;
  m_data.resize(m_outerIndex[m_outerSize]);
}

1055
template<typename Scalar, int _Options, typename _StorageIndex>
Don Gagne's avatar
Don Gagne committed
1056
template<typename OtherDerived>
1057
EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scalar,_Options,_StorageIndex>::operator=(const SparseMatrixBase<OtherDerived>& other)
Don Gagne's avatar
Don Gagne committed
1058 1059 1060
{
  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
1061 1062 1063 1064 1065 1066

  #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
    EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
  #endif
      
  const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
Don Gagne's avatar
Don Gagne committed
1067 1068
  if (needToTranspose)
  {
1069 1070 1071
    #ifdef EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
      EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
    #endif
Don Gagne's avatar
Don Gagne committed
1072 1073 1074 1075
    // two passes algorithm:
    //  1 - compute the number of coeffs per dest inner vector
    //  2 - do the actual copy/eval
    // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
1076
    typedef typename internal::nested_eval<OtherDerived,2,typename internal::plain_matrix_type<OtherDerived>::type >::type OtherCopy;
Don Gagne's avatar
Don Gagne committed
1077
    typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
1078
    typedef internal::evaluator<_OtherCopy> OtherCopyEval;
Don Gagne's avatar
Don Gagne committed
1079
    OtherCopy otherCopy(other.derived());
1080
    OtherCopyEval otherCopyEval(otherCopy);
Don Gagne's avatar
Don Gagne committed
1081 1082

    SparseMatrix dest(other.rows(),other.cols());
1083
    Eigen::Map<IndexVector> (dest.m_outerIndex,dest.outerSize()).setZero();
Don Gagne's avatar
Don Gagne committed
1084 1085 1086 1087

    // pass 1
    // FIXME the above copy could be merged with that pass
    for (Index j=0; j<otherCopy.outerSize(); ++j)
1088
      for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
Don Gagne's avatar
Don Gagne committed
1089 1090 1091
        ++dest.m_outerIndex[it.index()];

    // prefix sum
1092 1093
    StorageIndex count = 0;
    IndexVector positions(dest.outerSize());
Don Gagne's avatar
Don Gagne committed
1094 1095
    for (Index j=0; j<dest.outerSize(); ++j)
    {
1096
      StorageIndex tmp = dest.m_outerIndex[j];
Don Gagne's avatar
Don Gagne committed
1097 1098 1099 1100 1101 1102 1103 1104
      dest.m_outerIndex[j] = count;
      positions[j] = count;
      count += tmp;
    }
    dest.m_outerIndex[dest.outerSize()] = count;
    // alloc
    dest.m_data.resize(count);
    // pass 2
1105
    for (StorageIndex j=0; j<otherCopy.outerSize(); ++j)
Don Gagne's avatar
Don Gagne committed
1106
    {
1107
      for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
Don Gagne's avatar
Don Gagne committed
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
      {
        Index pos = positions[it.index()]++;
        dest.m_data.index(pos) = j;
        dest.m_data.value(pos) = it.value();
      }
    }
    this->swap(dest);
    return *this;
  }
  else
  {
    if(other.isRValue())
1120
    {
Don Gagne's avatar
Don Gagne committed
1121
      initAssignment(other.derived());
1122
    }
Don Gagne's avatar
Don Gagne committed
1123 1124 1125 1126 1127
    // there is no special optimization
    return Base::operator=(other.derived());
  }
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
template<typename _Scalar, int _Options, typename _StorageIndex>
typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insert(Index row, Index col)
{
  eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
  
  const Index outer = IsRowMajor ? row : col;
  const Index inner = IsRowMajor ? col : row;
  
  if(isCompressed())
  {
    if(nonZeros()==0)
    {
      // reserve space if not already done
      if(m_data.allocatedSize()==0)
        m_data.reserve(2*m_innerSize);
      
      // turn the matrix into non-compressed mode
      m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
      if(!m_innerNonZeros) internal::throw_std_bad_alloc();
      
      memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
      
      // pack all inner-vectors to the end of the pre-allocated space
      // and allocate the entire free-space to the first inner-vector
      StorageIndex end = convert_index(m_data.allocatedSize());
      for(Index j=1; j<=m_outerSize; ++j)
        m_outerIndex[j] = end;
    }
    else
    {
      // turn the matrix into non-compressed mode
      m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
      if(!m_innerNonZeros) internal::throw_std_bad_alloc();
      for(Index j=0; j<m_outerSize; ++j)
        m_innerNonZeros[j] = m_outerIndex[j+1]-m_outerIndex[j];
    }
  }
  
  // check whether we can do a fast "push back" insertion
  Index data_end = m_data.allocatedSize();
  
  // First case: we are filling a new inner vector which is packed at the end.
  // We assume that all remaining inner-vectors are also empty and packed to the end.
  if(m_outerIndex[outer]==data_end)
  {
    eigen_internal_assert(m_innerNonZeros[outer]==0);
    
    // pack previous empty inner-vectors to end of the used-space
    // and allocate the entire free-space to the current inner-vector.
    StorageIndex p = convert_index(m_data.size());
    Index j = outer;
    while(j>=0 && m_innerNonZeros[j]==0)
      m_outerIndex[j--] = p;
    
    // push back the new element
    ++m_innerNonZeros[outer];
    m_data.append(Scalar(0), inner);
    
    // check for reallocation
    if(data_end != m_data.allocatedSize())
    {
      // m_data has been reallocated
      //  -> move remaining inner-vectors back to the end of the free-space
      //     so that the entire free-space is allocated to the current inner-vector.
      eigen_internal_assert(data_end < m_data.allocatedSize());
      StorageIndex new_end = convert_index(m_data.allocatedSize());
      for(Index k=outer+1; k<=m_outerSize; ++k)
        if(m_outerIndex[k]==data_end)
          m_outerIndex[k] = new_end;
    }
    return m_data.value(p);
  }
  
  // Second case: the next inner-vector is packed to the end
  // and the current inner-vector end match the used-space.
  if(m_outerIndex[outer+1]==data_end && m_outerIndex[outer]+m_innerNonZeros[outer]==m_data.size())
  {
    eigen_internal_assert(outer+1==m_outerSize || m_innerNonZeros[outer+1]==0);
    
    // add space for the new element
    ++m_innerNonZeros[outer];
    m_data.resize(m_data.size()+1);
    
    // check for reallocation
    if(data_end != m_data.allocatedSize())
    {
      // m_data has been reallocated
      //  -> move remaining inner-vectors back to the end of the free-space
      //     so that the entire free-space is allocated to the current inner-vector.
      eigen_internal_assert(data_end < m_data.allocatedSize());
      StorageIndex new_end = convert_index(m_data.allocatedSize());
      for(Index k=outer+1; k<=m_outerSize; ++k)
        if(m_outerIndex[k]==data_end)
          m_outerIndex[k] = new_end;
    }
    
    // and insert it at the right position (sorted insertion)
    Index startId = m_outerIndex[outer];
    Index p = m_outerIndex[outer]+m_innerNonZeros[outer]-1;
    while ( (p > startId) && (m_data.index(p-1) > inner) )
    {
      m_data.index(p) = m_data.index(p-1);
      m_data.value(p) = m_data.value(p-1);
      --p;
    }
    
    m_data.index(p) = convert_index(inner);
    return (m_data.value(p) = 0);
  }
  
  if(m_data.size() != m_data.allocatedSize())
  {
    // make sure the matrix is compatible to random un-compressed insertion:
    m_data.resize(m_data.allocatedSize());
    this->reserveInnerVectors(Array<StorageIndex,Dynamic,1>::Constant(m_outerSize, 2));
  }
  
  return insertUncompressed(row,col);
}
    
template<typename _Scalar, int _Options, typename _StorageIndex>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertUncompressed(Index row, Index col)
Don Gagne's avatar
Don Gagne committed
1250 1251 1252 1253
{
  eigen_assert(!isCompressed());

  const Index outer = IsRowMajor ? row : col;
1254
  const StorageIndex inner = convert_index(IsRowMajor ? col : row);
Don Gagne's avatar
Don Gagne committed
1255 1256

  Index room = m_outerIndex[outer+1] - m_outerIndex[outer];
1257
  StorageIndex innerNNZ = m_innerNonZeros[outer];
Don Gagne's avatar
Don Gagne committed
1258 1259 1260
  if(innerNNZ>=room)
  {
    // this inner vector is full, we need to reallocate the whole buffer :(
1261
    reserve(SingletonVector(outer,std::max<StorageIndex>(2,innerNNZ)));
Don Gagne's avatar
Don Gagne committed
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
  }

  Index startId = m_outerIndex[outer];
  Index p = startId + m_innerNonZeros[outer];
  while ( (p > startId) && (m_data.index(p-1) > inner) )
  {
    m_data.index(p) = m_data.index(p-1);
    m_data.value(p) = m_data.value(p-1);
    --p;
  }
1272
  eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exists, you must call coeffRef to this end");
Don Gagne's avatar
Don Gagne committed
1273 1274 1275 1276

  m_innerNonZeros[outer]++;

  m_data.index(p) = inner;
1277
  return (m_data.value(p) = Scalar(0));
Don Gagne's avatar
Don Gagne committed
1278 1279
}

1280 1281
template<typename _Scalar, int _Options, typename _StorageIndex>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertCompressed(Index row, Index col)
Don Gagne's avatar
Don Gagne committed
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
{
  eigen_assert(isCompressed());

  const Index outer = IsRowMajor ? row : col;
  const Index inner = IsRowMajor ? col : row;

  Index previousOuter = outer;
  if (m_outerIndex[outer+1]==0)
  {
    // we start a new inner vector
    while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
    {
1294
      m_outerIndex[previousOuter] = convert_index(m_data.size());
Don Gagne's avatar
Don Gagne committed
1295 1296 1297 1298 1299 1300 1301 1302 1303
      --previousOuter;
    }
    m_outerIndex[outer+1] = m_outerIndex[outer];
  }

  // here we have to handle the tricky case where the outerIndex array
  // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
  // the 2nd inner vector...
  bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
1304
                && (std::size_t(m_outerIndex[outer+1]) == m_data.size());
Don Gagne's avatar
Don Gagne committed
1305

1306 1307 1308
  std::size_t startId = m_outerIndex[outer];
  // FIXME let's make sure sizeof(long int) == sizeof(std::size_t)
  std::size_t p = m_outerIndex[outer+1];
Don Gagne's avatar
Don Gagne committed
1309 1310
  ++m_outerIndex[outer+1];

1311
  double reallocRatio = 1;
Don Gagne's avatar
Don Gagne committed
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
  if (m_data.allocatedSize()<=m_data.size())
  {
    // if there is no preallocated memory, let's reserve a minimum of 32 elements
    if (m_data.size()==0)
    {
      m_data.reserve(32);
    }
    else
    {
      // we need to reallocate the data, to reduce multiple reallocations
      // we use a smart resize algorithm based on the current filling ratio
1323 1324 1325
      // in addition, we use double to avoid integers overflows
      double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
      reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
Don Gagne's avatar
Don Gagne committed
1326 1327 1328
      // furthermore we bound the realloc ratio to:
      //   1) reduce multiple minor realloc when the matrix is almost filled
      //   2) avoid to allocate too much memory when the matrix is almost empty
1329
      reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
Don Gagne's avatar
Don Gagne committed
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
    }
  }
  m_data.resize(m_data.size()+1,reallocRatio);

  if (!isLastVec)
  {
    if (previousOuter==-1)
    {
      // oops wrong guess.
      // let's correct the outer offsets
      for (Index k=0; k<=(outer+1); ++k)
        m_outerIndex[k] = 0;
      Index k=outer+1;
      while(m_outerIndex[k]==0)
        m_outerIndex[k++] = 1;
      while (k<=m_outerSize && m_outerIndex[k]!=0)
        m_outerIndex[k++]++;
      p = 0;
      --k;
      k = m_outerIndex[k]-1;
      while (k>0)
      {
        m_data.index(k) = m_data.index(k-1);
        m_data.value(k) = m_data.value(k-1);
        k--;
      }
    }
    else
    {
      // we are not inserting into the last inner vec
      // update outer indices:
      Index j = outer+2;
      while (j<=m_outerSize && m_outerIndex[j]!=0)
        m_outerIndex[j++]++;
      --j;
      // shift data of last vecs:
      Index k = m_outerIndex[j]-1;
      while (k>=Index(p))
      {
        m_data.index(k) = m_data.index(k-1);
        m_data.value(k) = m_data.value(k-1);
        k--;
      }
    }
  }

  while ( (p > startId) && (m_data.index(p-1) > inner) )
  {
    m_data.index(p) = m_data.index(p-1);
    m_data.value(p) = m_data.value(p-1);
    --p;
  }

  m_data.index(p) = inner;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
  return (m_data.value(p) = Scalar(0));
}

namespace internal {

template<typename _Scalar, int _Options, typename _StorageIndex>
struct evaluator<SparseMatrix<_Scalar,_Options,_StorageIndex> >
  : evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > >
{
  typedef evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > > Base;
  typedef SparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType;
  evaluator() : Base() {}
  explicit evaluator(const SparseMatrixType &mat) : Base(mat) {}
};

Don Gagne's avatar
Don Gagne committed
1399 1400 1401 1402 1403
}

} // end namespace Eigen

#endif // EIGEN_SPARSEMATRIX_H