Ordering.h 4.44 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
 
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012  Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_ORDERING_H
#define EIGEN_ORDERING_H

namespace Eigen {
  
#include "Eigen_Colamd.h"

namespace internal {
    
/** \internal
  * \ingroup OrderingMethods_Module
  * \returns the symmetric pattern A^T+A from the input matrix A. 
  * FIXME: The values should not be considered here
  */
template<typename MatrixType> 
void ordering_helper_at_plus_a(const MatrixType& mat, MatrixType& symmat)
{
  MatrixType C;
  C = mat.transpose(); // NOTE: Could be  costly
  for (int i = 0; i < C.rows(); i++) 
  {
      for (typename MatrixType::InnerIterator it(C, i); it; ++it)
        it.valueRef() = 0.0;
  }
  symmat = C + mat; 
}
    
}

#ifndef EIGEN_MPL2_ONLY

/** \ingroup OrderingMethods_Module
  * \class AMDOrdering
  *
  * Functor computing the \em approximate \em minimum \em degree ordering
  * If the matrix is not structurally symmetric, an ordering of A^T+A is computed
  * \tparam  Index The type of indices of the matrix 
  * \sa COLAMDOrdering
  */
template <typename Index>
class AMDOrdering
{
  public:
    typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
    
    /** Compute the permutation vector from a sparse matrix
     * This routine is much faster if the input matrix is column-major     
     */
    template <typename MatrixType>
    void operator()(const MatrixType& mat, PermutationType& perm)
    {
      // Compute the symmetric pattern
      SparseMatrix<typename MatrixType::Scalar, ColMajor, Index> symm;
      internal::ordering_helper_at_plus_a(mat,symm); 
    
      // Call the AMD routine 
      //m_mat.prune(keep_diag());
      internal::minimum_degree_ordering(symm, perm);
    }
    
    /** Compute the permutation with a selfadjoint matrix */
    template <typename SrcType, unsigned int SrcUpLo> 
    void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm)
    { 
      SparseMatrix<typename SrcType::Scalar, ColMajor, Index> C; C = mat;
      
      // Call the AMD routine 
      // m_mat.prune(keep_diag()); //Remove the diagonal elements 
      internal::minimum_degree_ordering(C, perm);
    }
};

#endif // EIGEN_MPL2_ONLY

/** \ingroup OrderingMethods_Module
  * \class NaturalOrdering
  *
  * Functor computing the natural ordering (identity)
  * 
  * \note Returns an empty permutation matrix
  * \tparam  Index The type of indices of the matrix 
  */
template <typename Index>
class NaturalOrdering
{
  public:
    typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
    
    /** Compute the permutation vector from a column-major sparse matrix */
    template <typename MatrixType>
    void operator()(const MatrixType& /*mat*/, PermutationType& perm)
    {
      perm.resize(0); 
    }
    
};

/** \ingroup OrderingMethods_Module
  * \class COLAMDOrdering
  *
  * Functor computing the \em column \em approximate \em minimum \em degree ordering 
  * The matrix should be in column-major format
  */
template<typename Index>
class COLAMDOrdering
{
  public:
    typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; 
    typedef Matrix<Index, Dynamic, 1> IndexVector;
    
    /** Compute the permutation vector form a sparse matrix */
    template <typename MatrixType>
    void operator() (const MatrixType& mat, PermutationType& perm)
    {
      Index m = mat.rows();
      Index n = mat.cols();
      Index nnz = mat.nonZeros();
      // Get the recommended value of Alen to be used by colamd
      Index Alen = internal::colamd_recommended(nnz, m, n); 
      // Set the default parameters
      double knobs [COLAMD_KNOBS]; 
      Index stats [COLAMD_STATS];
      internal::colamd_set_defaults(knobs);
      
      Index info;
      IndexVector p(n+1), A(Alen); 
      for(Index i=0; i <= n; i++)   p(i) = mat.outerIndexPtr()[i];
      for(Index i=0; i < nnz; i++)  A(i) = mat.innerIndexPtr()[i];
      // Call Colamd routine to compute the ordering 
      info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats); 
      eigen_assert( info && "COLAMD failed " );
      
      perm.resize(n);
      for (Index i = 0; i < n; i++) perm.indices()(p(i)) = i;
    }
};

} // end namespace Eigen

#endif