snake.cpp 39.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
#include <algorithm>
#include <iostream>

#include "snake.h"

#include <mapbox/geometry.hpp>
#include <mapbox/polylabel.hpp>

#include <boost/geometry.hpp>
#include <boost/geometry/geometries/adapted/boost_tuple.hpp>
#include <boost/geometry/geometries/box.hpp>
#include <boost/geometry/geometries/polygon.hpp>

#include "clipper/clipper.hpp"
#define CLIPPER_SCALE 1000000

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

using namespace operations_research;

#ifndef NDEBUG
//#define SNAKE_SHOW_TIME
#endif

namespace bg = boost::geometry;
namespace trans = bg::strategy::transform;

BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(bg::cs::cartesian)

namespace snake {
static const IntType stdScale = 1000000;
//=========================================================================
// Geometry stuff.
//=========================================================================

void polygonCenter(const FPolygon &polygon, FPoint &center) {
  using namespace mapbox;
  if (polygon.outer().empty())
    return;
  geometry::polygon<double> p;
  geometry::linear_ring<double> lr1;
  for (size_t i = 0; i < polygon.outer().size(); ++i) {
    geometry::point<double> vertex(polygon.outer()[i].get<0>(),
                                   polygon.outer()[i].get<1>());
    lr1.push_back(vertex);
  }
  p.push_back(lr1);
  geometry::point<double> c = polylabel(p);

  center.set<0>(c.x);
  center.set<1>(c.y);
}

bool minimalBoundingBox(const FPolygon &polygon, BoundingBox &minBBox) {
  /*
  Find the minimum-area bounding box of a set of 2D points

  The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates.
  The first and last points points must be the same, making a closed polygon.
  This program finds the rotation angles of each edge of the convex polygon,
  then tests the area of a bounding box aligned with the unique angles in
  90 degrees of the 1st Quadrant.
  Returns the

  Tested with Python 2.6.5 on Ubuntu 10.04.4 (original version)
  Results verified using Matlab

  Copyright (c) 2013, David Butterworth, University of Queensland
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

      * Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.
      * Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in the
        documentation and/or other materials provided with the distribution.
      * Neither the name of the Willow Garage, Inc. nor the names of its
        contributors may be used to endorse or promote products derived from
        this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.
  */

  if (polygon.outer().empty() || polygon.outer().size() < 3)
    return false;
  FPolygon convex_hull;
  bg::convex_hull(polygon, convex_hull);

  // cout << "Convex hull: " << bg::wkt<BoostPolygon2D>(convex_hull) << endl;

  //# Compute edges (x2-x1,y2-y1)
  std::vector<FPoint> edges;
  const auto &convex_hull_outer = convex_hull.outer();
  for (long i = 0; i < long(convex_hull_outer.size()) - 1; ++i) {
    FPoint p1 = convex_hull_outer.at(i);
    FPoint p2 = convex_hull_outer.at(i + 1);
    double edge_x = p2.get<0>() - p1.get<0>();
    double edge_y = p2.get<1>() - p1.get<1>();
    edges.push_back(FPoint{edge_x, edge_y});
  }

  //    cout << "Edges: ";
  //    for (auto e : edges)
  //        cout << e.get<0>() << " " << e.get<1>() << ",";
  //    cout << endl;

  // Calculate unique edge angles  atan2(y/x)
  double angle_scale = 1e3;
  std::set<long> angles_long;
  for (auto vertex : edges) {
    double angle = std::fmod(atan2(vertex.get<1>(), vertex.get<0>()), M_PI / 2);
    angle =
        angle < 0 ? angle + M_PI / 2 : angle; // want strictly positive answers
    angles_long.insert(long(round(angle * angle_scale)));
  }
  std::vector<double> edge_angles;
  for (auto a : angles_long)
    edge_angles.push_back(double(a) / angle_scale);

  //    cout << "Unique angles: ";
  //    for (auto e : edge_angles)
  //        cout << e*180/M_PI << ",";
  //    cout << endl;

  double min_area = std::numeric_limits<double>::infinity();
  // Test each angle to find bounding box with smallest area
  // print "Testing", len(edge_angles), "possible rotations for bounding box...
  // \n"
  for (double angle : edge_angles) {

    trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle * 180 /
                                                               M_PI);
    FPolygon hull_rotated;
    bg::transform(convex_hull, hull_rotated, rotate);
    // cout << "Convex hull rotated: " << bg::wkt<BoostPolygon2D>(hull_rotated)
    // << endl;

    bg::model::box<FPoint> box;
    bg::envelope(hull_rotated, box);
    //        cout << "Bounding box: " <<
    //        bg::wkt<bg::model::box<BoostPoint2D>>(box) << endl;

    //# print "Rotated hull points are \n", rot_points
    FPoint min_corner = box.min_corner();
    FPoint max_corner = box.max_corner();
    double min_x = min_corner.get<0>();
    double max_x = max_corner.get<0>();
    double min_y = min_corner.get<1>();
    double max_y = max_corner.get<1>();
    //        cout << "min_x: " << min_x << endl;
    //        cout << "max_x: " << max_x << endl;
    //        cout << "min_y: " << min_y << endl;
    //        cout << "max_y: " << max_y << endl;

    // Calculate height/width/area of this bounding rectangle
    double width = max_x - min_x;
    double height = max_y - min_y;
    double area = width * height;
    //        cout << "Width: " << width << endl;
    //        cout << "Height: " << height << endl;
    //        cout << "area: " << area << endl;
    //        cout << "angle: " << angle*180/M_PI << endl;

    // Store the smallest rect found first (a simple convex hull might have 2
    // answers with same area)
    if (area < min_area) {
      min_area = area;
      minBBox.angle = angle;
      minBBox.width = width;
      minBBox.height = height;

      minBBox.corners.clear();
      minBBox.corners.outer().push_back(FPoint{min_x, min_y});
      minBBox.corners.outer().push_back(FPoint{min_x, max_y});
      minBBox.corners.outer().push_back(FPoint{max_x, max_y});
      minBBox.corners.outer().push_back(FPoint{max_x, min_y});
      minBBox.corners.outer().push_back(FPoint{min_x, min_y});
    }
    // cout << endl << endl;
  }

  // Transform corners of minimal bounding box.
  trans::rotate_transformer<bg::degree, double, 2, 2> rotate(-minBBox.angle *
                                                             180 / M_PI);
  FPolygon rotated_polygon;
  bg::transform(minBBox.corners, rotated_polygon, rotate);
  minBBox.corners = rotated_polygon;

  return true;
}

void offsetPolygon(const FPolygon &polygon, FPolygon &polygonOffset,
                   double offset) {
  bg::strategy::buffer::distance_symmetric<double> distance_strategy(offset);
  bg::strategy::buffer::join_miter join_strategy(3);
  bg::strategy::buffer::end_flat end_strategy;
  bg::strategy::buffer::point_square point_strategy;
  bg::strategy::buffer::side_straight side_strategy;

  bg::model::multi_polygon<FPolygon> result;

  bg::buffer(polygon, result, distance_strategy, side_strategy, join_strategy,
             end_strategy, point_strategy);

  if (result.size() > 0)
    polygonOffset = result[0];
}

void graphFromPolygon(const FPolygon &polygon, const FLineString &vertices,
                      Matrix<double> &graph) {
  size_t n = graph.n();

  for (size_t i = 0; i < n; ++i) {
    FPoint v1 = vertices[i];
    for (size_t j = i + 1; j < n; ++j) {
      FPoint v2 = vertices[j];
      FLineString path{v1, v2};

      double distance = 0;
      if (!bg::within(path, polygon))
        distance = std::numeric_limits<double>::infinity();
      else
        distance = bg::length(path);
      graph(i, j) = distance;
      graph(j, i) = distance;
    }
  }
}

bool toDistanceMatrix(Matrix<double> &graph) {
  size_t n = graph.n();

  auto distance = [&graph](size_t i, size_t j) -> double {
    return graph(i, j);
  };

  for (size_t i = 0; i < n; ++i) {
    for (size_t j = i + 1; j < n; ++j) {
      double d = graph(i, j);
      if (!std::isinf(d))
        continue;
      std::vector<size_t> path;
      if (!dijkstraAlgorithm(n, i, j, path, d, distance)) {
        return false;
      }
      //            cout << "(" << i << "," << j << ") d: " << d << endl;
      //            cout << "Path size: " << path.size() << endl;
      //            for (auto idx : path)
      //                cout << idx << " ";
      //            cout << endl;
      graph(i, j) = d;
      graph(j, i) = d;
    }
  }
  return true;
}

bool tiles(const FPolygon &area, Length tileHeight, Length tileWidth,
           Area minTileArea, std::vector<FPolygon> &tiles, BoundingBox &bbox,
           string &errorString) {
  if (area.outer().empty() || area.outer().size() < 4) {
    errorString = "Area has to few vertices.";
    return false;
  }

  if (tileWidth <= 0 * bu::si::meter || tileHeight <= 0 * bu::si::meter ||
      minTileArea < 0 * bu::si::meter * bu::si::meter) {
    std::stringstream ss;
    ss << "Parameters tileWidth (" << tileWidth << "), tileHeight ("
       << tileHeight << "), minTileArea (" << minTileArea
       << ") must be positive.";
    errorString = ss.str();
    return false;
  }

  if (bbox.corners.outer().size() != 5) {
    bbox.corners.clear();
    minimalBoundingBox(area, bbox);
  }

  if (bbox.corners.outer().size() < 5)
    return false;
  double bboxWidth = bbox.width;
  double bboxHeight = bbox.height;
  FPoint origin = bbox.corners.outer()[0];

  // cout << "Origin: " << origin[0] << " " << origin[1] << endl;
  // Transform _mArea polygon to bounding box coordinate system.
  trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate(
      bbox.angle * 180 / M_PI);
  trans::translate_transformer<double, 2, 2> translate(-origin.get<0>(),
                                                       -origin.get<1>());
  FPolygon translated_polygon;
  FPolygon rotated_polygon;
  boost::geometry::transform(area, translated_polygon, translate);
  boost::geometry::transform(translated_polygon, rotated_polygon, rotate);
  bg::correct(rotated_polygon);
  // cout << bg::wkt<BoostPolygon2D>(rotated_polygon) << endl;

  size_t iMax = ceil(bboxWidth / tileWidth.value());
  size_t jMax = ceil(bboxHeight / tileHeight.value());

  if (iMax < 1 || jMax < 1) {
    std::stringstream ss;
    ss << "Tile width (" << tileWidth << ") or tile height (" << tileHeight
       << ") to large for measurement area.";
    errorString = ss.str();
    return false;
  }

  trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(
      -bbox.angle * 180 / M_PI);
  trans::translate_transformer<double, 2, 2> translate_back(origin.get<0>(),
                                                            origin.get<1>());
  for (size_t i = 0; i < iMax; ++i) {
    double x_min = tileWidth.value() * i;
    double x_max = x_min + tileWidth.value();
    for (size_t j = 0; j < jMax; ++j) {
      double y_min = tileHeight.value() * j;
      double y_max = y_min + tileHeight.value();

      FPolygon tile_unclipped;
      tile_unclipped.outer().push_back(FPoint{x_min, y_min});
      tile_unclipped.outer().push_back(FPoint{x_min, y_max});
      tile_unclipped.outer().push_back(FPoint{x_max, y_max});
      tile_unclipped.outer().push_back(FPoint{x_max, y_min});
      tile_unclipped.outer().push_back(FPoint{x_min, y_min});

      std::deque<FPolygon> boost_tiles;
      if (!boost::geometry::intersection(tile_unclipped, rotated_polygon,
                                         boost_tiles))
        continue;

      for (FPolygon t : boost_tiles) {
        if (bg::area(t) > minTileArea.value()) {
          // Transform boost_tile to world coordinate system.
          FPolygon rotated_tile;
          FPolygon translated_tile;
          boost::geometry::transform(t, rotated_tile, rotate_back);
          boost::geometry::transform(rotated_tile, translated_tile,
                                     translate_back);

          // Store tile and calculate center point.
          tiles.push_back(translated_tile);
        }
      }
    }
  }

  if (tiles.size() < 1) {
    std::stringstream ss;
    ss << "No tiles calculated. Is the minTileArea (" << minTileArea
       << ") parameter large enough?";
    errorString = ss.str();
    return false;
  }

  return true;
}

bool joinedArea(const FPolygon &mArea, const FPolygon &sArea,
                const FPolygon &corridor, FPolygon &jArea,
                std::string &errorString) {
  // Measurement area and service area overlapping?
  bool overlapingSerMeas = bg::intersects(mArea, sArea) ? true : false;
  bool corridorValid = corridor.outer().size() > 0 ? true : false;

  // Check if corridor is connecting measurement area and service area.
  bool corridor_is_connection = false;
  if (corridorValid) {
    // Corridor overlaping with measurement area?
    if (bg::intersects(corridor, mArea)) {
      // Corridor overlaping with service area?
      if (bg::intersects(corridor, sArea)) {
        corridor_is_connection = true;
      }
    }
  }

  // Are areas joinable?
  std::deque<FPolygon> sol;
  FPolygon partialArea = mArea;
  if (overlapingSerMeas) {
    if (corridor_is_connection) {
      bg::union_(partialArea, corridor, sol);
    }
  } else if (corridor_is_connection) {
    bg::union_(partialArea, corridor, sol);
  } else {
    std::stringstream ss;
    auto printPoint = [&ss](const FPoint &p) {
      ss << " (" << p.get<0>() << ", " << p.get<1>() << ")";
    };
    ss << "Areas are not overlapping." << std::endl;
    ss << "Measurement area:";
    bg::for_each_point(mArea, printPoint);
    ss << std::endl;
    ss << "Service area:";
    bg::for_each_point(sArea, printPoint);
    ss << std::endl;
    ss << "Corridor:";
    bg::for_each_point(corridor, printPoint);
    ss << std::endl;
    errorString = ss.str();
    return false;
  }

  if (sol.size() > 0) {
    partialArea = sol[0];
    sol.clear();
  }

  // Join areas.
  bg::union_(partialArea, sArea, sol);

  if (sol.size() > 0) {
    jArea = sol[0];
  } else {
    std::stringstream ss;
    auto printPoint = [&ss](const FPoint &p) {
      ss << " (" << p.get<0>() << ", " << p.get<1>() << ")";
    };
    ss << "Areas not joinable." << std::endl;
    ss << "Measurement area:";
    bg::for_each_point(mArea, printPoint);
    ss << std::endl;
    ss << "Service area:";
    bg::for_each_point(sArea, printPoint);
    ss << std::endl;
    ss << "Corridor:";
    bg::for_each_point(corridor, printPoint);
    ss << std::endl;
    errorString = ss.str();
    return false;
  }

  return true;
}

bool joinedArea(const std::vector<FPolygon *> &areas, FPolygon &joinedArea) {
  if (areas.size() < 1)
    return false;
  joinedArea = *areas[0];
  std::deque<std::size_t> idxList;
  for (size_t i = 1; i < areas.size(); ++i)
    idxList.push_back(i);

  std::deque<FPolygon> sol;
  while (idxList.size() > 0) {
    bool success = false;
    for (auto it = idxList.begin(); it != idxList.end(); ++it) {
      bg::union_(joinedArea, *areas[*it], sol);
      if (sol.size() > 0) {
        joinedArea = sol[0];
        sol.clear();
        idxList.erase(it);
        success = true;
        break;
      }
    }
    if (!success)
      return false;
  }

  return true;
}

BoundingBox::BoundingBox() : width(0), height(0), angle(0) {}

void BoundingBox::clear() {
  width = 0;
  height = 0;
  angle = 0;
  corners.clear();
}

bool transectsFromScenario(Length distance, Length minLength, Angle angle,
                           const FPolygon &mArea,
                           const std::vector<FPolygon> &tiles,
                           const Progress &p, Transects &t,
                           string &errorString) {
  // Rotate measurement area by angle and calculate bounding box.
  FPolygon mAreaRotated;
  trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle.value() *
                                                             180 / M_PI);
  bg::transform(mArea, mAreaRotated, rotate);

  FBox box;
  boost::geometry::envelope(mAreaRotated, box);
  double x0 = box.min_corner().get<0>();
  double y0 = box.min_corner().get<1>();
  double x1 = box.max_corner().get<0>();
  double y1 = box.max_corner().get<1>();

  // Generate transects and convert them to clipper path.
  size_t num_t = int(ceil((y1 - y0) / distance.value())); // number of transects
  vector<ClipperLib::Path> transectsClipper;
  transectsClipper.reserve(num_t);
  for (size_t i = 0; i < num_t; ++i) {
    // calculate transect
    FPoint v1{x0, y0 + i * distance.value()};
    FPoint v2{x1, y0 + i * distance.value()};
    FLineString transect;
    transect.push_back(v1);
    transect.push_back(v2);
    // transform back
    FLineString temp_transect;
    trans::rotate_transformer<bg::degree, double, 2, 2> rotate_back(
        -angle.value() * 180 / M_PI);
    bg::transform(transect, temp_transect, rotate_back);
    // to clipper
    ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(
                                temp_transect[0].get<0>() * CLIPPER_SCALE),
                            static_cast<ClipperLib::cInt>(
                                temp_transect[0].get<1>() * CLIPPER_SCALE)};
    ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(
                                temp_transect[1].get<0>() * CLIPPER_SCALE),
                            static_cast<ClipperLib::cInt>(
                                temp_transect[1].get<1>() * CLIPPER_SCALE)};
    ClipperLib::Path path{c1, c2};
    transectsClipper.push_back(path);
  }

  if (transectsClipper.size() == 0) {
    std::stringstream ss;
    ss << "Not able to generate transects. Parameter: distance = " << distance
       << std::endl;
    errorString = ss.str();
    return false;
  }

  // Convert measurement area to clipper path.
  ClipperLib::Path mAreaClipper;
  for (auto vertex : mArea.outer()) {
    mAreaClipper.push_back(ClipperLib::IntPoint{
        static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
        static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
  }

  // Perform clipping.
  // Clip transects to measurement area.
  ClipperLib::Clipper clipper;
  clipper.AddPath(mAreaClipper, ClipperLib::ptClip, true);
  clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
  ClipperLib::PolyTree clippedTransecs;
  clipper.Execute(ClipperLib::ctIntersection, clippedTransecs,
                  ClipperLib::pftNonZero, ClipperLib::pftNonZero);
  const auto *transects = &clippedTransecs;

  bool ignoreProgress = p.size() != tiles.size();
  ClipperLib::PolyTree clippedTransecs2;
  if (!ignoreProgress) {
    // Calculate processed tiles (_progress[i] == 100) and subtract them from
    // measurement area.
    size_t numTiles = p.size();
    vector<FPolygon> processedTiles;
    for (size_t i = 0; i < numTiles; ++i) {
      if (p[i] == 100) {
        processedTiles.push_back(tiles[i]);
      }
    }

    if (processedTiles.size() != numTiles) {
      vector<ClipperLib::Path> processedTilesClipper;
      for (const auto &t : processedTiles) {
        ClipperLib::Path path;
        for (const auto &vertex : t.outer()) {
          path.push_back(ClipperLib::IntPoint{
              static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
              static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
        }
        processedTilesClipper.push_back(path);
      }

      // Subtract holes (tiles with measurement_progress == 100) from transects.
      clipper.Clear();
      for (const auto &child : clippedTransecs.Childs) {
        clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
      }
      clipper.AddPaths(processedTilesClipper, ClipperLib::ptClip, true);
      clipper.Execute(ClipperLib::ctDifference, clippedTransecs2,
                      ClipperLib::pftNonZero, ClipperLib::pftNonZero);
      transects = &clippedTransecs2;
    } else {
      // All tiles processed (t.size() not changed).
      return true;
    }
  }

  // Extract transects from  PolyTree and convert them to BoostLineString
  for (const auto &child : transects->Childs) {
    const auto &clipperTransect = child->Contour;
    FPoint v1{static_cast<double>(clipperTransect[0].X) / CLIPPER_SCALE,
              static_cast<double>(clipperTransect[0].Y) / CLIPPER_SCALE};
    FPoint v2{static_cast<double>(clipperTransect[1].X) / CLIPPER_SCALE,
              static_cast<double>(clipperTransect[1].Y) / CLIPPER_SCALE};

    FLineString transect{v1, v2};
    if (bg::length(transect) >= minLength.value()) {
      t.push_back(transect);
    }
  }

  if (t.size() == 0) {
    std::stringstream ss;
    ss << "Not able to generate transects. Parameter: minLength = " << minLength
       << std::endl;
    errorString = ss.str();
    return false;
  }
  return true;
}

bool route(const FPolygon &area, const Transects &transects,
           std::vector<Solution> &solutionVector, const RouteParameter &par) {

#ifdef SNAKE_SHOW_TIME
  auto start = std::chrono::high_resolution_clock::now();
#endif
  //================================================================
  // Create routing model.
  //================================================================
  // Use integer polygons to increase numerical robustness.
  // Convert area;
  IPolygon intArea;
  for (const auto &v : area.outer()) {
    auto p = float2Int(v);
    intArea.outer().push_back(p);
  }
  for (const auto &ring : area.inners()) {
    IRing intRing;
    for (const auto &v : ring) {
      auto p = float2Int(v);
      intRing.push_back(p);
    }
    intArea.inners().push_back(std::move(intRing));
  }

  // Helper classes.
  struct VirtualNode {
    VirtualNode(std::size_t f, std::size_t t) : fromIndex(f), toIndex(t) {}
    std::size_t fromIndex; // index for leaving node
    std::size_t toIndex;   // index for entering node
  };
  struct NodeToTransect {
    NodeToTransect(std::size_t i, bool r) : transectsIndex(i), reversed(r) {}
    std::size_t transectsIndex; // transects index
    bool reversed;              // transect reversed?
  };
  // Create vertex and node list
  std::vector<IPoint> vertices;
  std::vector<std::pair<std::size_t, std::size_t>> disjointNodes;
  std::vector<VirtualNode> nodeList;
  std::vector<NodeToTransect> nodeToTransectList;
  for (std::size_t i = 0; i < transects.size(); ++i) {
    const auto &t = transects[i];
    // Copy line edges only.
    if (t.size() == 1 || i == 0) {
      auto p = float2Int(t.back());
      vertices.push_back(p);
      nodeToTransectList.emplace_back(i, false);
      auto idx = vertices.size() - 1;
      nodeList.emplace_back(idx, idx);
    } else if (t.size() > 1) {
      auto p1 = float2Int(t.front());
      auto p2 = float2Int(t.back());
      vertices.push_back(p1);
      vertices.push_back(p2);
      nodeToTransectList.emplace_back(i, false);
      nodeToTransectList.emplace_back(i, true);
      auto fromIdx = vertices.size() - 1;
      auto toIdx = fromIdx - 1;
      nodeList.emplace_back(fromIdx, toIdx);
      nodeList.emplace_back(toIdx, fromIdx);
      disjointNodes.emplace_back(toIdx, fromIdx);
    } else { // transect empty
      std::cout << "ignoring empty transect with index " << i << std::endl;
    }
  }
#ifdef SNAKE_DEBUG
  // Print.
  std::cout << "nodeToTransectList:" << std::endl;
  std::cout << "node:transectIndex:reversed" << std::endl;
  std::size_t c = 0;
  for (const auto &n2t : nodeToTransectList) {
    std::cout << c++ << ":" << n2t.transectsIndex << ":" << n2t.reversed
              << std::endl;
  }
  std::cout << "nodeList:" << std::endl;
  std::cout << "node:fromIndex:toIndex" << std::endl;
  c = 0;
  for (const auto &n : nodeList) {
    std::cout << c++ << ":" << n.fromIndex << ":" << n.toIndex << std::endl;
  }
  std::cout << "disjoint nodes:" << std::endl;
  std::cout << "number:nodes" << std::endl;
  c = 0;
  for (const auto &d : disjointNodes) {
    std::cout << c++ << ":" << d.first << "," << d.second << std::endl;
  }
#endif

  // Add polygon vertices.
  for (auto &v : intArea.outer()) {
    vertices.push_back(v);
  }
  for (auto &ring : intArea.inners()) {
    for (auto &v : ring) {
      vertices.push_back(v);
    }
  }

  // Create connection graph (inf == no connection between vertices).
  // Note: graph is not symmetric.
  auto n = vertices.size();
  // Matrix must be double since integers don't have infinity and nan
  Matrix<double> connectionGraph(n, n);
  for (std::size_t i = 0; i < n; ++i) {
    auto &fromVertex = vertices[i];
    for (std::size_t j = 0; j < n; ++j) {
      auto &toVertex = vertices[j];
      ILineString line{fromVertex, toVertex};
      if (bg::covered_by(line, intArea)) {
        connectionGraph(i, j) = bg::length(line);
      } else {
        connectionGraph(i, j) = std::numeric_limits<double>::infinity();
      }
    }
  }
#ifdef SNAKE_DEBUG
  std::cout << "connection grah:" << std::endl;
  std::cout << connectionGraph << std::endl;
#endif

  // Create distance matrix.
  auto distLambda = [&connectionGraph](std::size_t i, std::size_t j) -> double {
    return connectionGraph(i, j);
  };
  auto nNodes = nodeList.size();
  Matrix<IntType> distanceMatrix(nNodes, nNodes);
  for (std::size_t i = 0; i < nNodes; ++i) {
    distanceMatrix(i, i) = 0;
    for (std::size_t j = i + 1; j < nNodes; ++j) {
      auto dist = connectionGraph(i, j);
      if (std::isinf(dist)) {
        std::vector<std::size_t> route;
        if (!dijkstraAlgorithm(n, i, j, route, dist, distLambda)) {
          std::stringstream ss;
          ss << "Distance matrix calculation failed. connection graph: "
             << connectionGraph << std::endl;
          ss << "area: " << bg::wkt(area) << std::endl;
          ss << "transects:" << std::endl;
          for (const auto &t : transects) {

            ss << bg::wkt(t) << std::endl;
          }

          par.errorString = ss.str();
          return false;
        }
        (void)route;
      }
      distanceMatrix(i, j) = dist;
      distanceMatrix(j, i) = dist;
    }
  }
#ifdef SNAKE_DEBUG
  std::cout << "distance matrix:" << std::endl;
  std::cout << distanceMatrix << std::endl;
#endif

  // Create (asymmetric) routing matrix.
  Matrix<IntType> routingMatrix(nNodes, nNodes);
  for (std::size_t i = 0; i < nNodes; ++i) {
    auto fromNode = nodeList[i];
    for (std::size_t j = 0; j < nNodes; ++j) {
      auto toNode = nodeList[j];
      routingMatrix(i, j) = distanceMatrix(fromNode.fromIndex, toNode.toIndex);
    }
  }
  // Insert max for disjoint nodes.
  for (const auto &d : disjointNodes) {
    auto i = d.first;
    auto j = d.second;
    routingMatrix(i, j) = std::numeric_limits<IntType>::max();
    routingMatrix(j, i) = std::numeric_limits<IntType>::max();
  }
#ifdef SNAKE_DEBUG
  std::cout << "routing matrix:" << std::endl;
  std::cout << routingMatrix << std::endl;
#endif

  // Create Routing Index Manager.
  auto minNumTransectsPerRun =
      std::max<std::size_t>(1, par.minNumTransectsPerRun);
  auto maxRuns = std::max<std::size_t>(
      1, std::floor(double(transects.size()) / minNumTransectsPerRun));
  auto numRuns = std::max<std::size_t>(1, par.numRuns);
  numRuns = std::min<std::size_t>(numRuns, maxRuns);

  RoutingIndexManager::NodeIndex depot(0);
  //  std::vector<RoutingIndexManager::NodeIndex> depots(numRuns, depot);
  //  RoutingIndexManager manager(nNodes, numRuns, depots, depots);
  RoutingIndexManager manager(nNodes, numRuns, depot);

  // Create Routing Model.
  RoutingModel routing(manager);
  // Create and register a transit callback.
  const int transitCallbackIndex = routing.RegisterTransitCallback(
      [&routingMatrix, &manager](int64 from_index, int64 to_index) -> int64 {
        // Convert from routing variable Index to distance matrix NodeIndex.
        auto from_node = manager.IndexToNode(from_index).value();
        auto to_node = manager.IndexToNode(to_index).value();
        return routingMatrix(from_node, to_node);
      });
  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
  // Add distance dimension.
  if (numRuns > 1) {
    routing.AddDimension(transitCallbackIndex, 0, 300000000,
                         true, // start cumul to zero
                         "Distance");
    routing.GetMutableDimension("Distance")
        ->SetGlobalSpanCostCoefficient(100000000);
  }

  // Define disjunctions.
#ifdef SNAKE_DEBUG
  std::cout << "disjunctions:" << std::endl;
#endif
  for (const auto &d : disjointNodes) {
    auto i = d.first;
    auto j = d.second;
#ifdef SNAKE_DEBUG
    std::cout << i << "," << j << std::endl;
#endif
    auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
    auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(j));
    std::vector<int64> disj{idx0, idx1};
    routing.AddDisjunction(disj, -1 /*force cardinality*/, 1 /*cardinality*/);
  }

  // Set first solution heuristic.
  auto searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);
  // Number of solutions.
  auto numSolutionsPerRun = std::max<std::size_t>(1, par.numSolutionsPerRun);
  searchParameters.set_number_of_solutions_to_collect(numSolutionsPerRun);
  // Set costume limit.
  auto *solver = routing.solver();
  auto *limit = solver->MakeCustomLimit(par.stop);
  routing.AddSearchMonitor(limit);
#ifdef SNAKE_SHOW_TIME
  auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(
      std::chrono::high_resolution_clock::now() - start);
  cout << "create routing model: " << delta.count() << " ms" << endl;
#endif

  //================================================================
  // Solve model.
  //================================================================
#ifdef SNAKE_SHOW_TIME
  start = std::chrono::high_resolution_clock::now();
#endif
  auto pSolutions = std::make_unique<std::vector<const Assignment *>>();
  (void)routing.SolveWithParameters(searchParameters, pSolutions.get());
#ifdef SNAKE_SHOW_TIME
  delta = std::chrono::duration_cast<std::chrono::milliseconds>(
      std::chrono::high_resolution_clock::now() - start);
  cout << "solve routing model: " << delta.count() << " ms" << endl;
#endif
  if (par.stop()) {
    par.errorString = "User terminated.";
    return false;
  }
  if (pSolutions->size() == 0) {
    std::stringstream ss;
    ss << "No solution found." << std::endl;
    par.errorString = ss.str();
    return false;
  }

  //================================================================
  // Construc route.
  //================================================================
#ifdef SNAKE_SHOW_TIME
  start = std::chrono::high_resolution_clock::now();
#endif
  long long counter = -1;
  // Note: route number 0 corresponds to the best route which is the last entry
  // of *pSolutions.
  for (auto solution = pSolutions->end() - 1; solution >= pSolutions->begin();
       --solution) {
    ++counter;
    if (!*solution || (*solution)->Size() <= 1) {
      std::stringstream ss;
      ss << par.errorString << "Solution " << counter << "invalid."
         << std::endl;
      par.errorString = ss.str();
      continue;
    }
    // Iterate over all routes.
    Solution routeVector;
    for (std::size_t vehicle = 0; vehicle < numRuns; ++vehicle) {
      if (!routing.IsVehicleUsed(**solution, vehicle))
        continue;

      // Create index list.
      auto index = routing.Start(vehicle);
      std::vector<size_t> route_idx;
      route_idx.push_back(manager.IndexToNode(index).value());
      while (!routing.IsEnd(index)) {
        index = (*solution)->Value(routing.NextVar(index));
        route_idx.push_back(manager.IndexToNode(index).value());
      }

#ifdef SNAKE_DEBUG
      // Print route.
      std::cout << "route " << counter
                << " route_idx.size() = " << route_idx.size() << std::endl;
      std::cout << "route: ";
      for (const auto &idx : route_idx) {
        std::cout << idx << ", ";
      }
      std::cout << std::endl;
#endif
      if (route_idx.size() < 2) {
        std::stringstream ss;
        ss << par.errorString
           << "Error while assembling route (solution = " << counter
           << ", run = " << vehicle << ")." << std::endl;
        par.errorString = ss.str();
        continue;
      }

      // Assemble route.
      Route r;
      auto &path = r.path;
      auto &info = r.info;
      for (size_t i = 0; i < route_idx.size() - 1; ++i) {
        size_t nodeIndex0 = route_idx[i];
        size_t nodeIndex1 = route_idx[i + 1];
        const auto &n2t0 = nodeToTransectList[nodeIndex0];
        info.emplace_back(n2t0.transectsIndex, n2t0.reversed);
        // Copy transect to route.
        const auto &t = transects[n2t0.transectsIndex];
        if (n2t0.reversed) { // transect reversal needed?
          for (auto it = t.end() - 1; it > t.begin(); --it) {
            path.push_back(*it);
          }
        } else {
          for (auto it = t.begin(); it < t.end() - 1; ++it) {
            path.push_back(*it);
          }
        }
        // Connect transects.
        std::vector<size_t> idxList;
        if (!shortestPathFromGraph(connectionGraph,
                                   nodeList[nodeIndex0].fromIndex,
                                   nodeList[nodeIndex1].toIndex, idxList)) {
          std::stringstream ss;
          ss << par.errorString
             << "Error while assembling route (solution = " << counter
             << ", run = " << vehicle << ")." << std::endl;
          par.errorString = ss.str();
          continue;
        }
        if (i != route_idx.size() - 2) {
          idxList.pop_back();
        }
        for (auto idx : idxList) {
          auto p = int2Float(vertices[idx]);
          path.push_back(p);
        }
      }
      // Append last transect info.
      const auto &n2t0 = nodeToTransectList.back();
      info.emplace_back(n2t0.transectsIndex, n2t0.reversed);

      if (path.size() < 2 || info.size() < 2) {
        std::stringstream ss;
        ss << par.errorString << "Route empty (solution = " << counter
           << ", run = " << vehicle << ")." << std::endl;
        par.errorString = ss.str();
        continue;
      }

      routeVector.push_back(std::move(r));
    }
    if (routeVector.size() > 0) {
      solutionVector.push_back(std::move(routeVector));
    } else {
      std::stringstream ss;
      ss << par.errorString << "Solution " << counter << " empty." << std::endl;
      par.errorString = ss.str();
    }
  }
#ifdef SNAKE_SHOW_TIME
  delta = std::chrono::duration_cast<std::chrono::milliseconds>(
      std::chrono::high_resolution_clock::now() - start);
  cout << "reconstruct route: " << delta.count() << " ms" << endl;
#endif

  if (solutionVector.size() > 0) {
    return true;
  } else {
    return false;
  }
}

FPoint int2Float(const IPoint &ip) { return int2Float(ip, stdScale); }

FPoint int2Float(const IPoint &ip, IntType scale) {
  return FPoint{FloatType(ip.get<0>()) / scale, FloatType(ip.get<1>()) / scale};
}

IPoint float2Int(const FPoint &ip) { return float2Int(ip, stdScale); }

IPoint float2Int(const FPoint &ip, IntType scale) {
  return IPoint{IntType(std::llround(ip.get<0>() * scale)),
                IntType(std::llround(ip.get<1>() * scale))};
}

bool dijkstraAlgorithm(size_t numElements, size_t startIndex, size_t endIndex,
                       std::vector<size_t> &elementPath, double &length,
                       std::function<double(size_t, size_t)> distanceDij) {
  if (startIndex >= numElements || endIndex >= numElements) {
    length = std::numeric_limits<double>::infinity();
    return false;
  } else if (endIndex == startIndex) {
    length = 0;
    elementPath.push_back(startIndex);
    return true;
  }

  // Node struct
  // predecessorIndex is the index of the predecessor node
  // (nodeList[predecessorIndex]) distance is the distance between the node and
  // the start node node number is stored by the position in nodeList
  struct Node {
    std::size_t predecessorIndex = std::numeric_limits<std::size_t>::max();
    double distance = std::numeric_limits<double>::infinity();
  };

  // The list with all Nodes (elements)
  std::vector<Node> nodeList(numElements);
  // This list will be initalized with indices referring to the elements of
  // nodeList. Elements will be successively remove during the execution of the
  // Dijkstra Algorithm.
  std::vector<size_t> workingSet(numElements);

  // append elements to node list
  for (size_t i = 0; i < numElements; ++i)
    workingSet[i] = i;

  nodeList[startIndex].distance = 0;

  // Dijkstra Algorithm
  // https://de.wikipedia.org/wiki/Dijkstra-Algorithmus
  while (workingSet.size() > 0) {
    // serach Node with minimal distance
    auto minDist = std::numeric_limits<double>::infinity();
    std::size_t minDistIndex_WS =
        std::numeric_limits<std::size_t>::max(); // WS = workinSet
    for (size_t i = 0; i < workingSet.size(); ++i) {
      const auto nodeIndex = workingSet.at(i);
      const auto dist = nodeList.at(nodeIndex).distance;
      if (dist < minDist) {
        minDist = dist;
        minDistIndex_WS = i;
      }
    }
    if (minDistIndex_WS == std::numeric_limits<std::size_t>::max())
      return false;

    size_t indexU_NL = workingSet.at(minDistIndex_WS); // NL = nodeList
    workingSet.erase(workingSet.begin() + minDistIndex_WS);
    if (indexU_NL == endIndex) // shortest path found
      break;

    const auto distanceU = nodeList.at(indexU_NL).distance;
    // update distance
    for (size_t i = 0; i < workingSet.size(); ++i) {
      auto indexV_NL = workingSet[i]; // NL = nodeList
      Node *v = &nodeList[indexV_NL];
      auto dist = distanceDij(indexU_NL, indexV_NL);
      // is ther an alternative path which is shorter?
      auto alternative = distanceU + dist;
      if (alternative < v->distance) {
        v->distance = alternative;
        v->predecessorIndex = indexU_NL;
      }
    }
  }
  // end Djikstra Algorithm

  // reverse assemble path
  auto e = endIndex;
  length = nodeList[e].distance;
  while (true) {
    if (e == std::numeric_limits<std::size_t>::max()) {
      if (elementPath.size() > 0 &&
          elementPath[0] == startIndex) { // check if starting point was reached
        break;
      } else { // some error
        length = std::numeric_limits<double>::infinity();
        elementPath.clear();
        return false;
      }
    } else {
      elementPath.insert(elementPath.begin(), e);
      // Update Node
      e = nodeList[e].predecessorIndex;
    }
  }
  return true;
}

bool shortestPathFromGraph(const Matrix<double> &graph, const size_t startIndex,
                           const size_t endIndex,
                           std::vector<size_t> &pathIdx) {
  if (!std::isinf(graph(startIndex, endIndex))) {
    pathIdx.push_back(startIndex);
    pathIdx.push_back(endIndex);
  } else {
    auto distance = [&graph](size_t i, size_t j) -> double {
      return graph(i, j);
    };
    double d = 0;
    if (!dijkstraAlgorithm(graph.n(), startIndex, endIndex, pathIdx, d,
                           distance)) {
      return false;
    }
  }
  return true;
}

} // namespace snake

bool boost::geometry::model::operator==(snake::FPoint &p1, snake::FPoint &p2) {
  return (p1.get<0>() == p2.get<0>()) && (p1.get<1>() == p2.get<1>());
}

bool boost::geometry::model::operator!=(snake::FPoint &p1, snake::FPoint &p2) {
  return !(p1 == p2);
}

bool boost::geometry::model::operator==(snake::IPoint &p1, snake::IPoint &p2) {
  return (p1.get<0>() == p2.get<0>()) && (p1.get<1>() == p2.get<1>());
}
bool boost::geometry::model::operator!=(snake::IPoint &p1, snake::IPoint &p2) {
  return !(p1 == p2);
}