variant.hpp 27 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
#ifndef MAPBOX_UTIL_VARIANT_HPP
#define MAPBOX_UTIL_VARIANT_HPP

#include <cassert>
#include <cstddef>   // size_t
#include <new>       // operator new
#include <stdexcept> // runtime_error
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <utility>

#include "recursive_wrapper.hpp"

// clang-format off
// [[deprecated]] is only available in C++14, use this for the time being
#if __cplusplus <= 201103L
# ifdef __GNUC__
#  define MAPBOX_VARIANT_DEPRECATED __attribute__((deprecated))
# elif defined(_MSC_VER)
#  define MAPBOX_VARIANT_DEPRECATED __declspec(deprecated)
# else
#  define MAPBOX_VARIANT_DEPRECATED
# endif
#else
#  define MAPBOX_VARIANT_DEPRECATED [[deprecated]]
#endif


#ifdef _MSC_VER
 // https://msdn.microsoft.com/en-us/library/bw1hbe6y.aspx
 #ifdef NDEBUG
  #define VARIANT_INLINE __forceinline
 #else
  #define VARIANT_INLINE __declspec(noinline)
 #endif
#else
 #ifdef NDEBUG
  #define VARIANT_INLINE inline __attribute__((always_inline))
 #else
  #define VARIANT_INLINE __attribute__((noinline))
 #endif
#endif
// clang-format on

#define VARIANT_MAJOR_VERSION 1
#define VARIANT_MINOR_VERSION 1
#define VARIANT_PATCH_VERSION 0

#define VARIANT_VERSION (VARIANT_MAJOR_VERSION * 100000) + (VARIANT_MINOR_VERSION * 100) + (VARIANT_PATCH_VERSION)

namespace mapbox {
namespace util {

// XXX This should derive from std::logic_error instead of std::runtime_error.
//     See https://github.com/mapbox/variant/issues/48 for details.
class bad_variant_access : public std::runtime_error
{

  public:
    explicit bad_variant_access(const std::string& what_arg)
        : runtime_error(what_arg) {}

    explicit bad_variant_access(const char* what_arg)
        : runtime_error(what_arg) {}

}; // class bad_variant_access

template <typename R = void>
struct MAPBOX_VARIANT_DEPRECATED static_visitor
{
    using result_type = R;

  protected:
    static_visitor() {}
    ~static_visitor() {}
};

namespace detail {

static constexpr std::size_t invalid_value = std::size_t(-1);

template <typename T, typename... Types>
struct direct_type;

template <typename T, typename First, typename... Types>
struct direct_type<T, First, Types...>
{
    static constexpr std::size_t index = std::is_same<T, First>::value
                                             ? sizeof...(Types)
                                             : direct_type<T, Types...>::index;
};

template <typename T>
struct direct_type<T>
{
    static constexpr std::size_t index = invalid_value;
};

template <typename T, typename... Types>
struct convertible_type;

template <typename T, typename First, typename... Types>
struct convertible_type<T, First, Types...>
{
    static constexpr std::size_t index = std::is_convertible<T, First>::value
                                             ? sizeof...(Types)
                                             : convertible_type<T, Types...>::index;
};

template <typename T>
struct convertible_type<T>
{
    static constexpr std::size_t index = invalid_value;
};

template <typename T, typename... Types>
struct value_traits
{
    using value_type = typename std::remove_reference<T>::type;
    static constexpr std::size_t direct_index = direct_type<value_type, Types...>::index;
    static constexpr bool is_direct = direct_index != invalid_value;
    static constexpr std::size_t index = is_direct ? direct_index : convertible_type<value_type, Types...>::index;
    static constexpr bool is_valid = index != invalid_value;
    static constexpr std::size_t tindex = is_valid ? sizeof...(Types)-index : 0;
    using target_type = typename std::tuple_element<tindex, std::tuple<void, Types...>>::type;
};

// check if T is in Types...
template <typename T, typename... Types>
struct has_type;

template <typename T, typename First, typename... Types>
struct has_type<T, First, Types...>
{
    static constexpr bool value = std::is_same<T, First>::value || has_type<T, Types...>::value;
};

template <typename T>
struct has_type<T> : std::false_type
{
};

template <typename T, typename... Types>
struct is_valid_type;

template <typename T, typename First, typename... Types>
struct is_valid_type<T, First, Types...>
{
    static constexpr bool value = std::is_convertible<T, First>::value || is_valid_type<T, Types...>::value;
};

template <typename T>
struct is_valid_type<T> : std::false_type
{
};

template <typename T, typename R = void>
struct enable_if_type
{
    using type = R;
};

template <typename F, typename V, typename Enable = void>
struct result_of_unary_visit
{
    using type = typename std::result_of<F(V&)>::type;
};

template <typename F, typename V>
struct result_of_unary_visit<F, V, typename enable_if_type<typename F::result_type>::type>
{
    using type = typename F::result_type;
};

template <typename F, typename V, typename Enable = void>
struct result_of_binary_visit
{
    using type = typename std::result_of<F(V&, V&)>::type;
};

template <typename F, typename V>
struct result_of_binary_visit<F, V, typename enable_if_type<typename F::result_type>::type>
{
    using type = typename F::result_type;
};

template <std::size_t arg1, std::size_t... others>
struct static_max;

template <std::size_t arg>
struct static_max<arg>
{
    static const std::size_t value = arg;
};

template <std::size_t arg1, std::size_t arg2, std::size_t... others>
struct static_max<arg1, arg2, others...>
{
    static const std::size_t value = arg1 >= arg2 ? static_max<arg1, others...>::value : static_max<arg2, others...>::value;
};

template <typename... Types>
struct variant_helper;

template <typename T, typename... Types>
struct variant_helper<T, Types...>
{
    VARIANT_INLINE static void destroy(const std::size_t type_index, void* data)
    {
        if (type_index == sizeof...(Types))
        {
            reinterpret_cast<T*>(data)->~T();
        }
        else
        {
            variant_helper<Types...>::destroy(type_index, data);
        }
    }

    VARIANT_INLINE static void move(const std::size_t old_type_index, void* old_value, void* new_value)
    {
        if (old_type_index == sizeof...(Types))
        {
            new (new_value) T(std::move(*reinterpret_cast<T*>(old_value)));
        }
        else
        {
            variant_helper<Types...>::move(old_type_index, old_value, new_value);
        }
    }

    VARIANT_INLINE static void copy(const std::size_t old_type_index, const void* old_value, void* new_value)
    {
        if (old_type_index == sizeof...(Types))
        {
            new (new_value) T(*reinterpret_cast<const T*>(old_value));
        }
        else
        {
            variant_helper<Types...>::copy(old_type_index, old_value, new_value);
        }
    }
};

template <>
struct variant_helper<>
{
    VARIANT_INLINE static void destroy(const std::size_t, void*) {}
    VARIANT_INLINE static void move(const std::size_t, void*, void*) {}
    VARIANT_INLINE static void copy(const std::size_t, const void*, void*) {}
};

template <typename T>
struct unwrapper
{
    static T const& apply_const(T const& obj) { return obj; }
    static T& apply(T& obj) { return obj; }
};

template <typename T>
struct unwrapper<recursive_wrapper<T>>
{
    static auto apply_const(recursive_wrapper<T> const& obj)
        -> typename recursive_wrapper<T>::type const&
    {
        return obj.get();
    }
    static auto apply(recursive_wrapper<T>& obj)
        -> typename recursive_wrapper<T>::type&
    {
        return obj.get();
    }
};

template <typename T>
struct unwrapper<std::reference_wrapper<T>>
{
    static auto apply_const(std::reference_wrapper<T> const& obj)
        -> typename std::reference_wrapper<T>::type const&
    {
        return obj.get();
    }
    static auto apply(std::reference_wrapper<T>& obj)
        -> typename std::reference_wrapper<T>::type&
    {
        return obj.get();
    }
};

template <typename F, typename V, typename R, typename... Types>
struct dispatcher;

template <typename F, typename V, typename R, typename T, typename... Types>
struct dispatcher<F, V, R, T, Types...>
{
    VARIANT_INLINE static R apply_const(V const& v, F&& f)
    {
        if (v.template is<T>())
        {
            return f(unwrapper<T>::apply_const(v.template get<T>()));
        }
        else
        {
            return dispatcher<F, V, R, Types...>::apply_const(v, std::forward<F>(f));
        }
    }

    VARIANT_INLINE static R apply(V& v, F&& f)
    {
        if (v.template is<T>())
        {
            return f(unwrapper<T>::apply(v.template get<T>()));
        }
        else
        {
            return dispatcher<F, V, R, Types...>::apply(v, std::forward<F>(f));
        }
    }
};

template <typename F, typename V, typename R, typename T>
struct dispatcher<F, V, R, T>
{
    VARIANT_INLINE static R apply_const(V const& v, F&& f)
    {
        return f(unwrapper<T>::apply_const(v.template get<T>()));
    }

    VARIANT_INLINE static R apply(V& v, F&& f)
    {
        return f(unwrapper<T>::apply(v.template get<T>()));
    }
};

template <typename F, typename V, typename R, typename T, typename... Types>
struct binary_dispatcher_rhs;

template <typename F, typename V, typename R, typename T0, typename T1, typename... Types>
struct binary_dispatcher_rhs<F, V, R, T0, T1, Types...>
{
    VARIANT_INLINE static R apply_const(V const& lhs, V const& rhs, F&& f)
    {
        if (rhs.template is<T1>()) // call binary functor
        {
            return f(unwrapper<T0>::apply_const(lhs.template get<T0>()),
                     unwrapper<T1>::apply_const(rhs.template get<T1>()));
        }
        else
        {
            return binary_dispatcher_rhs<F, V, R, T0, Types...>::apply_const(lhs, rhs, std::forward<F>(f));
        }
    }

    VARIANT_INLINE static R apply(V& lhs, V& rhs, F&& f)
    {
        if (rhs.template is<T1>()) // call binary functor
        {
            return f(unwrapper<T0>::apply(lhs.template get<T0>()),
                     unwrapper<T1>::apply(rhs.template get<T1>()));
        }
        else
        {
            return binary_dispatcher_rhs<F, V, R, T0, Types...>::apply(lhs, rhs, std::forward<F>(f));
        }
    }
};

template <typename F, typename V, typename R, typename T0, typename T1>
struct binary_dispatcher_rhs<F, V, R, T0, T1>
{
    VARIANT_INLINE static R apply_const(V const& lhs, V const& rhs, F&& f)
    {
        return f(unwrapper<T0>::apply_const(lhs.template get<T0>()),
                 unwrapper<T1>::apply_const(rhs.template get<T1>()));
    }

    VARIANT_INLINE static R apply(V& lhs, V& rhs, F&& f)
    {
        return f(unwrapper<T0>::apply(lhs.template get<T0>()),
                 unwrapper<T1>::apply(rhs.template get<T1>()));
    }
};

template <typename F, typename V, typename R, typename T, typename... Types>
struct binary_dispatcher_lhs;

template <typename F, typename V, typename R, typename T0, typename T1, typename... Types>
struct binary_dispatcher_lhs<F, V, R, T0, T1, Types...>
{
    VARIANT_INLINE static R apply_const(V const& lhs, V const& rhs, F&& f)
    {
        if (lhs.template is<T1>()) // call binary functor
        {
            return f(unwrapper<T1>::apply_const(lhs.template get<T1>()),
                     unwrapper<T0>::apply_const(rhs.template get<T0>()));
        }
        else
        {
            return binary_dispatcher_lhs<F, V, R, T0, Types...>::apply_const(lhs, rhs, std::forward<F>(f));
        }
    }

    VARIANT_INLINE static R apply(V& lhs, V& rhs, F&& f)
    {
        if (lhs.template is<T1>()) // call binary functor
        {
            return f(unwrapper<T1>::apply(lhs.template get<T1>()),
                     unwrapper<T0>::apply(rhs.template get<T0>()));
        }
        else
        {
            return binary_dispatcher_lhs<F, V, R, T0, Types...>::apply(lhs, rhs, std::forward<F>(f));
        }
    }
};

template <typename F, typename V, typename R, typename T0, typename T1>
struct binary_dispatcher_lhs<F, V, R, T0, T1>
{
    VARIANT_INLINE static R apply_const(V const& lhs, V const& rhs, F&& f)
    {
        return f(unwrapper<T1>::apply_const(lhs.template get<T1>()),
                 unwrapper<T0>::apply_const(rhs.template get<T0>()));
    }

    VARIANT_INLINE static R apply(V& lhs, V& rhs, F&& f)
    {
        return f(unwrapper<T1>::apply(lhs.template get<T1>()),
                 unwrapper<T0>::apply(rhs.template get<T0>()));
    }
};

template <typename F, typename V, typename R, typename... Types>
struct binary_dispatcher;

template <typename F, typename V, typename R, typename T, typename... Types>
struct binary_dispatcher<F, V, R, T, Types...>
{
    VARIANT_INLINE static R apply_const(V const& v0, V const& v1, F&& f)
    {
        if (v0.template is<T>())
        {
            if (v1.template is<T>())
            {
                return f(unwrapper<T>::apply_const(v0.template get<T>()),
                         unwrapper<T>::apply_const(v1.template get<T>())); // call binary functor
            }
            else
            {
                return binary_dispatcher_rhs<F, V, R, T, Types...>::apply_const(v0, v1, std::forward<F>(f));
            }
        }
        else if (v1.template is<T>())
        {
            return binary_dispatcher_lhs<F, V, R, T, Types...>::apply_const(v0, v1, std::forward<F>(f));
        }
        return binary_dispatcher<F, V, R, Types...>::apply_const(v0, v1, std::forward<F>(f));
    }

    VARIANT_INLINE static R apply(V& v0, V& v1, F&& f)
    {
        if (v0.template is<T>())
        {
            if (v1.template is<T>())
            {
                return f(unwrapper<T>::apply(v0.template get<T>()),
                         unwrapper<T>::apply(v1.template get<T>())); // call binary functor
            }
            else
            {
                return binary_dispatcher_rhs<F, V, R, T, Types...>::apply(v0, v1, std::forward<F>(f));
            }
        }
        else if (v1.template is<T>())
        {
            return binary_dispatcher_lhs<F, V, R, T, Types...>::apply(v0, v1, std::forward<F>(f));
        }
        return binary_dispatcher<F, V, R, Types...>::apply(v0, v1, std::forward<F>(f));
    }
};

template <typename F, typename V, typename R, typename T>
struct binary_dispatcher<F, V, R, T>
{
    VARIANT_INLINE static R apply_const(V const& v0, V const& v1, F&& f)
    {
        return f(unwrapper<T>::apply_const(v0.template get<T>()),
                 unwrapper<T>::apply_const(v1.template get<T>())); // call binary functor
    }

    VARIANT_INLINE static R apply(V& v0, V& v1, F&& f)
    {
        return f(unwrapper<T>::apply(v0.template get<T>()),
                 unwrapper<T>::apply(v1.template get<T>())); // call binary functor
    }
};

// comparator functors
struct equal_comp
{
    template <typename T>
    bool operator()(T const& lhs, T const& rhs) const
    {
        return lhs == rhs;
    }
};

struct less_comp
{
    template <typename T>
    bool operator()(T const& lhs, T const& rhs) const
    {
        return lhs < rhs;
    }
};

template <typename Variant, typename Comp>
class comparer
{
  public:
    explicit comparer(Variant const& lhs) noexcept
        : lhs_(lhs) {}
    comparer& operator=(comparer const&) = delete;
    // visitor
    template <typename T>
    bool operator()(T const& rhs_content) const
    {
        T const& lhs_content = lhs_.template get<T>();
        return Comp()(lhs_content, rhs_content);
    }

  private:
    Variant const& lhs_;
};

// True if Predicate matches for all of the types Ts
template <template <typename> class Predicate, typename... Ts>
struct static_all_of : std::is_same<std::tuple<std::true_type, typename Predicate<Ts>::type...>,
                                    std::tuple<typename Predicate<Ts>::type..., std::true_type>>
{
};

// True if Predicate matches for none of the types Ts
template <template <typename> class Predicate, typename... Ts>
struct static_none_of : std::is_same<std::tuple<std::false_type, typename Predicate<Ts>::type...>,
                                     std::tuple<typename Predicate<Ts>::type..., std::false_type>>
{
};

} // namespace detail

struct no_init
{
};

template <typename... Types>
class variant
{
    static_assert(sizeof...(Types) > 0, "Template parameter type list of variant can not be empty");
    static_assert(detail::static_none_of<std::is_reference, Types...>::value, "Variant can not hold reference types. Maybe use std::reference?");

  private:
    static const std::size_t data_size = detail::static_max<sizeof(Types)...>::value;
    static const std::size_t data_align = detail::static_max<alignof(Types)...>::value;

    using first_type = typename std::tuple_element<0, std::tuple<Types...>>::type;
    using data_type = typename std::aligned_storage<data_size, data_align>::type;
    using helper_type = detail::variant_helper<Types...>;

    std::size_t type_index;
    data_type data;

  public:
    VARIANT_INLINE variant() noexcept(std::is_nothrow_default_constructible<first_type>::value)
        : type_index(sizeof...(Types)-1)
    {
        static_assert(std::is_default_constructible<first_type>::value, "First type in variant must be default constructible to allow default construction of variant");
        new (&data) first_type();
    }

    VARIANT_INLINE variant(no_init) noexcept
        : type_index(detail::invalid_value) {}

    // http://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers
    template <typename T, typename Traits = detail::value_traits<T, Types...>,
              typename Enable = typename std::enable_if<Traits::is_valid>::type>
    VARIANT_INLINE variant(T&& val) noexcept(std::is_nothrow_constructible<typename Traits::target_type, T&&>::value)
        : type_index(Traits::index)
    {
        new (&data) typename Traits::target_type(std::forward<T>(val));
    }

    VARIANT_INLINE variant(variant<Types...> const& old)
        : type_index(old.type_index)
    {
        helper_type::copy(old.type_index, &old.data, &data);
    }

    VARIANT_INLINE variant(variant<Types...>&& old) noexcept(std::is_nothrow_move_constructible<std::tuple<Types...>>::value)
        : type_index(old.type_index)
    {
        helper_type::move(old.type_index, &old.data, &data);
    }

  private:
    VARIANT_INLINE void copy_assign(variant<Types...> const& rhs)
    {
        helper_type::destroy(type_index, &data);
        type_index = detail::invalid_value;
        helper_type::copy(rhs.type_index, &rhs.data, &data);
        type_index = rhs.type_index;
    }

    VARIANT_INLINE void move_assign(variant<Types...>&& rhs)
    {
        helper_type::destroy(type_index, &data);
        type_index = detail::invalid_value;
        helper_type::move(rhs.type_index, &rhs.data, &data);
        type_index = rhs.type_index;
    }

  public:
    VARIANT_INLINE variant<Types...>& operator=(variant<Types...>&& other)
    {
        move_assign(std::move(other));
        return *this;
    }

    VARIANT_INLINE variant<Types...>& operator=(variant<Types...> const& other)
    {
        copy_assign(other);
        return *this;
    }

    // conversions
    // move-assign
    template <typename T>
    VARIANT_INLINE variant<Types...>& operator=(T&& rhs) noexcept
    {
        variant<Types...> temp(std::forward<T>(rhs));
        move_assign(std::move(temp));
        return *this;
    }

    // copy-assign
    template <typename T>
    VARIANT_INLINE variant<Types...>& operator=(T const& rhs)
    {
        variant<Types...> temp(rhs);
        copy_assign(temp);
        return *this;
    }

    template <typename T>
    VARIANT_INLINE bool is() const
    {
        static_assert(detail::has_type<T, Types...>::value, "invalid type in T in `is<T>()` for this variant");
        return type_index == detail::direct_type<T, Types...>::index;
    }

    VARIANT_INLINE bool valid() const
    {
        return type_index != detail::invalid_value;
    }

    template <typename T, typename... Args>
    VARIANT_INLINE void set(Args&&... args)
    {
        helper_type::destroy(type_index, &data);
        type_index = detail::invalid_value;
        new (&data) T(std::forward<Args>(args)...);
        type_index = detail::direct_type<T, Types...>::index;
    }

    // get<T>()
    template <typename T, typename std::enable_if<
                              (detail::direct_type<T, Types...>::index != detail::invalid_value)>::type* = nullptr>
    VARIANT_INLINE T& get()
    {
        if (type_index == detail::direct_type<T, Types...>::index)
        {
            return *reinterpret_cast<T*>(&data);
        }
        else
        {
            throw bad_variant_access("in get<T>()");
        }
    }

    template <typename T, typename std::enable_if<
                              (detail::direct_type<T, Types...>::index != detail::invalid_value)>::type* = nullptr>
    VARIANT_INLINE T const& get() const
    {
        if (type_index == detail::direct_type<T, Types...>::index)
        {
            return *reinterpret_cast<T const*>(&data);
        }
        else
        {
            throw bad_variant_access("in get<T>()");
        }
    }

    // get<T>() - T stored as recursive_wrapper<T>
    template <typename T, typename std::enable_if<
                              (detail::direct_type<recursive_wrapper<T>, Types...>::index != detail::invalid_value)>::type* = nullptr>
    VARIANT_INLINE T& get()
    {
        if (type_index == detail::direct_type<recursive_wrapper<T>, Types...>::index)
        {
            return (*reinterpret_cast<recursive_wrapper<T>*>(&data)).get();
        }
        else
        {
            throw bad_variant_access("in get<T>()");
        }
    }

    template <typename T, typename std::enable_if<
                              (detail::direct_type<recursive_wrapper<T>, Types...>::index != detail::invalid_value)>::type* = nullptr>
    VARIANT_INLINE T const& get() const
    {
        if (type_index == detail::direct_type<recursive_wrapper<T>, Types...>::index)
        {
            return (*reinterpret_cast<recursive_wrapper<T> const*>(&data)).get();
        }
        else
        {
            throw bad_variant_access("in get<T>()");
        }
    }

    // get<T>() - T stored as std::reference_wrapper<T>
    template <typename T, typename std::enable_if<
                              (detail::direct_type<std::reference_wrapper<T>, Types...>::index != detail::invalid_value)>::type* = nullptr>
    VARIANT_INLINE T& get()
    {
        if (type_index == detail::direct_type<std::reference_wrapper<T>, Types...>::index)
        {
            return (*reinterpret_cast<std::reference_wrapper<T>*>(&data)).get();
        }
        else
        {
            throw bad_variant_access("in get<T>()");
        }
    }

    template <typename T, typename std::enable_if<
                              (detail::direct_type<std::reference_wrapper<T const>, Types...>::index != detail::invalid_value)>::type* = nullptr>
    VARIANT_INLINE T const& get() const
    {
        if (type_index == detail::direct_type<std::reference_wrapper<T const>, Types...>::index)
        {
            return (*reinterpret_cast<std::reference_wrapper<T const> const*>(&data)).get();
        }
        else
        {
            throw bad_variant_access("in get<T>()");
        }
    }

    // This function is deprecated because it returns an internal index field.
    // Use which() instead.
    MAPBOX_VARIANT_DEPRECATED VARIANT_INLINE std::size_t get_type_index() const
    {
        return type_index;
    }

    VARIANT_INLINE int which() const noexcept
    {
        return static_cast<int>(sizeof...(Types)-type_index - 1);
    }

    // visitor
    // unary
    template <typename F, typename V, typename R = typename detail::result_of_unary_visit<F, first_type>::type>
    auto VARIANT_INLINE static visit(V const& v, F&& f)
        -> decltype(detail::dispatcher<F, V, R, Types...>::apply_const(v, std::forward<F>(f)))
    {
        return detail::dispatcher<F, V, R, Types...>::apply_const(v, std::forward<F>(f));
    }
    // non-const
    template <typename F, typename V, typename R = typename detail::result_of_unary_visit<F, first_type>::type>
    auto VARIANT_INLINE static visit(V& v, F&& f)
        -> decltype(detail::dispatcher<F, V, R, Types...>::apply(v, std::forward<F>(f)))
    {
        return detail::dispatcher<F, V, R, Types...>::apply(v, std::forward<F>(f));
    }

    // binary
    // const
    template <typename F, typename V, typename R = typename detail::result_of_binary_visit<F, first_type>::type>
    auto VARIANT_INLINE static binary_visit(V const& v0, V const& v1, F&& f)
        -> decltype(detail::binary_dispatcher<F, V, R, Types...>::apply_const(v0, v1, std::forward<F>(f)))
    {
        return detail::binary_dispatcher<F, V, R, Types...>::apply_const(v0, v1, std::forward<F>(f));
    }
    // non-const
    template <typename F, typename V, typename R = typename detail::result_of_binary_visit<F, first_type>::type>
    auto VARIANT_INLINE static binary_visit(V& v0, V& v1, F&& f)
        -> decltype(detail::binary_dispatcher<F, V, R, Types...>::apply(v0, v1, std::forward<F>(f)))
    {
        return detail::binary_dispatcher<F, V, R, Types...>::apply(v0, v1, std::forward<F>(f));
    }

    ~variant() noexcept // no-throw destructor
    {
        helper_type::destroy(type_index, &data);
    }

    // comparison operators
    // equality
    VARIANT_INLINE bool operator==(variant const& rhs) const
    {
        assert(valid() && rhs.valid());
        if (this->which() != rhs.which())
        {
            return false;
        }
        detail::comparer<variant, detail::equal_comp> visitor(*this);
        return visit(rhs, visitor);
    }

    VARIANT_INLINE bool operator!=(variant const& rhs) const
    {
        return !(*this == rhs);
    }

    // less than
    VARIANT_INLINE bool operator<(variant const& rhs) const
    {
        assert(valid() && rhs.valid());
        if (this->which() != rhs.which())
        {
            return this->which() < rhs.which();
        }
        detail::comparer<variant, detail::less_comp> visitor(*this);
        return visit(rhs, visitor);
    }
    VARIANT_INLINE bool operator>(variant const& rhs) const
    {
        return rhs < *this;
    }
    VARIANT_INLINE bool operator<=(variant const& rhs) const
    {
        return !(*this > rhs);
    }
    VARIANT_INLINE bool operator>=(variant const& rhs) const
    {
        return !(*this < rhs);
    }
};

// unary visitor interface
// const
template <typename F, typename V>
auto VARIANT_INLINE apply_visitor(F&& f, V const& v) -> decltype(V::visit(v, std::forward<F>(f)))
{
    return V::visit(v, std::forward<F>(f));
}

// non-const
template <typename F, typename V>
auto VARIANT_INLINE apply_visitor(F&& f, V& v) -> decltype(V::visit(v, std::forward<F>(f)))
{
    return V::visit(v, std::forward<F>(f));
}

// binary visitor interface
// const
template <typename F, typename V>
auto VARIANT_INLINE apply_visitor(F&& f, V const& v0, V const& v1) -> decltype(V::binary_visit(v0, v1, std::forward<F>(f)))
{
    return V::binary_visit(v0, v1, std::forward<F>(f));
}

// non-const
template <typename F, typename V>
auto VARIANT_INLINE apply_visitor(F&& f, V& v0, V& v1) -> decltype(V::binary_visit(v0, v1, std::forward<F>(f)))
{
    return V::binary_visit(v0, v1, std::forward<F>(f));
}

// getter interface
template <typename ResultType, typename T>
ResultType& get(T& var)
{
    return var.template get<ResultType>();
}

template <typename ResultType, typename T>
ResultType const& get(T const& var)
{
    return var.template get<ResultType>();
}
} // namespace util
} // namespace mapbox

#endif // MAPBOX_UTIL_VARIANT_HPP