SparseLU_column_bmod.h 6.55 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

/* 
 
 * NOTE: This file is the modified version of xcolumn_bmod.c file in SuperLU 
 
 * -- SuperLU routine (version 3.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * October 15, 2003
 *
 * Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
 *
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
 * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 *
 * Permission is hereby granted to use or copy this program for any
 * purpose, provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is
 * granted, provided the above notices are retained, and a notice that
 * the code was modified is included with the above copyright notice.
 */
#ifndef SPARSELU_COLUMN_BMOD_H
#define SPARSELU_COLUMN_BMOD_H

namespace Eigen {

namespace internal {
/**
 * \brief Performs numeric block updates (sup-col) in topological order
 * 
 * \param jcol current column to update
 * \param nseg Number of segments in the U part
 * \param dense Store the full representation of the column
 * \param tempv working array 
 * \param segrep segment representative ...
 * \param repfnz ??? First nonzero column in each row ???  ...
 * \param fpanelc First column in the current panel
 * \param glu Global LU data. 
 * \return 0 - successful return 
 *         > 0 - number of bytes allocated when run out of space
 * 
 */
template <typename Scalar, typename Index>
Index SparseLUImpl<Scalar,Index>::column_bmod(const Index jcol, const Index nseg, BlockScalarVector dense, ScalarVector& tempv, BlockIndexVector segrep, BlockIndexVector repfnz, Index fpanelc, GlobalLU_t& glu)
{
  Index  jsupno, k, ksub, krep, ksupno; 
  Index lptr, nrow, isub, irow, nextlu, new_next, ufirst; 
  Index fsupc, nsupc, nsupr, luptr, kfnz, no_zeros; 
  /* krep = representative of current k-th supernode
    * fsupc =  first supernodal column
    * nsupc = number of columns in a supernode
    * nsupr = number of rows in a supernode
    * luptr = location of supernodal LU-block in storage
    * kfnz = first nonz in the k-th supernodal segment
    * no_zeros = no lf leading zeros in a supernodal U-segment
    */
  
  jsupno = glu.supno(jcol);
  // For each nonzero supernode segment of U[*,j] in topological order 
  k = nseg - 1; 
  Index d_fsupc; // distance between the first column of the current panel and the 
               // first column of the current snode
  Index fst_col; // First column within small LU update
  Index segsize; 
  for (ksub = 0; ksub < nseg; ksub++)
  {
    krep = segrep(k); k--; 
    ksupno = glu.supno(krep); 
    if (jsupno != ksupno )
    {
      // outside the rectangular supernode 
      fsupc = glu.xsup(ksupno); 
      fst_col = (std::max)(fsupc, fpanelc); 
      
      // Distance from the current supernode to the current panel; 
      // d_fsupc = 0 if fsupc > fpanelc
      d_fsupc = fst_col - fsupc; 
      
      luptr = glu.xlusup(fst_col) + d_fsupc; 
      lptr = glu.xlsub(fsupc) + d_fsupc; 
      
      kfnz = repfnz(krep); 
      kfnz = (std::max)(kfnz, fpanelc); 
      
      segsize = krep - kfnz + 1; 
      nsupc = krep - fst_col + 1; 
      nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); 
      nrow = nsupr - d_fsupc - nsupc;
      Index lda = glu.xlusup(fst_col+1) - glu.xlusup(fst_col);
      
      
      // Perform a triangular solver and block update, 
      // then scatter the result of sup-col update to dense
      no_zeros = kfnz - fst_col; 
      if(segsize==1)
        LU_kernel_bmod<1>::run(segsize, dense, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros);
      else
        LU_kernel_bmod<Dynamic>::run(segsize, dense, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros);
    } // end if jsupno 
  } // end for each segment
  
  // Process the supernodal portion of  L\U[*,j]
  nextlu = glu.xlusup(jcol); 
  fsupc = glu.xsup(jsupno);
  
  // copy the SPA dense into L\U[*,j]
  Index mem; 
  new_next = nextlu + glu.xlsub(fsupc + 1) - glu.xlsub(fsupc); 
  Index offset = internal::first_multiple<Index>(new_next, internal::packet_traits<Scalar>::size) - new_next;
  if(offset)
    new_next += offset;
  while (new_next > glu.nzlumax )
  {
    mem = memXpand<ScalarVector>(glu.lusup, glu.nzlumax, nextlu, LUSUP, glu.num_expansions);  
    if (mem) return mem; 
  }
  
  for (isub = glu.xlsub(fsupc); isub < glu.xlsub(fsupc+1); isub++)
  {
    irow = glu.lsub(isub);
    glu.lusup(nextlu) = dense(irow);
    dense(irow) = Scalar(0.0); 
    ++nextlu; 
  }
  
  if(offset)
  {
    glu.lusup.segment(nextlu,offset).setZero();
    nextlu += offset;
  }
  glu.xlusup(jcol + 1) = nextlu;  // close L\U(*,jcol); 
  
  /* For more updates within the panel (also within the current supernode),
   * should start from the first column of the panel, or the first column
   * of the supernode, whichever is bigger. There are two cases:
   *  1) fsupc < fpanelc, then fst_col <-- fpanelc
   *  2) fsupc >= fpanelc, then fst_col <-- fsupc
   */
  fst_col = (std::max)(fsupc, fpanelc); 
  
  if (fst_col  < jcol)
  {
    // Distance between the current supernode and the current panel
    // d_fsupc = 0 if fsupc >= fpanelc
    d_fsupc = fst_col - fsupc; 
    
    lptr = glu.xlsub(fsupc) + d_fsupc; 
    luptr = glu.xlusup(fst_col) + d_fsupc; 
    nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); // leading dimension
    nsupc = jcol - fst_col; // excluding jcol 
    nrow = nsupr - d_fsupc - nsupc; 
    
    // points to the beginning of jcol in snode L\U(jsupno) 
    ufirst = glu.xlusup(jcol) + d_fsupc; 
    Index lda = glu.xlusup(jcol+1) - glu.xlusup(jcol);
    Map<Matrix<Scalar,Dynamic,Dynamic>, 0,  OuterStride<> > A( &(glu.lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(lda) ); 
    VectorBlock<ScalarVector> u(glu.lusup, ufirst, nsupc); 
    u = A.template triangularView<UnitLower>().solve(u); 
    
    new (&A) Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > ( &(glu.lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) ); 
    VectorBlock<ScalarVector> l(glu.lusup, ufirst+nsupc, nrow); 
    l.noalias() -= A * u;
    
  } // End if fst_col
  return 0; 
}

} // end namespace internal
} // end namespace Eigen

#endif // SPARSELU_COLUMN_BMOD_H