SuperLUSupport.h 31.8 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SUPERLUSUPPORT_H
#define EIGEN_SUPERLUSUPPORT_H

namespace Eigen { 

#define DECL_GSSVX(PREFIX,FLOATTYPE,KEYTYPE)		\
    extern "C" {                                                                                          \
      typedef struct { FLOATTYPE for_lu; FLOATTYPE total_needed; int expansions; } PREFIX##mem_usage_t;   \
      extern void PREFIX##gssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *,                  \
                                char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *,           \
                                void *, int, SuperMatrix *, SuperMatrix *,                                \
                                FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, FLOATTYPE *,                       \
                                PREFIX##mem_usage_t *, SuperLUStat_t *, int *);                           \
    }                                                                                                     \
    inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A,                                \
         int *perm_c, int *perm_r, int *etree, char *equed,                                               \
         FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,                                                      \
         SuperMatrix *U, void *work, int lwork,                                                           \
         SuperMatrix *B, SuperMatrix *X,                                                                  \
         FLOATTYPE *recip_pivot_growth,                                                                   \
         FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr,                                              \
         SuperLUStat_t *stats, int *info, KEYTYPE) {                                                      \
    PREFIX##mem_usage_t mem_usage;                                                                        \
    PREFIX##gssvx(options, A, perm_c, perm_r, etree, equed, R, C, L,                                      \
         U, work, lwork, B, X, recip_pivot_growth, rcond,                                                 \
         ferr, berr, &mem_usage, stats, info);                                                            \
    return mem_usage.for_lu; /* bytes used by the factor storage */                                       \
  }

DECL_GSSVX(s,float,float)
DECL_GSSVX(c,float,std::complex<float>)
DECL_GSSVX(d,double,double)
DECL_GSSVX(z,double,std::complex<double>)

#ifdef MILU_ALPHA
#define EIGEN_SUPERLU_HAS_ILU
#endif

#ifdef EIGEN_SUPERLU_HAS_ILU

// similarly for the incomplete factorization using gsisx
#define DECL_GSISX(PREFIX,FLOATTYPE,KEYTYPE)                                                    \
    extern "C" {                                                                                \
      extern void PREFIX##gsisx(superlu_options_t *, SuperMatrix *, int *, int *, int *,        \
                         char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *,        \
                         void *, int, SuperMatrix *, SuperMatrix *, FLOATTYPE *, FLOATTYPE *,   \
                         PREFIX##mem_usage_t *, SuperLUStat_t *, int *);                        \
    }                                                                                           \
    inline float SuperLU_gsisx(superlu_options_t *options, SuperMatrix *A,                      \
         int *perm_c, int *perm_r, int *etree, char *equed,                                     \
         FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,                                            \
         SuperMatrix *U, void *work, int lwork,                                                 \
         SuperMatrix *B, SuperMatrix *X,                                                        \
         FLOATTYPE *recip_pivot_growth,                                                         \
         FLOATTYPE *rcond,                                                                      \
         SuperLUStat_t *stats, int *info, KEYTYPE) {                                            \
    PREFIX##mem_usage_t mem_usage;                                                              \
    PREFIX##gsisx(options, A, perm_c, perm_r, etree, equed, R, C, L,                            \
         U, work, lwork, B, X, recip_pivot_growth, rcond,                                       \
         &mem_usage, stats, info);                                                              \
    return mem_usage.for_lu; /* bytes used by the factor storage */                             \
  }

DECL_GSISX(s,float,float)
DECL_GSISX(c,float,std::complex<float>)
DECL_GSISX(d,double,double)
DECL_GSISX(z,double,std::complex<double>)

#endif

template<typename MatrixType>
struct SluMatrixMapHelper;

/** \internal
  *
  * A wrapper class for SuperLU matrices. It supports only compressed sparse matrices
  * and dense matrices. Supernodal and other fancy format are not supported by this wrapper.
  *
  * This wrapper class mainly aims to avoids the need of dynamic allocation of the storage structure.
  */
struct SluMatrix : SuperMatrix
{
  SluMatrix()
  {
    Store = &storage;
  }

  SluMatrix(const SluMatrix& other)
    : SuperMatrix(other)
  {
    Store = &storage;
    storage = other.storage;
  }

  SluMatrix& operator=(const SluMatrix& other)
  {
    SuperMatrix::operator=(static_cast<const SuperMatrix&>(other));
    Store = &storage;
    storage = other.storage;
    return *this;
  }

  struct
  {
    union {int nnz;int lda;};
    void *values;
    int *innerInd;
    int *outerInd;
  } storage;

  void setStorageType(Stype_t t)
  {
    Stype = t;
    if (t==SLU_NC || t==SLU_NR || t==SLU_DN)
      Store = &storage;
    else
    {
      eigen_assert(false && "storage type not supported");
      Store = 0;
    }
  }

  template<typename Scalar>
  void setScalarType()
  {
    if (internal::is_same<Scalar,float>::value)
      Dtype = SLU_S;
    else if (internal::is_same<Scalar,double>::value)
      Dtype = SLU_D;
    else if (internal::is_same<Scalar,std::complex<float> >::value)
      Dtype = SLU_C;
    else if (internal::is_same<Scalar,std::complex<double> >::value)
      Dtype = SLU_Z;
    else
    {
      eigen_assert(false && "Scalar type not supported by SuperLU");
    }
  }

  template<typename MatrixType>
  static SluMatrix Map(MatrixBase<MatrixType>& _mat)
  {
    MatrixType& mat(_mat.derived());
    eigen_assert( ((MatrixType::Flags&RowMajorBit)!=RowMajorBit) && "row-major dense matrices are not supported by SuperLU");
    SluMatrix res;
    res.setStorageType(SLU_DN);
    res.setScalarType<typename MatrixType::Scalar>();
    res.Mtype     = SLU_GE;

    res.nrow      = mat.rows();
    res.ncol      = mat.cols();

    res.storage.lda       = MatrixType::IsVectorAtCompileTime ? mat.size() : mat.outerStride();
    res.storage.values    = (void*)(mat.data());
    return res;
  }

  template<typename MatrixType>
  static SluMatrix Map(SparseMatrixBase<MatrixType>& mat)
  {
    SluMatrix res;
    if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
    {
      res.setStorageType(SLU_NR);
      res.nrow      = mat.cols();
      res.ncol      = mat.rows();
    }
    else
    {
      res.setStorageType(SLU_NC);
      res.nrow      = mat.rows();
      res.ncol      = mat.cols();
    }

    res.Mtype       = SLU_GE;

    res.storage.nnz       = mat.nonZeros();
    res.storage.values    = mat.derived().valuePtr();
    res.storage.innerInd  = mat.derived().innerIndexPtr();
    res.storage.outerInd  = mat.derived().outerIndexPtr();

    res.setScalarType<typename MatrixType::Scalar>();

    // FIXME the following is not very accurate
    if (MatrixType::Flags & Upper)
      res.Mtype = SLU_TRU;
    if (MatrixType::Flags & Lower)
      res.Mtype = SLU_TRL;

    eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU");

    return res;
  }
};

template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
struct SluMatrixMapHelper<Matrix<Scalar,Rows,Cols,Options,MRows,MCols> >
{
  typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
  static void run(MatrixType& mat, SluMatrix& res)
  {
    eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
    res.setStorageType(SLU_DN);
    res.setScalarType<Scalar>();
    res.Mtype     = SLU_GE;

    res.nrow      = mat.rows();
    res.ncol      = mat.cols();

    res.storage.lda       = mat.outerStride();
    res.storage.values    = mat.data();
  }
};

template<typename Derived>
struct SluMatrixMapHelper<SparseMatrixBase<Derived> >
{
  typedef Derived MatrixType;
  static void run(MatrixType& mat, SluMatrix& res)
  {
    if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
    {
      res.setStorageType(SLU_NR);
      res.nrow      = mat.cols();
      res.ncol      = mat.rows();
    }
    else
    {
      res.setStorageType(SLU_NC);
      res.nrow      = mat.rows();
      res.ncol      = mat.cols();
    }

    res.Mtype       = SLU_GE;

    res.storage.nnz       = mat.nonZeros();
    res.storage.values    = mat.valuePtr();
    res.storage.innerInd  = mat.innerIndexPtr();
    res.storage.outerInd  = mat.outerIndexPtr();

    res.setScalarType<typename MatrixType::Scalar>();

    // FIXME the following is not very accurate
    if (MatrixType::Flags & Upper)
      res.Mtype = SLU_TRU;
    if (MatrixType::Flags & Lower)
      res.Mtype = SLU_TRL;

    eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU");
  }
};

namespace internal {

template<typename MatrixType>
SluMatrix asSluMatrix(MatrixType& mat)
{
  return SluMatrix::Map(mat);
}

/** View a Super LU matrix as an Eigen expression */
template<typename Scalar, int Flags, typename Index>
MappedSparseMatrix<Scalar,Flags,Index> map_superlu(SluMatrix& sluMat)
{
  eigen_assert((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR
         || (Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC);

  Index outerSize = (Flags&RowMajor)==RowMajor ? sluMat.ncol : sluMat.nrow;

  return MappedSparseMatrix<Scalar,Flags,Index>(
    sluMat.nrow, sluMat.ncol, sluMat.storage.outerInd[outerSize],
    sluMat.storage.outerInd, sluMat.storage.innerInd, reinterpret_cast<Scalar*>(sluMat.storage.values) );
}

} // end namespace internal

/** \ingroup SuperLUSupport_Module
  * \class SuperLUBase
  * \brief The base class for the direct and incomplete LU factorization of SuperLU
  */
template<typename _MatrixType, typename Derived>
class SuperLUBase : internal::noncopyable
{
  public:
    typedef _MatrixType MatrixType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    typedef Matrix<Scalar,Dynamic,1> Vector;
    typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
    typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;    
    typedef SparseMatrix<Scalar> LUMatrixType;

  public:

    SuperLUBase() {}

    ~SuperLUBase()
    {
      clearFactors();
    }
    
    Derived& derived() { return *static_cast<Derived*>(this); }
    const Derived& derived() const { return *static_cast<const Derived*>(this); }
    
    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }
    
    /** \returns a reference to the Super LU option object to configure the  Super LU algorithms. */
    inline superlu_options_t& options() { return m_sluOptions; }
    
    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the matrix.appears to be negative.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
      return m_info;
    }

    /** Computes the sparse Cholesky decomposition of \a matrix */
    void compute(const MatrixType& matrix)
    {
      derived().analyzePattern(matrix);
      derived().factorize(matrix);
    }
    
    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::solve_retval<SuperLUBase, Rhs> solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "SuperLU is not initialized.");
      eigen_assert(rows()==b.rows()
                && "SuperLU::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<SuperLUBase, Rhs>(*this, b.derived());
    }
    
    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::sparse_solve_retval<SuperLUBase, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "SuperLU is not initialized.");
      eigen_assert(rows()==b.rows()
                && "SuperLU::solve(): invalid number of rows of the right hand side matrix b");
      return internal::sparse_solve_retval<SuperLUBase, Rhs>(*this, b.derived());
    }
    
    /** Performs a symbolic decomposition on the sparcity of \a matrix.
      *
      * This function is particularly useful when solving for several problems having the same structure.
      * 
      * \sa factorize()
      */
    void analyzePattern(const MatrixType& /*matrix*/)
    {
      m_isInitialized = true;
      m_info = Success;
      m_analysisIsOk = true;
      m_factorizationIsOk = false;
    }
    
    template<typename Stream>
    void dumpMemory(Stream& /*s*/)
    {}
    
  protected:
    
    void initFactorization(const MatrixType& a)
    {
      set_default_options(&this->m_sluOptions);
      
      const int size = a.rows();
      m_matrix = a;

      m_sluA = internal::asSluMatrix(m_matrix);
      clearFactors();

      m_p.resize(size);
      m_q.resize(size);
      m_sluRscale.resize(size);
      m_sluCscale.resize(size);
      m_sluEtree.resize(size);

      // set empty B and X
      m_sluB.setStorageType(SLU_DN);
      m_sluB.setScalarType<Scalar>();
      m_sluB.Mtype          = SLU_GE;
      m_sluB.storage.values = 0;
      m_sluB.nrow           = 0;
      m_sluB.ncol           = 0;
      m_sluB.storage.lda    = size;
      m_sluX                = m_sluB;
      
      m_extractedDataAreDirty = true;
    }
    
    void init()
    {
      m_info = InvalidInput;
      m_isInitialized = false;
      m_sluL.Store = 0;
      m_sluU.Store = 0;
    }
    
    void extractData() const;

    void clearFactors()
    {
      if(m_sluL.Store)
        Destroy_SuperNode_Matrix(&m_sluL);
      if(m_sluU.Store)
        Destroy_CompCol_Matrix(&m_sluU);

      m_sluL.Store = 0;
      m_sluU.Store = 0;

      memset(&m_sluL,0,sizeof m_sluL);
      memset(&m_sluU,0,sizeof m_sluU);
    }

    // cached data to reduce reallocation, etc.
    mutable LUMatrixType m_l;
    mutable LUMatrixType m_u;
    mutable IntColVectorType m_p;
    mutable IntRowVectorType m_q;

    mutable LUMatrixType m_matrix;  // copy of the factorized matrix
    mutable SluMatrix m_sluA;
    mutable SuperMatrix m_sluL, m_sluU;
    mutable SluMatrix m_sluB, m_sluX;
    mutable SuperLUStat_t m_sluStat;
    mutable superlu_options_t m_sluOptions;
    mutable std::vector<int> m_sluEtree;
    mutable Matrix<RealScalar,Dynamic,1> m_sluRscale, m_sluCscale;
    mutable Matrix<RealScalar,Dynamic,1> m_sluFerr, m_sluBerr;
    mutable char m_sluEqued;

    mutable ComputationInfo m_info;
    bool m_isInitialized;
    int m_factorizationIsOk;
    int m_analysisIsOk;
    mutable bool m_extractedDataAreDirty;
    
  private:
    SuperLUBase(SuperLUBase& ) { }
};


/** \ingroup SuperLUSupport_Module
  * \class SuperLU
  * \brief A sparse direct LU factorization and solver based on the SuperLU library
  *
  * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization
  * using the SuperLU library. The sparse matrix A must be squared and invertible. The vectors or matrices
  * X and B can be either dense or sparse.
  *
  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  *
  * \sa \ref TutorialSparseDirectSolvers
  */
template<typename _MatrixType>
class SuperLU : public SuperLUBase<_MatrixType,SuperLU<_MatrixType> >
{
  public:
    typedef SuperLUBase<_MatrixType,SuperLU> Base;
    typedef _MatrixType MatrixType;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::RealScalar RealScalar;
    typedef typename Base::Index Index;
    typedef typename Base::IntRowVectorType IntRowVectorType;
    typedef typename Base::IntColVectorType IntColVectorType;    
    typedef typename Base::LUMatrixType LUMatrixType;
    typedef TriangularView<LUMatrixType, Lower|UnitDiag>  LMatrixType;
    typedef TriangularView<LUMatrixType,  Upper>           UMatrixType;

  public:

    SuperLU() : Base() { init(); }

    SuperLU(const MatrixType& matrix) : Base()
    {
      init();
      Base::compute(matrix);
    }

    ~SuperLU()
    {
    }
    
    /** Performs a symbolic decomposition on the sparcity of \a matrix.
      *
      * This function is particularly useful when solving for several problems having the same structure.
      * 
      * \sa factorize()
      */
    void analyzePattern(const MatrixType& matrix)
    {
      m_info = InvalidInput;
      m_isInitialized = false;
      Base::analyzePattern(matrix);
    }
    
    /** Performs a numeric decomposition of \a matrix
      *
      * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
      *
      * \sa analyzePattern()
      */
    void factorize(const MatrixType& matrix);
    
    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** \internal */
    template<typename Rhs,typename Dest>
    void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
    #endif // EIGEN_PARSED_BY_DOXYGEN
    
    inline const LMatrixType& matrixL() const
    {
      if (m_extractedDataAreDirty) this->extractData();
      return m_l;
    }

    inline const UMatrixType& matrixU() const
    {
      if (m_extractedDataAreDirty) this->extractData();
      return m_u;
    }

    inline const IntColVectorType& permutationP() const
    {
      if (m_extractedDataAreDirty) this->extractData();
      return m_p;
    }

    inline const IntRowVectorType& permutationQ() const
    {
      if (m_extractedDataAreDirty) this->extractData();
      return m_q;
    }
    
    Scalar determinant() const;
    
  protected:
    
    using Base::m_matrix;
    using Base::m_sluOptions;
    using Base::m_sluA;
    using Base::m_sluB;
    using Base::m_sluX;
    using Base::m_p;
    using Base::m_q;
    using Base::m_sluEtree;
    using Base::m_sluEqued;
    using Base::m_sluRscale;
    using Base::m_sluCscale;
    using Base::m_sluL;
    using Base::m_sluU;
    using Base::m_sluStat;
    using Base::m_sluFerr;
    using Base::m_sluBerr;
    using Base::m_l;
    using Base::m_u;
    
    using Base::m_analysisIsOk;
    using Base::m_factorizationIsOk;
    using Base::m_extractedDataAreDirty;
    using Base::m_isInitialized;
    using Base::m_info;
    
    void init()
    {
      Base::init();
      
      set_default_options(&this->m_sluOptions);
      m_sluOptions.PrintStat        = NO;
      m_sluOptions.ConditionNumber  = NO;
      m_sluOptions.Trans            = NOTRANS;
      m_sluOptions.ColPerm          = COLAMD;
    }
    
    
  private:
    SuperLU(SuperLU& ) { }
};

template<typename MatrixType>
void SuperLU<MatrixType>::factorize(const MatrixType& a)
{
  eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
  if(!m_analysisIsOk)
  {
    m_info = InvalidInput;
    return;
  }
  
  this->initFactorization(a);
  
  m_sluOptions.ColPerm = COLAMD;
  int info = 0;
  RealScalar recip_pivot_growth, rcond;
  RealScalar ferr, berr;

  StatInit(&m_sluStat);
  SuperLU_gssvx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
                &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
                &m_sluL, &m_sluU,
                NULL, 0,
                &m_sluB, &m_sluX,
                &recip_pivot_growth, &rcond,
                &ferr, &berr,
                &m_sluStat, &info, Scalar());
  StatFree(&m_sluStat);

  m_extractedDataAreDirty = true;

  // FIXME how to better check for errors ???
  m_info = info == 0 ? Success : NumericalIssue;
  m_factorizationIsOk = true;
}

template<typename MatrixType>
template<typename Rhs,typename Dest>
void SuperLU<MatrixType>::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
{
  eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");

  const int size = m_matrix.rows();
  const int rhsCols = b.cols();
  eigen_assert(size==b.rows());

  m_sluOptions.Trans = NOTRANS;
  m_sluOptions.Fact = FACTORED;
  m_sluOptions.IterRefine = NOREFINE;
  

  m_sluFerr.resize(rhsCols);
  m_sluBerr.resize(rhsCols);
  m_sluB = SluMatrix::Map(b.const_cast_derived());
  m_sluX = SluMatrix::Map(x.derived());
  
  typename Rhs::PlainObject b_cpy;
  if(m_sluEqued!='N')
  {
    b_cpy = b;
    m_sluB = SluMatrix::Map(b_cpy.const_cast_derived());  
  }

  StatInit(&m_sluStat);
  int info = 0;
  RealScalar recip_pivot_growth, rcond;
  SuperLU_gssvx(&m_sluOptions, &m_sluA,
                m_q.data(), m_p.data(),
                &m_sluEtree[0], &m_sluEqued,
                &m_sluRscale[0], &m_sluCscale[0],
                &m_sluL, &m_sluU,
                NULL, 0,
                &m_sluB, &m_sluX,
                &recip_pivot_growth, &rcond,
                &m_sluFerr[0], &m_sluBerr[0],
                &m_sluStat, &info, Scalar());
  StatFree(&m_sluStat);
  m_info = info==0 ? Success : NumericalIssue;
}

// the code of this extractData() function has been adapted from the SuperLU's Matlab support code,
//
//  Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
//
//  THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
//  EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
//
template<typename MatrixType, typename Derived>
void SuperLUBase<MatrixType,Derived>::extractData() const
{
  eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for extracting factors, you must first call either compute() or analyzePattern()/factorize()");
  if (m_extractedDataAreDirty)
  {
    int         upper;
    int         fsupc, istart, nsupr;
    int         lastl = 0, lastu = 0;
    SCformat    *Lstore = static_cast<SCformat*>(m_sluL.Store);
    NCformat    *Ustore = static_cast<NCformat*>(m_sluU.Store);
    Scalar      *SNptr;

    const int size = m_matrix.rows();
    m_l.resize(size,size);
    m_l.resizeNonZeros(Lstore->nnz);
    m_u.resize(size,size);
    m_u.resizeNonZeros(Ustore->nnz);

    int* Lcol = m_l.outerIndexPtr();
    int* Lrow = m_l.innerIndexPtr();
    Scalar* Lval = m_l.valuePtr();

    int* Ucol = m_u.outerIndexPtr();
    int* Urow = m_u.innerIndexPtr();
    Scalar* Uval = m_u.valuePtr();

    Ucol[0] = 0;
    Ucol[0] = 0;

    /* for each supernode */
    for (int k = 0; k <= Lstore->nsuper; ++k)
    {
      fsupc   = L_FST_SUPC(k);
      istart  = L_SUB_START(fsupc);
      nsupr   = L_SUB_START(fsupc+1) - istart;
      upper   = 1;

      /* for each column in the supernode */
      for (int j = fsupc; j < L_FST_SUPC(k+1); ++j)
      {
        SNptr = &((Scalar*)Lstore->nzval)[L_NZ_START(j)];

        /* Extract U */
        for (int i = U_NZ_START(j); i < U_NZ_START(j+1); ++i)
        {
          Uval[lastu] = ((Scalar*)Ustore->nzval)[i];
          /* Matlab doesn't like explicit zero. */
          if (Uval[lastu] != 0.0)
            Urow[lastu++] = U_SUB(i);
        }
        for (int i = 0; i < upper; ++i)
        {
          /* upper triangle in the supernode */
          Uval[lastu] = SNptr[i];
          /* Matlab doesn't like explicit zero. */
          if (Uval[lastu] != 0.0)
            Urow[lastu++] = L_SUB(istart+i);
        }
        Ucol[j+1] = lastu;

        /* Extract L */
        Lval[lastl] = 1.0; /* unit diagonal */
        Lrow[lastl++] = L_SUB(istart + upper - 1);
        for (int i = upper; i < nsupr; ++i)
        {
          Lval[lastl] = SNptr[i];
          /* Matlab doesn't like explicit zero. */
          if (Lval[lastl] != 0.0)
            Lrow[lastl++] = L_SUB(istart+i);
        }
        Lcol[j+1] = lastl;

        ++upper;
      } /* for j ... */

    } /* for k ... */

    // squeeze the matrices :
    m_l.resizeNonZeros(lastl);
    m_u.resizeNonZeros(lastu);

    m_extractedDataAreDirty = false;
  }
}

template<typename MatrixType>
typename SuperLU<MatrixType>::Scalar SuperLU<MatrixType>::determinant() const
{
  eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for computing the determinant, you must first call either compute() or analyzePattern()/factorize()");
  
  if (m_extractedDataAreDirty)
    this->extractData();

  Scalar det = Scalar(1);
  for (int j=0; j<m_u.cols(); ++j)
  {
    if (m_u.outerIndexPtr()[j+1]-m_u.outerIndexPtr()[j] > 0)
    {
      int lastId = m_u.outerIndexPtr()[j+1]-1;
      eigen_assert(m_u.innerIndexPtr()[lastId]<=j);
      if (m_u.innerIndexPtr()[lastId]==j)
        det *= m_u.valuePtr()[lastId];
    }
  }
  if(m_sluEqued!='N')
    return det/m_sluRscale.prod()/m_sluCscale.prod();
  else
    return det;
}

#ifdef EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_SUPERLU_HAS_ILU
#endif

#ifdef EIGEN_SUPERLU_HAS_ILU

/** \ingroup SuperLUSupport_Module
  * \class SuperILU
  * \brief A sparse direct \b incomplete LU factorization and solver based on the SuperLU library
  *
  * This class allows to solve for an approximate solution of A.X = B sparse linear problems via an incomplete LU factorization
  * using the SuperLU library. This class is aimed to be used as a preconditioner of the iterative linear solvers.
  *
  * \warning This class requires SuperLU 4 or later.
  *
  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  *
  * \sa \ref TutorialSparseDirectSolvers, class ConjugateGradient, class BiCGSTAB
  */

template<typename _MatrixType>
class SuperILU : public SuperLUBase<_MatrixType,SuperILU<_MatrixType> >
{
  public:
    typedef SuperLUBase<_MatrixType,SuperILU> Base;
    typedef _MatrixType MatrixType;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::RealScalar RealScalar;
    typedef typename Base::Index Index;

  public:

    SuperILU() : Base() { init(); }

    SuperILU(const MatrixType& matrix) : Base()
    {
      init();
      Base::compute(matrix);
    }

    ~SuperILU()
    {
    }
    
    /** Performs a symbolic decomposition on the sparcity of \a matrix.
      *
      * This function is particularly useful when solving for several problems having the same structure.
      * 
      * \sa factorize()
      */
    void analyzePattern(const MatrixType& matrix)
    {
      Base::analyzePattern(matrix);
    }
    
    /** Performs a numeric decomposition of \a matrix
      *
      * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
      *
      * \sa analyzePattern()
      */
    void factorize(const MatrixType& matrix);
    
    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** \internal */
    template<typename Rhs,typename Dest>
    void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
    #endif // EIGEN_PARSED_BY_DOXYGEN
    
  protected:
    
    using Base::m_matrix;
    using Base::m_sluOptions;
    using Base::m_sluA;
    using Base::m_sluB;
    using Base::m_sluX;
    using Base::m_p;
    using Base::m_q;
    using Base::m_sluEtree;
    using Base::m_sluEqued;
    using Base::m_sluRscale;
    using Base::m_sluCscale;
    using Base::m_sluL;
    using Base::m_sluU;
    using Base::m_sluStat;
    using Base::m_sluFerr;
    using Base::m_sluBerr;
    using Base::m_l;
    using Base::m_u;
    
    using Base::m_analysisIsOk;
    using Base::m_factorizationIsOk;
    using Base::m_extractedDataAreDirty;
    using Base::m_isInitialized;
    using Base::m_info;

    void init()
    {
      Base::init();
      
      ilu_set_default_options(&m_sluOptions);
      m_sluOptions.PrintStat        = NO;
      m_sluOptions.ConditionNumber  = NO;
      m_sluOptions.Trans            = NOTRANS;
      m_sluOptions.ColPerm          = MMD_AT_PLUS_A;
      
      // no attempt to preserve column sum
      m_sluOptions.ILU_MILU = SILU;
      // only basic ILU(k) support -- no direct control over memory consumption
      // better to use ILU_DropRule = DROP_BASIC | DROP_AREA
      // and set ILU_FillFactor to max memory growth
      m_sluOptions.ILU_DropRule = DROP_BASIC;
      m_sluOptions.ILU_DropTol = NumTraits<Scalar>::dummy_precision()*10;
    }
    
  private:
    SuperILU(SuperILU& ) { }
};

template<typename MatrixType>
void SuperILU<MatrixType>::factorize(const MatrixType& a)
{
  eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
  if(!m_analysisIsOk)
  {
    m_info = InvalidInput;
    return;
  }
  
  this->initFactorization(a);

  int info = 0;
  RealScalar recip_pivot_growth, rcond;

  StatInit(&m_sluStat);
  SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
                &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
                &m_sluL, &m_sluU,
                NULL, 0,
                &m_sluB, &m_sluX,
                &recip_pivot_growth, &rcond,
                &m_sluStat, &info, Scalar());
  StatFree(&m_sluStat);

  // FIXME how to better check for errors ???
  m_info = info == 0 ? Success : NumericalIssue;
  m_factorizationIsOk = true;
}

template<typename MatrixType>
template<typename Rhs,typename Dest>
void SuperILU<MatrixType>::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
{
  eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");

  const int size = m_matrix.rows();
  const int rhsCols = b.cols();
  eigen_assert(size==b.rows());

  m_sluOptions.Trans = NOTRANS;
  m_sluOptions.Fact = FACTORED;
  m_sluOptions.IterRefine = NOREFINE;

  m_sluFerr.resize(rhsCols);
  m_sluBerr.resize(rhsCols);
  m_sluB = SluMatrix::Map(b.const_cast_derived());
  m_sluX = SluMatrix::Map(x.derived());

  typename Rhs::PlainObject b_cpy;
  if(m_sluEqued!='N')
  {
    b_cpy = b;
    m_sluB = SluMatrix::Map(b_cpy.const_cast_derived());  
  }
  
  int info = 0;
  RealScalar recip_pivot_growth, rcond;

  StatInit(&m_sluStat);
  SuperLU_gsisx(&m_sluOptions, &m_sluA,
                m_q.data(), m_p.data(),
                &m_sluEtree[0], &m_sluEqued,
                &m_sluRscale[0], &m_sluCscale[0],
                &m_sluL, &m_sluU,
                NULL, 0,
                &m_sluB, &m_sluX,
                &recip_pivot_growth, &rcond,
                &m_sluStat, &info, Scalar());
  StatFree(&m_sluStat);

  m_info = info==0 ? Success : NumericalIssue;
}
#endif

namespace internal {
  
template<typename _MatrixType, typename Derived, typename Rhs>
struct solve_retval<SuperLUBase<_MatrixType,Derived>, Rhs>
  : solve_retval_base<SuperLUBase<_MatrixType,Derived>, Rhs>
{
  typedef SuperLUBase<_MatrixType,Derived> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec().derived()._solve(rhs(),dst);
  }
};

template<typename _MatrixType, typename Derived, typename Rhs>
struct sparse_solve_retval<SuperLUBase<_MatrixType,Derived>, Rhs>
  : sparse_solve_retval_base<SuperLUBase<_MatrixType,Derived>, Rhs>
{
  typedef SuperLUBase<_MatrixType,Derived> Dec;
  EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    this->defaultEvalTo(dst);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_SUPERLUSUPPORT_H