Inverse.h 14.1 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_INVERSE_H
#define EIGEN_INVERSE_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen { 

LM's avatar
LM committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
namespace internal {

/**********************************
*** General case implementation ***
**********************************/

template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct compute_inverse
{
  static inline void run(const MatrixType& matrix, ResultType& result)
  {
    result = matrix.partialPivLu().inverse();
  }
};

template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };

/****************************
*** Size 1 implementation ***
****************************/

template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 1>
{
  static inline void run(const MatrixType& matrix, ResultType& result)
  {
    typedef typename MatrixType::Scalar Scalar;
    result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
  }
};

template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
{
  static inline void run(
    const MatrixType& matrix,
    const typename MatrixType::RealScalar& absDeterminantThreshold,
    ResultType& result,
    typename ResultType::Scalar& determinant,
    bool& invertible
  )
  {
Don Gagne's avatar
Don Gagne committed
58
    using std::abs;
LM's avatar
LM committed
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    determinant = matrix.coeff(0,0);
    invertible = abs(determinant) > absDeterminantThreshold;
    if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
  }
};

/****************************
*** Size 2 implementation ***
****************************/

template<typename MatrixType, typename ResultType>
inline void compute_inverse_size2_helper(
    const MatrixType& matrix, const typename ResultType::Scalar& invdet,
    ResultType& result)
{
  result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
  result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
  result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
  result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
}

template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 2>
{
  static inline void run(const MatrixType& matrix, ResultType& result)
  {
    typedef typename ResultType::Scalar Scalar;
    const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
    compute_inverse_size2_helper(matrix, invdet, result);
  }
};

template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
{
  static inline void run(
    const MatrixType& matrix,
    const typename MatrixType::RealScalar& absDeterminantThreshold,
    ResultType& inverse,
    typename ResultType::Scalar& determinant,
    bool& invertible
  )
  {
Don Gagne's avatar
Don Gagne committed
102
    using std::abs;
LM's avatar
LM committed
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    typedef typename ResultType::Scalar Scalar;
    determinant = matrix.determinant();
    invertible = abs(determinant) > absDeterminantThreshold;
    if(!invertible) return;
    const Scalar invdet = Scalar(1) / determinant;
    compute_inverse_size2_helper(matrix, invdet, inverse);
  }
};

/****************************
*** Size 3 implementation ***
****************************/

template<typename MatrixType, int i, int j>
inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
{
  enum {
    i1 = (i+1) % 3,
    i2 = (i+2) % 3,
    j1 = (j+1) % 3,
    j2 = (j+2) % 3
  };
  return m.coeff(i1, j1) * m.coeff(i2, j2)
       - m.coeff(i1, j2) * m.coeff(i2, j1);
}

template<typename MatrixType, typename ResultType>
inline void compute_inverse_size3_helper(
    const MatrixType& matrix,
    const typename ResultType::Scalar& invdet,
    const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
    ResultType& result)
{
  result.row(0) = cofactors_col0 * invdet;
  result.coeffRef(1,0) =  cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
  result.coeffRef(1,1) =  cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
  result.coeffRef(1,2) =  cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
  result.coeffRef(2,0) =  cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
  result.coeffRef(2,1) =  cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
  result.coeffRef(2,2) =  cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
}

template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 3>
{
  static inline void run(const MatrixType& matrix, ResultType& result)
  {
    typedef typename ResultType::Scalar Scalar;
    Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
    cofactors_col0.coeffRef(0) =  cofactor_3x3<MatrixType,0,0>(matrix);
    cofactors_col0.coeffRef(1) =  cofactor_3x3<MatrixType,1,0>(matrix);
    cofactors_col0.coeffRef(2) =  cofactor_3x3<MatrixType,2,0>(matrix);
    const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
    const Scalar invdet = Scalar(1) / det;
    compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
  }
};

template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
{
  static inline void run(
    const MatrixType& matrix,
    const typename MatrixType::RealScalar& absDeterminantThreshold,
    ResultType& inverse,
    typename ResultType::Scalar& determinant,
    bool& invertible
  )
  {
Don Gagne's avatar
Don Gagne committed
172
    using std::abs;
LM's avatar
LM committed
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    typedef typename ResultType::Scalar Scalar;
    Matrix<Scalar,3,1> cofactors_col0;
    cofactors_col0.coeffRef(0) =  cofactor_3x3<MatrixType,0,0>(matrix);
    cofactors_col0.coeffRef(1) =  cofactor_3x3<MatrixType,1,0>(matrix);
    cofactors_col0.coeffRef(2) =  cofactor_3x3<MatrixType,2,0>(matrix);
    determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
    invertible = abs(determinant) > absDeterminantThreshold;
    if(!invertible) return;
    const Scalar invdet = Scalar(1) / determinant;
    compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
  }
};

/****************************
*** Size 4 implementation ***
****************************/

template<typename Derived>
inline const typename Derived::Scalar general_det3_helper
(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
{
  return matrix.coeff(i1,j1)
         * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
}

template<typename MatrixType, int i, int j>
inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
{
  enum {
    i1 = (i+1) % 4,
    i2 = (i+2) % 4,
    i3 = (i+3) % 4,
    j1 = (j+1) % 4,
    j2 = (j+2) % 4,
    j3 = (j+3) % 4
  };
  return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
       + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
       + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
}

template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
struct compute_inverse_size4
{
  static void run(const MatrixType& matrix, ResultType& result)
  {
    result.coeffRef(0,0) =  cofactor_4x4<MatrixType,0,0>(matrix);
    result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
    result.coeffRef(2,0) =  cofactor_4x4<MatrixType,0,2>(matrix);
    result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
    result.coeffRef(0,2) =  cofactor_4x4<MatrixType,2,0>(matrix);
    result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
    result.coeffRef(2,2) =  cofactor_4x4<MatrixType,2,2>(matrix);
    result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
    result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
    result.coeffRef(1,1) =  cofactor_4x4<MatrixType,1,1>(matrix);
    result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
    result.coeffRef(3,1) =  cofactor_4x4<MatrixType,1,3>(matrix);
    result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
    result.coeffRef(1,3) =  cofactor_4x4<MatrixType,3,1>(matrix);
    result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
    result.coeffRef(3,3) =  cofactor_4x4<MatrixType,3,3>(matrix);
    result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
  }
};

template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 4>
 : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
                            MatrixType, ResultType>
{
};

template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
{
  static inline void run(
    const MatrixType& matrix,
    const typename MatrixType::RealScalar& absDeterminantThreshold,
    ResultType& inverse,
    typename ResultType::Scalar& determinant,
    bool& invertible
  )
  {
Don Gagne's avatar
Don Gagne committed
257
    using std::abs;
LM's avatar
LM committed
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    determinant = matrix.determinant();
    invertible = abs(determinant) > absDeterminantThreshold;
    if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
  }
};

/*************************
*** MatrixBase methods ***
*************************/

template<typename MatrixType>
struct traits<inverse_impl<MatrixType> >
{
  typedef typename MatrixType::PlainObject ReturnType;
};

template<typename MatrixType>
struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> >
{
  typedef typename MatrixType::Index Index;
  typedef typename internal::eval<MatrixType>::type MatrixTypeNested;
  typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
Don Gagne's avatar
Don Gagne committed
280
  MatrixTypeNested m_matrix;
LM's avatar
LM committed
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

  inverse_impl(const MatrixType& matrix)
    : m_matrix(matrix)
  {}

  inline Index rows() const { return m_matrix.rows(); }
  inline Index cols() const { return m_matrix.cols(); }

  template<typename Dest> inline void evalTo(Dest& dst) const
  {
    const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime);
    EIGEN_ONLY_USED_FOR_DEBUG(Size);
    eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=extract_data(dst)))
              && "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");

    compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst);
  }
};

} // end namespace internal

/** \lu_module
  *
  * \returns the matrix inverse of this matrix.
  *
  * For small fixed sizes up to 4x4, this method uses cofactors.
  * In the general case, this method uses class PartialPivLU.
  *
  * \note This matrix must be invertible, otherwise the result is undefined. If you need an
  * invertibility check, do the following:
  * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
  * \li for the general case, use class FullPivLU.
  *
  * Example: \include MatrixBase_inverse.cpp
  * Output: \verbinclude MatrixBase_inverse.out
  *
  * \sa computeInverseAndDetWithCheck()
  */
template<typename Derived>
inline const internal::inverse_impl<Derived> MatrixBase<Derived>::inverse() const
{
  EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
  eigen_assert(rows() == cols());
  return internal::inverse_impl<Derived>(derived());
}

/** \lu_module
  *
  * Computation of matrix inverse and determinant, with invertibility check.
  *
  * This is only for fixed-size square matrices of size up to 4x4.
  *
  * \param inverse Reference to the matrix in which to store the inverse.
Don Gagne's avatar
Don Gagne committed
334
  * \param determinant Reference to the variable in which to store the determinant.
LM's avatar
LM committed
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
  * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
  * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
  *                                The matrix will be declared invertible if the absolute value of its
  *                                determinant is greater than this threshold.
  *
  * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
  * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
  *
  * \sa inverse(), computeInverseWithCheck()
  */
template<typename Derived>
template<typename ResultType>
inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
    ResultType& inverse,
    typename ResultType::Scalar& determinant,
    bool& invertible,
    const RealScalar& absDeterminantThreshold
  ) const
{
  // i'd love to put some static assertions there, but SFINAE means that they have no effect...
  eigen_assert(rows() == cols());
  // for 2x2, it's worth giving a chance to avoid evaluating.
  // for larger sizes, evaluating has negligible cost and limits code size.
  typedef typename internal::conditional<
    RowsAtCompileTime == 2,
    typename internal::remove_all<typename internal::nested<Derived, 2>::type>::type,
    PlainObject
  >::type MatrixType;
  internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
    (derived(), absDeterminantThreshold, inverse, determinant, invertible);
}

/** \lu_module
  *
  * Computation of matrix inverse, with invertibility check.
  *
  * This is only for fixed-size square matrices of size up to 4x4.
  *
  * \param inverse Reference to the matrix in which to store the inverse.
  * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
  * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
  *                                The matrix will be declared invertible if the absolute value of its
  *                                determinant is greater than this threshold.
  *
  * Example: \include MatrixBase_computeInverseWithCheck.cpp
  * Output: \verbinclude MatrixBase_computeInverseWithCheck.out
  *
  * \sa inverse(), computeInverseAndDetWithCheck()
  */
template<typename Derived>
template<typename ResultType>
inline void MatrixBase<Derived>::computeInverseWithCheck(
    ResultType& inverse,
    bool& invertible,
    const RealScalar& absDeterminantThreshold
  ) const
{
  RealScalar determinant;
  // i'd love to put some static assertions there, but SFINAE means that they have no effect...
  eigen_assert(rows() == cols());
  computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
}

Don Gagne's avatar
Don Gagne committed
398 399
} // end namespace Eigen

LM's avatar
LM committed
400
#endif // EIGEN_INVERSE_H