ConjugateGradient.h 8.7 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CONJUGATE_GRADIENT_H
#define EIGEN_CONJUGATE_GRADIENT_H

namespace Eigen { 

namespace internal {

/** \internal Low-level conjugate gradient algorithm
  * \param mat The matrix A
  * \param rhs The right hand side vector b
  * \param x On input and initial solution, on output the computed solution.
  * \param precond A preconditioner being able to efficiently solve for an
  *                approximation of Ax=b (regardless of b)
  * \param iters On input the max number of iteration, on output the number of performed iterations.
  * \param tol_error On input the tolerance error, on output an estimation of the relative error.
  */
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
EIGEN_DONT_INLINE
void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
                        const Preconditioner& precond, int& iters,
                        typename Dest::RealScalar& tol_error)
{
  using std::sqrt;
  using std::abs;
  typedef typename Dest::RealScalar RealScalar;
  typedef typename Dest::Scalar Scalar;
  typedef Matrix<Scalar,Dynamic,1> VectorType;
  
  RealScalar tol = tol_error;
  int maxIters = iters;
  
  int n = mat.cols();

  VectorType residual = rhs - mat * x; //initial residual

  RealScalar rhsNorm2 = rhs.squaredNorm();
  if(rhsNorm2 == 0) 
  {
    x.setZero();
    iters = 0;
    tol_error = 0;
    return;
  }
  RealScalar threshold = tol*tol*rhsNorm2;
  RealScalar residualNorm2 = residual.squaredNorm();
  if (residualNorm2 < threshold)
  {
    iters = 0;
    tol_error = sqrt(residualNorm2 / rhsNorm2);
    return;
  }
  
  VectorType p(n);
  p = precond.solve(residual);      //initial search direction

  VectorType z(n), tmp(n);
  RealScalar absNew = numext::real(residual.dot(p));  // the square of the absolute value of r scaled by invM
  int i = 0;
  while(i < maxIters)
  {
    tmp.noalias() = mat * p;              // the bottleneck of the algorithm

    Scalar alpha = absNew / p.dot(tmp);   // the amount we travel on dir
    x += alpha * p;                       // update solution
    residual -= alpha * tmp;              // update residue
    
    residualNorm2 = residual.squaredNorm();
    if(residualNorm2 < threshold)
      break;
    
    z = precond.solve(residual);          // approximately solve for "A z = residual"

    RealScalar absOld = absNew;
    absNew = numext::real(residual.dot(z));     // update the absolute value of r
    RealScalar beta = absNew / absOld;            // calculate the Gram-Schmidt value used to create the new search direction
    p = z + beta * p;                             // update search direction
    i++;
  }
  tol_error = sqrt(residualNorm2 / rhsNorm2);
  iters = i;
}

}

template< typename _MatrixType, int _UpLo=Lower,
          typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
class ConjugateGradient;

namespace internal {

template< typename _MatrixType, int _UpLo, typename _Preconditioner>
struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
{
  typedef _MatrixType MatrixType;
  typedef _Preconditioner Preconditioner;
};

}

/** \ingroup IterativeLinearSolvers_Module
  * \brief A conjugate gradient solver for sparse self-adjoint problems
  *
  * This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
  * The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
  *
  * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
  * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
  *               or Upper. Default is Lower.
  * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
  *
  * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
  * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
  * and NumTraits<Scalar>::epsilon() for the tolerance.
  * 
  * This class can be used as the direct solver classes. Here is a typical usage example:
  * \code
  * int n = 10000;
  * VectorXd x(n), b(n);
  * SparseMatrix<double> A(n,n);
  * // fill A and b
  * ConjugateGradient<SparseMatrix<double> > cg;
  * cg.compute(A);
  * x = cg.solve(b);
  * std::cout << "#iterations:     " << cg.iterations() << std::endl;
  * std::cout << "estimated error: " << cg.error()      << std::endl;
  * // update b, and solve again
  * x = cg.solve(b);
  * \endcode
  * 
  * By default the iterations start with x=0 as an initial guess of the solution.
  * One can control the start using the solveWithGuess() method. Here is a step by
  * step execution example starting with a random guess and printing the evolution
  * of the estimated error:
  * * \code
  * x = VectorXd::Random(n);
  * cg.setMaxIterations(1);
  * int i = 0;
  * do {
  *   x = cg.solveWithGuess(b,x);
  *   std::cout << i << " : " << cg.error() << std::endl;
  *   ++i;
  * } while (cg.info()!=Success && i<100);
  * \endcode
  * Note that such a step by step excution is slightly slower.
  * 
  * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
  */
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
{
  typedef IterativeSolverBase<ConjugateGradient> Base;
  using Base::mp_matrix;
  using Base::m_error;
  using Base::m_iterations;
  using Base::m_info;
  using Base::m_isInitialized;
public:
  typedef _MatrixType MatrixType;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef _Preconditioner Preconditioner;

  enum {
    UpLo = _UpLo
  };

public:

  /** Default constructor. */
  ConjugateGradient() : Base() {}

  /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    * 
    * This constructor is a shortcut for the default constructor followed
    * by a call to compute().
    * 
    * \warning this class stores a reference to the matrix A as well as some
    * precomputed values that depend on it. Therefore, if \a A is changed
    * this class becomes invalid. Call compute() to update it with the new
    * matrix A, or modify a copy of A.
    */
  ConjugateGradient(const MatrixType& A) : Base(A) {}

  ~ConjugateGradient() {}
  
  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
    * \a x0 as an initial solution.
    *
    * \sa compute()
    */
  template<typename Rhs,typename Guess>
  inline const internal::solve_retval_with_guess<ConjugateGradient, Rhs, Guess>
  solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
  {
    eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
    eigen_assert(Base::rows()==b.rows()
              && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
    return internal::solve_retval_with_guess
            <ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
  }

  /** \internal */
  template<typename Rhs,typename Dest>
  void _solveWithGuess(const Rhs& b, Dest& x) const
  {
    m_iterations = Base::maxIterations();
    m_error = Base::m_tolerance;

    for(int j=0; j<b.cols(); ++j)
    {
      m_iterations = Base::maxIterations();
      m_error = Base::m_tolerance;

      typename Dest::ColXpr xj(x,j);
      internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj,
                                   Base::m_preconditioner, m_iterations, m_error);
    }

    m_isInitialized = true;
    m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
  }
  
  /** \internal */
  template<typename Rhs,typename Dest>
  void _solve(const Rhs& b, Dest& x) const
  {
    x.setOnes();
    _solveWithGuess(b,x);
  }

protected:

};


namespace internal {

template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
  : solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
{
  typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_CONJUGATE_GRADIENT_H