PaStiXSupport.h 22.8 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_PASTIXSUPPORT_H
#define EIGEN_PASTIXSUPPORT_H

namespace Eigen { 

/** \ingroup PaStiXSupport_Module
  * \brief Interface to the PaStix solver
  * 
  * This class is used to solve the linear systems A.X = B via the PaStix library. 
  * The matrix can be either real or complex, symmetric or not.
  *
  * \sa TutorialSparseDirectSolvers
  */
template<typename _MatrixType, bool IsStrSym = false> class PastixLU;
template<typename _MatrixType, int Options> class PastixLLT;
template<typename _MatrixType, int Options> class PastixLDLT;

namespace internal
{
    
  template<class Pastix> struct pastix_traits;

  template<typename _MatrixType>
  struct pastix_traits< PastixLU<_MatrixType> >
  {
    typedef _MatrixType MatrixType;
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
    typedef typename _MatrixType::Index Index;
  };

  template<typename _MatrixType, int Options>
  struct pastix_traits< PastixLLT<_MatrixType,Options> >
  {
    typedef _MatrixType MatrixType;
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
    typedef typename _MatrixType::Index Index;
  };

  template<typename _MatrixType, int Options>
  struct pastix_traits< PastixLDLT<_MatrixType,Options> >
  {
    typedef _MatrixType MatrixType;
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
    typedef typename _MatrixType::Index Index;
  };
  
  void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm)
  {
    if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
    if (nbrhs == 0) {x = NULL; nbrhs=1;}
    s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); 
  }
  
  void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm)
  {
    if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
    if (nbrhs == 0) {x = NULL; nbrhs=1;}
    d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); 
  }
  
  void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm)
  {
    if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
    if (nbrhs == 0) {x = NULL; nbrhs=1;}
    c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<COMPLEX*>(vals), perm, invp, reinterpret_cast<COMPLEX*>(x), nbrhs, iparm, dparm); 
  }
  
  void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
  {
    if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
    if (nbrhs == 0) {x = NULL; nbrhs=1;}
    z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<DCOMPLEX*>(vals), perm, invp, reinterpret_cast<DCOMPLEX*>(x), nbrhs, iparm, dparm); 
  }

  // Convert the matrix  to Fortran-style Numbering
  template <typename MatrixType>
  void c_to_fortran_numbering (MatrixType& mat)
  {
    if ( !(mat.outerIndexPtr()[0]) ) 
    { 
      int i;
      for(i = 0; i <= mat.rows(); ++i)
        ++mat.outerIndexPtr()[i];
      for(i = 0; i < mat.nonZeros(); ++i)
        ++mat.innerIndexPtr()[i];
    }
  }
  
  // Convert to C-style Numbering
  template <typename MatrixType>
  void fortran_to_c_numbering (MatrixType& mat)
  {
    // Check the Numbering
    if ( mat.outerIndexPtr()[0] == 1 ) 
    { // Convert to C-style numbering
      int i;
      for(i = 0; i <= mat.rows(); ++i)
        --mat.outerIndexPtr()[i];
      for(i = 0; i < mat.nonZeros(); ++i)
        --mat.innerIndexPtr()[i];
    }
  }
}

// This is the base class to interface with PaStiX functions. 
// Users should not used this class directly. 
template <class Derived>
class PastixBase : internal::noncopyable
{
  public:
    typedef typename internal::pastix_traits<Derived>::MatrixType _MatrixType;
    typedef _MatrixType MatrixType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    typedef Matrix<Scalar,Dynamic,1> Vector;
    typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix;
    
  public:
    
    PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false), m_pastixdata(0), m_size(0)
    {
      init();
    }
    
    ~PastixBase() 
    {
      clean();
    }

    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::solve_retval<PastixBase, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "Pastix solver is not initialized.");
      eigen_assert(rows()==b.rows()
                && "PastixBase::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<PastixBase, Rhs>(*this, b.derived());
    }
    
    template<typename Rhs,typename Dest>
    bool _solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const;
    
    Derived& derived()
    {
      return *static_cast<Derived*>(this);
    }
    const Derived& derived() const
    {
      return *static_cast<const Derived*>(this);
    }

    /** Returns a reference to the integer vector IPARM of PaStiX parameters
      * to modify the default parameters. 
      * The statistics related to the different phases of factorization and solve are saved here as well
      * \sa analyzePattern() factorize()
      */
    Array<Index,IPARM_SIZE,1>& iparm()
    {
      return m_iparm; 
    }
    
    /** Return a reference to a particular index parameter of the IPARM vector 
     * \sa iparm()
     */
    
    int& iparm(int idxparam)
    {
      return m_iparm(idxparam);
    }
    
     /** Returns a reference to the double vector DPARM of PaStiX parameters 
      * The statistics related to the different phases of factorization and solve are saved here as well
      * \sa analyzePattern() factorize()
      */
    Array<RealScalar,IPARM_SIZE,1>& dparm()
    {
      return m_dparm; 
    }
    
    
    /** Return a reference to a particular index parameter of the DPARM vector 
     * \sa dparm()
     */
    double& dparm(int idxparam)
    {
      return m_dparm(idxparam);
    }
    
    inline Index cols() const { return m_size; }
    inline Index rows() const { return m_size; }
    
     /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the PaStiX reports a problem
      *          \c InvalidInput if the input matrix is invalid
      *
      * \sa iparm()          
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
      return m_info;
    }
    
    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::sparse_solve_retval<PastixBase, Rhs>
    solve(const SparseMatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "Pastix LU, LLT or LDLT is not initialized.");
      eigen_assert(rows()==b.rows()
                && "PastixBase::solve(): invalid number of rows of the right hand side matrix b");
      return internal::sparse_solve_retval<PastixBase, Rhs>(*this, b.derived());
    }
    
  protected:

    // Initialize the Pastix data structure, check the matrix
    void init(); 
    
    // Compute the ordering and the symbolic factorization
    void analyzePattern(ColSpMatrix& mat);
    
    // Compute the numerical factorization
    void factorize(ColSpMatrix& mat);
    
    // Free all the data allocated by Pastix
    void clean()
    {
      eigen_assert(m_initisOk && "The Pastix structure should be allocated first"); 
      m_iparm(IPARM_START_TASK) = API_TASK_CLEAN;
      m_iparm(IPARM_END_TASK) = API_TASK_CLEAN;
      internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
                             m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
    }
    
    void compute(ColSpMatrix& mat);
    
    int m_initisOk; 
    int m_analysisIsOk;
    int m_factorizationIsOk;
    bool m_isInitialized;
    mutable ComputationInfo m_info; 
    mutable pastix_data_t *m_pastixdata; // Data structure for pastix
    mutable int m_comm; // The MPI communicator identifier
    mutable Matrix<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters
    mutable Matrix<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters
    mutable Matrix<Index,Dynamic,1> m_perm;  // Permutation vector
    mutable Matrix<Index,Dynamic,1> m_invp;  // Inverse permutation vector
    mutable int m_size; // Size of the matrix 
}; 

 /** Initialize the PaStiX data structure. 
   *A first call to this function fills iparm and dparm with the default PaStiX parameters
   * \sa iparm() dparm()
   */
template <class Derived>
void PastixBase<Derived>::init()
{
  m_size = 0; 
  m_iparm.setZero(IPARM_SIZE);
  m_dparm.setZero(DPARM_SIZE);
  
  m_iparm(IPARM_MODIFY_PARAMETER) = API_NO;
  pastix(&m_pastixdata, MPI_COMM_WORLD,
         0, 0, 0, 0,
         0, 0, 0, 1, m_iparm.data(), m_dparm.data());
  
  m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO;
  m_iparm[IPARM_VERBOSE]             = 2;
  m_iparm[IPARM_ORDERING]            = API_ORDER_SCOTCH;
  m_iparm[IPARM_INCOMPLETE]          = API_NO;
  m_iparm[IPARM_OOC_LIMIT]           = 2000;
  m_iparm[IPARM_RHS_MAKING]          = API_RHS_B;
  m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
  
  m_iparm(IPARM_START_TASK) = API_TASK_INIT;
  m_iparm(IPARM_END_TASK) = API_TASK_INIT;
  internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
                         0, 0, 0, 0, m_iparm.data(), m_dparm.data());
  
  // Check the returned error
  if(m_iparm(IPARM_ERROR_NUMBER)) {
    m_info = InvalidInput;
    m_initisOk = false;
  }
  else { 
    m_info = Success;
    m_initisOk = true;
  }
}

template <class Derived>
void PastixBase<Derived>::compute(ColSpMatrix& mat)
{
  eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared");
  
  analyzePattern(mat);  
  factorize(mat);
  
  m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
  m_isInitialized = m_factorizationIsOk;
}


template <class Derived>
void PastixBase<Derived>::analyzePattern(ColSpMatrix& mat)
{                         
  eigen_assert(m_initisOk && "The initialization of PaSTiX failed");
  
  // clean previous calls
  if(m_size>0)
    clean();
  
  m_size = mat.rows();
  m_perm.resize(m_size);
  m_invp.resize(m_size);
  
  m_iparm(IPARM_START_TASK) = API_TASK_ORDERING;
  m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE;
  internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
               mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
  
  // Check the returned error
  if(m_iparm(IPARM_ERROR_NUMBER))
  {
    m_info = NumericalIssue;
    m_analysisIsOk = false;
  }
  else
  { 
    m_info = Success;
    m_analysisIsOk = true;
  }
}

template <class Derived>
void PastixBase<Derived>::factorize(ColSpMatrix& mat)
{
//   if(&m_cpyMat != &mat) m_cpyMat = mat;
  eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase");
  m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT;
  m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT;
  m_size = mat.rows();
  
  internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
               mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
  
  // Check the returned error
  if(m_iparm(IPARM_ERROR_NUMBER))
  {
    m_info = NumericalIssue;
    m_factorizationIsOk = false;
    m_isInitialized = false;
  }
  else
  {
    m_info = Success;
    m_factorizationIsOk = true;
    m_isInitialized = true;
  }
}

/* Solve the system */
template<typename Base>
template<typename Rhs,typename Dest>
bool PastixBase<Base>::_solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const
{
  eigen_assert(m_isInitialized && "The matrix should be factorized first");
  EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
                     THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
  int rhs = 1;
  
  x = b; /* on return, x is overwritten by the computed solution */
  
  for (int i = 0; i < b.cols(); i++){
    m_iparm[IPARM_START_TASK]          = API_TASK_SOLVE;
    m_iparm[IPARM_END_TASK]            = API_TASK_REFINE;
  
    internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, x.rows(), 0, 0, 0,
                           m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data());
  }
  
  // Check the returned error
  m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue;
  
  return m_iparm(IPARM_ERROR_NUMBER)==0;
}

/** \ingroup PaStiXSupport_Module
  * \class PastixLU
  * \brief Sparse direct LU solver based on PaStiX library
  * 
  * This class is used to solve the linear systems A.X = B with a supernodal LU 
  * factorization in the PaStiX library. The matrix A should be squared and nonsingular
  * PaStiX requires that the matrix A has a symmetric structural pattern. 
  * This interface can symmetrize the input matrix otherwise. 
  * The vectors or matrices X and B can be either dense or sparse.
  * 
  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  * \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false
  * NOTE : Note that if the analysis and factorization phase are called separately, 
  * the input matrix will be symmetrized at each call, hence it is advised to 
  * symmetrize the matrix in a end-user program and set \p IsStrSym to true
  * 
  * \sa \ref TutorialSparseDirectSolvers
  * 
  */
template<typename _MatrixType, bool IsStrSym>
class PastixLU : public PastixBase< PastixLU<_MatrixType> >
{
  public:
    typedef _MatrixType MatrixType;
    typedef PastixBase<PastixLU<MatrixType> > Base;
    typedef typename Base::ColSpMatrix ColSpMatrix;
    typedef typename MatrixType::Index Index;
    
  public:
    PastixLU() : Base()
    {
      init();
    }
    
    PastixLU(const MatrixType& matrix):Base()
    {
      init();
      compute(matrix);
    }
    /** Compute the LU supernodal factorization of \p matrix. 
      * iparm and dparm can be used to tune the PaStiX parameters. 
      * see the PaStiX user's manual
      * \sa analyzePattern() factorize()
      */
    void compute (const MatrixType& matrix)
    {
      m_structureIsUptodate = false;
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::compute(temp);
    }
    /** Compute the LU symbolic factorization of \p matrix using its sparsity pattern. 
      * Several ordering methods can be used at this step. See the PaStiX user's manual. 
      * The result of this operation can be used with successive matrices having the same pattern as \p matrix
      * \sa factorize()
      */
    void analyzePattern(const MatrixType& matrix)
    {
      m_structureIsUptodate = false;
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::analyzePattern(temp);
    }

    /** Compute the LU supernodal factorization of \p matrix
      * WARNING The matrix \p matrix should have the same structural pattern 
      * as the same used in the analysis phase.
      * \sa analyzePattern()
      */ 
    void factorize(const MatrixType& matrix)
    {
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::factorize(temp);
    }
  protected:
    
    void init()
    {
      m_structureIsUptodate = false;
      m_iparm(IPARM_SYM) = API_SYM_NO;
      m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
    }
    
    void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
    {
      if(IsStrSym)
        out = matrix;
      else
      {
        if(!m_structureIsUptodate)
        {
          // update the transposed structure
          m_transposedStructure = matrix.transpose();
          
          // Set the elements of the matrix to zero 
          for (Index j=0; j<m_transposedStructure.outerSize(); ++j) 
            for(typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it)
              it.valueRef() = 0.0;

          m_structureIsUptodate = true;
        }
        
        out = m_transposedStructure + matrix;
      }
      internal::c_to_fortran_numbering(out);
    }
    
    using Base::m_iparm;
    using Base::m_dparm;
    
    ColSpMatrix m_transposedStructure;
    bool m_structureIsUptodate;
};

/** \ingroup PaStiXSupport_Module
  * \class PastixLLT
  * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
  * 
  * This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization
  * available in the PaStiX library. The matrix A should be symmetric and positive definite
  * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
  * The vectors or matrices X and B can be either dense or sparse
  * 
  * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
  * 
  * \sa \ref TutorialSparseDirectSolvers
  */
template<typename _MatrixType, int _UpLo>
class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
{
  public:
    typedef _MatrixType MatrixType;
    typedef PastixBase<PastixLLT<MatrixType, _UpLo> > Base;
    typedef typename Base::ColSpMatrix ColSpMatrix;
    
  public:
    enum { UpLo = _UpLo };
    PastixLLT() : Base()
    {
      init();
    }
    
    PastixLLT(const MatrixType& matrix):Base()
    {
      init();
      compute(matrix);
    }

    /** Compute the L factor of the LL^T supernodal factorization of \p matrix 
      * \sa analyzePattern() factorize()
      */
    void compute (const MatrixType& matrix)
    {
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::compute(temp);
    }

     /** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern
      * The result of this operation can be used with successive matrices having the same pattern as \p matrix
      * \sa factorize()
      */
    void analyzePattern(const MatrixType& matrix)
    {
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::analyzePattern(temp);
    }
      /** Compute the LL^T supernodal numerical factorization of \p matrix 
        * \sa analyzePattern()
        */
    void factorize(const MatrixType& matrix)
    {
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::factorize(temp);
    }
  protected:
    using Base::m_iparm;
    
    void init()
    {
      m_iparm(IPARM_SYM) = API_SYM_YES;
      m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
    }
    
    void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
    {
      // Pastix supports only lower, column-major matrices 
      out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
      internal::c_to_fortran_numbering(out);
    }
};

/** \ingroup PaStiXSupport_Module
  * \class PastixLDLT
  * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
  * 
  * This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization
  * available in the PaStiX library. The matrix A should be symmetric and positive definite
  * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
  * The vectors or matrices X and B can be either dense or sparse
  * 
  * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
  * 
  * \sa \ref TutorialSparseDirectSolvers
  */
template<typename _MatrixType, int _UpLo>
class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> >
{
  public:
    typedef _MatrixType MatrixType;
    typedef PastixBase<PastixLDLT<MatrixType, _UpLo> > Base; 
    typedef typename Base::ColSpMatrix ColSpMatrix;
    
  public:
    enum { UpLo = _UpLo };
    PastixLDLT():Base()
    {
      init();
    }
    
    PastixLDLT(const MatrixType& matrix):Base()
    {
      init();
      compute(matrix);
    }

    /** Compute the L and D factors of the LDL^T factorization of \p matrix 
      * \sa analyzePattern() factorize()
      */
    void compute (const MatrixType& matrix)
    {
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::compute(temp);
    }

    /** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern
      * The result of this operation can be used with successive matrices having the same pattern as \p matrix
      * \sa factorize()
      */
    void analyzePattern(const MatrixType& matrix)
    { 
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::analyzePattern(temp);
    }
    /** Compute the LDL^T supernodal numerical factorization of \p matrix 
      * 
      */
    void factorize(const MatrixType& matrix)
    {
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::factorize(temp);
    }

  protected:
    using Base::m_iparm;
    
    void init()
    {
      m_iparm(IPARM_SYM) = API_SYM_YES;
      m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
    }
    
    void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
    {
      // Pastix supports only lower, column-major matrices 
      out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
      internal::c_to_fortran_numbering(out);
    }
};

namespace internal {

template<typename _MatrixType, typename Rhs>
struct solve_retval<PastixBase<_MatrixType>, Rhs>
  : solve_retval_base<PastixBase<_MatrixType>, Rhs>
{
  typedef PastixBase<_MatrixType> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};

template<typename _MatrixType, typename Rhs>
struct sparse_solve_retval<PastixBase<_MatrixType>, Rhs>
  : sparse_solve_retval_base<PastixBase<_MatrixType>, Rhs>
{
  typedef PastixBase<_MatrixType> Dec;
  EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    this->defaultEvalTo(dst);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif