Transform.h 54.4 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
//
Don Gagne's avatar
Don Gagne committed
8 9 10
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
11 12 13 14

#ifndef EIGEN_TRANSFORM_H
#define EIGEN_TRANSFORM_H

Don Gagne's avatar
Don Gagne committed
15 16
namespace Eigen { 

LM's avatar
LM committed
17 18 19 20 21 22 23 24 25 26
namespace internal {

template<typename Transform>
struct transform_traits
{
  enum
  {
    Dim = Transform::Dim,
    HDim = Transform::HDim,
    Mode = Transform::Mode,
Don Gagne's avatar
Don Gagne committed
27
    IsProjective = (int(Mode)==int(Projective))
LM's avatar
LM committed
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
  };
};

template< typename TransformType,
          typename MatrixType,
          int Case = transform_traits<TransformType>::IsProjective ? 0
                   : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
                   : 2>
struct transform_right_product_impl;

template< typename Other,
          int Mode,
          int Options,
          int Dim,
          int HDim,
          int OtherRows=Other::RowsAtCompileTime,
          int OtherCols=Other::ColsAtCompileTime>
struct transform_left_product_impl;

template< typename Lhs,
          typename Rhs,
          bool AnyProjective = 
            transform_traits<Lhs>::IsProjective ||
Don Gagne's avatar
Don Gagne committed
51
            transform_traits<Rhs>::IsProjective>
LM's avatar
LM committed
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
struct transform_transform_product_impl;

template< typename Other,
          int Mode,
          int Options,
          int Dim,
          int HDim,
          int OtherRows=Other::RowsAtCompileTime,
          int OtherCols=Other::ColsAtCompileTime>
struct transform_construct_from_matrix;

template<typename TransformType> struct transform_take_affine_part;

} // end namespace internal

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Transform
  *
  * \brief Represents an homogeneous transformation in a N dimensional space
  *
  * \tparam _Scalar the scalar type, i.e., the type of the coefficients
  * \tparam _Dim the dimension of the space
  * \tparam _Mode the type of the transformation. Can be:
  *              - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
  *                         where the last row is assumed to be [0 ... 0 1].
  *              - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
  *              - #Projective: the transformation is stored as a (Dim+1)^2 matrix
  *                             without any assumption.
  * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
  *                  These Options are passed directly to the underlying matrix type.
  *
  * The homography is internally represented and stored by a matrix which
  * is available through the matrix() method. To understand the behavior of
  * this class you have to think a Transform object as its internal
  * matrix representation. The chosen convention is right multiply:
  *
  * \code v' = T * v \endcode
  *
  * Therefore, an affine transformation matrix M is shaped like this:
  *
  * \f$ \left( \begin{array}{cc}
  * linear & translation\\
  * 0 ... 0 & 1
  * \end{array} \right) \f$
  *
  * Note that for a projective transformation the last row can be anything,
  * and then the interpretation of different parts might be sightly different.
  *
  * However, unlike a plain matrix, the Transform class provides many features
  * simplifying both its assembly and usage. In particular, it can be composed
  * with any other transformations (Transform,Translation,RotationBase,Matrix)
  * and can be directly used to transform implicit homogeneous vectors. All these
  * operations are handled via the operator*. For the composition of transformations,
  * its principle consists to first convert the right/left hand sides of the product
  * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
  * Of course, internally, operator* tries to perform the minimal number of operations
  * according to the nature of each terms. Likewise, when applying the transform
  * to non homogeneous vectors, the latters are automatically promoted to homogeneous
  * one before doing the matrix product. The convertions to homogeneous representations
  * are performed as follow:
  *
  * \b Translation t (Dim)x(1):
  * \f$ \left( \begin{array}{cc}
  * I & t \\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *
  * \b Rotation R (Dim)x(Dim):
  * \f$ \left( \begin{array}{cc}
  * R & 0\\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *
  * \b Linear \b Matrix L (Dim)x(Dim):
  * \f$ \left( \begin{array}{cc}
  * L & 0\\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *
  * \b Affine \b Matrix A (Dim)x(Dim+1):
  * \f$ \left( \begin{array}{c}
  * A\\
  * 0\,...\,0\,1
  * \end{array} \right) \f$
  *
  * \b Column \b vector v (Dim)x(1):
  * \f$ \left( \begin{array}{c}
  * v\\
  * 1
  * \end{array} \right) \f$
  *
  * \b Set \b of \b column \b vectors V1...Vn (Dim)x(n):
  * \f$ \left( \begin{array}{ccc}
  * v_1 & ... & v_n\\
  * 1 & ... & 1
  * \end{array} \right) \f$
  *
  * The concatenation of a Transform object with any kind of other transformation
  * always returns a Transform object.
  *
  * A little exception to the "as pure matrix product" rule is the case of the
  * transformation of non homogeneous vectors by an affine transformation. In
  * that case the last matrix row can be ignored, and the product returns non
  * homogeneous vectors.
  *
  * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
  * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
  * The solution is either to use a Dim x Dynamic matrix or explicitly request a
  * vector transformation by making the vector homogeneous:
  * \code
  * m' = T * m.colwise().homogeneous();
  * \endcode
  * Note that there is zero overhead.
  *
  * Conversion methods from/to Qt's QMatrix and QTransform are available if the
  * preprocessor token EIGEN_QT_SUPPORT is defined.
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
  *
  * \sa class Matrix, class Quaternion
  */
template<typename _Scalar, int _Dim, int _Mode, int _Options>
class Transform
{
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
  enum {
    Mode = _Mode,
    Options = _Options,
    Dim = _Dim,     ///< space dimension in which the transformation holds
    HDim = _Dim+1,  ///< size of a respective homogeneous vector
    Rows = int(Mode)==(AffineCompact) ? Dim : HDim
  };
  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;
  typedef DenseIndex Index;
  /** type of the matrix used to represent the transformation */
  typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
  /** constified MatrixType */
  typedef const MatrixType ConstMatrixType;
  /** type of the matrix used to represent the linear part of the transformation */
  typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
  /** type of read/write reference to the linear part of the transformation */
Don Gagne's avatar
Don Gagne committed
197
  typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact)> LinearPart;
LM's avatar
LM committed
198
  /** type of read reference to the linear part of the transformation */
Don Gagne's avatar
Don Gagne committed
199
  typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact)> ConstLinearPart;
LM's avatar
LM committed
200 201 202 203 204 205 206 207 208 209 210
  /** type of read/write reference to the affine part of the transformation */
  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
                              MatrixType&,
                              Block<MatrixType,Dim,HDim> >::type AffinePart;
  /** type of read reference to the affine part of the transformation */
  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
                              const MatrixType&,
                              const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart;
  /** type of a vector */
  typedef Matrix<Scalar,Dim,1> VectorType;
  /** type of a read/write reference to the translation part of the rotation */
Don Gagne's avatar
Don Gagne committed
211
  typedef Block<MatrixType,Dim,1,int(Mode)==(AffineCompact)> TranslationPart;
LM's avatar
LM committed
212
  /** type of a read reference to the translation part of the rotation */
Don Gagne's avatar
Don Gagne committed
213
  typedef const Block<ConstMatrixType,Dim,1,int(Mode)==(AffineCompact)> ConstTranslationPart;
LM's avatar
LM committed
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
  /** corresponding translation type */
  typedef Translation<Scalar,Dim> TranslationType;
  
  // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
  enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
  /** The return type of the product between a diagonal matrix and a transform */
  typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType;

protected:

  MatrixType m_matrix;

public:

  /** Default constructor without initialization of the meaningful coefficients.
    * If Mode==Affine, then the last row is set to [0 ... 0 1] */
  inline Transform()
  {
    check_template_params();
    if (int(Mode)==Affine)
      makeAffine();
  }

  inline Transform(const Transform& other)
  {
    check_template_params();
    m_matrix = other.m_matrix;
  }

  inline explicit Transform(const TranslationType& t)
  {
    check_template_params();
    *this = t;
  }
  inline explicit Transform(const UniformScaling<Scalar>& s)
  {
    check_template_params();
    *this = s;
  }
  template<typename Derived>
  inline explicit Transform(const RotationBase<Derived, Dim>& r)
  {
    check_template_params();
    *this = r;
  }

  inline Transform& operator=(const Transform& other)
  { m_matrix = other.m_matrix; return *this; }

  typedef internal::transform_take_affine_part<Transform> take_affine_part;

  /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
  template<typename OtherDerived>
  inline explicit Transform(const EigenBase<OtherDerived>& other)
  {
Don Gagne's avatar
Don Gagne committed
269 270 271
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
      YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);

LM's avatar
LM committed
272 273 274 275 276 277 278 279
    check_template_params();
    internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
  }

  /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
  template<typename OtherDerived>
  inline Transform& operator=(const EigenBase<OtherDerived>& other)
  {
Don Gagne's avatar
Don Gagne committed
280 281 282
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
      YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);

LM's avatar
LM committed
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
    return *this;
  }
  
  template<int OtherOptions>
  inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
  {
    check_template_params();
    // only the options change, we can directly copy the matrices
    m_matrix = other.matrix();
  }

  template<int OtherMode,int OtherOptions>
  inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
  {
    check_template_params();
    // prevent conversions as:
    // Affine | AffineCompact | Isometry = Projective
    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)

    // prevent conversions as:
    // Isometry = Affine | AffineCompact
    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)

    enum { ModeIsAffineCompact = Mode == int(AffineCompact),
           OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
    };

    if(ModeIsAffineCompact == OtherModeIsAffineCompact)
    {
      // We need the block expression because the code is compiled for all
      // combinations of transformations and will trigger a compile time error
      // if one tries to assign the matrices directly
      m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
      makeAffine();
    }
    else if(OtherModeIsAffineCompact)
    {
      typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
      internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
    }
    else
    {
      // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
      // if OtherMode were Projective, the static assert above would already have caught it.
      // So the only possibility is that OtherMode == Affine
      linear() = other.linear();
      translation() = other.translation();
    }
  }

  template<typename OtherDerived>
  Transform(const ReturnByValue<OtherDerived>& other)
  {
    check_template_params();
    other.evalTo(*this);
  }

  template<typename OtherDerived>
  Transform& operator=(const ReturnByValue<OtherDerived>& other)
  {
    other.evalTo(*this);
    return *this;
  }

  #ifdef EIGEN_QT_SUPPORT
  inline Transform(const QMatrix& other);
  inline Transform& operator=(const QMatrix& other);
  inline QMatrix toQMatrix(void) const;
  inline Transform(const QTransform& other);
  inline Transform& operator=(const QTransform& other);
  inline QTransform toQTransform(void) const;
  #endif

  /** shortcut for m_matrix(row,col);
    * \sa MatrixBase::operator(Index,Index) const */
  inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
  /** shortcut for m_matrix(row,col);
    * \sa MatrixBase::operator(Index,Index) */
  inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }

  /** \returns a read-only expression of the transformation matrix */
  inline const MatrixType& matrix() const { return m_matrix; }
  /** \returns a writable expression of the transformation matrix */
  inline MatrixType& matrix() { return m_matrix; }

  /** \returns a read-only expression of the linear part of the transformation */
Don Gagne's avatar
Don Gagne committed
372
  inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
LM's avatar
LM committed
373
  /** \returns a writable expression of the linear part of the transformation */
Don Gagne's avatar
Don Gagne committed
374
  inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
LM's avatar
LM committed
375 376 377 378 379 380 381

  /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
  inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
  /** \returns a writable expression of the Dim x HDim affine part of the transformation */
  inline AffinePart affine() { return take_affine_part::run(m_matrix); }

  /** \returns a read-only expression of the translation vector of the transformation */
Don Gagne's avatar
Don Gagne committed
382
  inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
LM's avatar
LM committed
383
  /** \returns a writable expression of the translation vector of the transformation */
Don Gagne's avatar
Don Gagne committed
384
  inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
LM's avatar
LM committed
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

  /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
    *
    * The right hand side \a other might be either:
    * \li a vector of size Dim,
    * \li an homogeneous vector of size Dim+1,
    * \li a set of vectors of size Dim x Dynamic,
    * \li a set of homogeneous vectors of size Dim+1 x Dynamic,
    * \li a linear transformation matrix of size Dim x Dim,
    * \li an affine transformation matrix of size Dim x Dim+1,
    * \li a transformation matrix of size Dim+1 x Dim+1.
    */
  // note: this function is defined here because some compilers cannot find the respective declaration
  template<typename OtherDerived>
  EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
  operator * (const EigenBase<OtherDerived> &other) const
  { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }

  /** \returns the product expression of a transformation matrix \a a times a transform \a b
    *
    * The left hand side \a other might be either:
    * \li a linear transformation matrix of size Dim x Dim,
    * \li an affine transformation matrix of size Dim x Dim+1,
    * \li a general transformation matrix of size Dim+1 x Dim+1.
    */
  template<typename OtherDerived> friend
  inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
    operator * (const EigenBase<OtherDerived> &a, const Transform &b)
  { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }

  /** \returns The product expression of a transform \a a times a diagonal matrix \a b
    *
    * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
    * product results in a Transform of the same type (mode) as the lhs only if the lhs 
    * mode is no isometry. In that case, the returned transform is an affinity.
    */
  template<typename DiagonalDerived>
  inline const TransformTimeDiagonalReturnType
    operator * (const DiagonalBase<DiagonalDerived> &b) const
  {
    TransformTimeDiagonalReturnType res(*this);
    res.linear() *= b;
    return res;
  }

  /** \returns The product expression of a diagonal matrix \a a times a transform \a b
    *
    * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
    * product results in a Transform of the same type (mode) as the lhs only if the lhs 
    * mode is no isometry. In that case, the returned transform is an affinity.
    */
  template<typename DiagonalDerived>
  friend inline TransformTimeDiagonalReturnType
    operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
  {
    TransformTimeDiagonalReturnType res;
    res.linear().noalias() = a*b.linear();
    res.translation().noalias() = a*b.translation();
    if (Mode!=int(AffineCompact))
      res.matrix().row(Dim) = b.matrix().row(Dim);
    return res;
  }

  template<typename OtherDerived>
  inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }

  /** Concatenates two transformations */
  inline const Transform operator * (const Transform& other) const
  {
    return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
  }
Don Gagne's avatar
Don Gagne committed
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
  
  #ifdef __INTEL_COMPILER
private:
  // this intermediate structure permits to workaround a bug in ICC 11:
  //   error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
  //             (const Eigen::Transform<double, 3, 2, 0> &) const"
  //  (the meaning of a name may have changed since the template declaration -- the type of the template is:
  // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
  //     Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
  // 
  template<int OtherMode,int OtherOptions> struct icc_11_workaround
  {
    typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType;
    typedef typename ProductType::ResultType ResultType;
  };
  
public:
LM's avatar
LM committed
473 474
  /** Concatenates two different transformations */
  template<int OtherMode,int OtherOptions>
Don Gagne's avatar
Don Gagne committed
475 476 477 478 479 480 481 482 483 484
  inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
    operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
  {
    typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
    return ProductType::run(*this,other);
  }
  #else
  /** Concatenates two different transformations */
  template<int OtherMode,int OtherOptions>
  inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
LM's avatar
LM committed
485 486 487 488
    operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
  {
    return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
  }
Don Gagne's avatar
Don Gagne committed
489
  #endif
LM's avatar
LM committed
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

  /** \sa MatrixBase::setIdentity() */
  void setIdentity() { m_matrix.setIdentity(); }

  /**
   * \brief Returns an identity transformation.
   * \todo In the future this function should be returning a Transform expression.
   */
  static const Transform Identity()
  {
    return Transform(MatrixType::Identity());
  }

  template<typename OtherDerived>
  inline Transform& scale(const MatrixBase<OtherDerived> &other);

  template<typename OtherDerived>
  inline Transform& prescale(const MatrixBase<OtherDerived> &other);

Don Gagne's avatar
Don Gagne committed
509 510
  inline Transform& scale(const Scalar& s);
  inline Transform& prescale(const Scalar& s);
LM's avatar
LM committed
511 512 513 514 515 516 517 518 519 520 521 522 523

  template<typename OtherDerived>
  inline Transform& translate(const MatrixBase<OtherDerived> &other);

  template<typename OtherDerived>
  inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);

  template<typename RotationType>
  inline Transform& rotate(const RotationType& rotation);

  template<typename RotationType>
  inline Transform& prerotate(const RotationType& rotation);

Don Gagne's avatar
Don Gagne committed
524 525
  Transform& shear(const Scalar& sx, const Scalar& sy);
  Transform& preshear(const Scalar& sx, const Scalar& sy);
LM's avatar
LM committed
526 527 528 529 530 531 532

  inline Transform& operator=(const TranslationType& t);
  inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
  inline Transform operator*(const TranslationType& t) const;

  inline Transform& operator=(const UniformScaling<Scalar>& t);
  inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
Don Gagne's avatar
Don Gagne committed
533 534 535 536 537 538
  inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Isometry)> operator*(const UniformScaling<Scalar>& s) const
  {
    Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Isometry),Options> res = *this;
    res.scale(s.factor());
    return res;
  }
LM's avatar
LM committed
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

  inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; }

  template<typename Derived>
  inline Transform& operator=(const RotationBase<Derived,Dim>& r);
  template<typename Derived>
  inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
  template<typename Derived>
  inline Transform operator*(const RotationBase<Derived,Dim>& r) const;

  const LinearMatrixType rotation() const;
  template<typename RotationMatrixType, typename ScalingMatrixType>
  void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
  template<typename ScalingMatrixType, typename RotationMatrixType>
  void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;

  template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
  Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
    const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);

  inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;

  /** \returns a const pointer to the column major internal matrix */
  const Scalar* data() const { return m_matrix.data(); }
  /** \returns a non-const pointer to the column major internal matrix */
  Scalar* data() { return m_matrix.data(); }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
  { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
  {
    check_template_params();
    m_matrix = other.matrix().template cast<Scalar>();
  }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
Don Gagne's avatar
Don Gagne committed
587
  bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
LM's avatar
LM committed
588 589 590 591 592 593 594 595 596
  { return m_matrix.isApprox(other.m_matrix, prec); }

  /** Sets the last row to [0 ... 0 1]
    */
  void makeAffine()
  {
    if(int(Mode)!=int(AffineCompact))
    {
      matrix().template block<1,Dim>(Dim,0).setZero();
Don Gagne's avatar
Don Gagne committed
597
      matrix().coeffRef(Dim,Dim) = Scalar(1);
LM's avatar
LM committed
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    }
  }

  /** \internal
    * \returns the Dim x Dim linear part if the transformation is affine,
    *          and the HDim x Dim part for projective transformations.
    */
  inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
  /** \internal
    * \returns the Dim x Dim linear part if the transformation is affine,
    *          and the HDim x Dim part for projective transformations.
    */
  inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }

  /** \internal
    * \returns the translation part if the transformation is affine,
    *          and the last column for projective transformations.
    */
  inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
  /** \internal
    * \returns the translation part if the transformation is affine,
    *          and the last column for projective transformations.
    */
  inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }


  #ifdef EIGEN_TRANSFORM_PLUGIN
  #include EIGEN_TRANSFORM_PLUGIN
  #endif
  
protected:
  #ifndef EIGEN_PARSED_BY_DOXYGEN
Don Gagne's avatar
Don Gagne committed
634
    static EIGEN_STRONG_INLINE void check_template_params()
LM's avatar
LM committed
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    {
      EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
    }
  #endif

};

/** \ingroup Geometry_Module */
typedef Transform<float,2,Isometry> Isometry2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,Isometry> Isometry3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,Isometry> Isometry2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,Isometry> Isometry3d;

/** \ingroup Geometry_Module */
typedef Transform<float,2,Affine> Affine2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,Affine> Affine3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,Affine> Affine2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,Affine> Affine3d;

/** \ingroup Geometry_Module */
typedef Transform<float,2,AffineCompact> AffineCompact2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,AffineCompact> AffineCompact3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,AffineCompact> AffineCompact2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,AffineCompact> AffineCompact3d;

/** \ingroup Geometry_Module */
typedef Transform<float,2,Projective> Projective2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,Projective> Projective3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,Projective> Projective2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,Projective> Projective3d;

/**************************
*** Optional QT support ***
**************************/

#ifdef EIGEN_QT_SUPPORT
/** Initializes \c *this from a QMatrix assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other)
{
  check_template_params();
  *this = other;
}

/** Set \c *this from a QMatrix assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  m_matrix << other.m11(), other.m21(), other.dx(),
              other.m12(), other.m22(), other.dy(),
              0, 0, 1;
  return *this;
}

/** \returns a QMatrix from \c *this assuming the dimension is 2.
  *
  * \warning this conversion might loss data if \c *this is not affine
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode, int Options>
QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const
{
  check_template_params();
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
                 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
                 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
}

/** Initializes \c *this from a QTransform assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
{
  check_template_params();
  *this = other;
}

/** Set \c *this from a QTransform assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode, int Options>
Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other)
{
  check_template_params();
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  if (Mode == int(AffineCompact))
    m_matrix << other.m11(), other.m21(), other.dx(),
                other.m12(), other.m22(), other.dy();
  else
    m_matrix << other.m11(), other.m21(), other.dx(),
                other.m12(), other.m22(), other.dy(),
                other.m13(), other.m23(), other.m33();
  return *this;
}

/** \returns a QTransform from \c *this assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode, int Options>
QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  if (Mode == int(AffineCompact))
    return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
                      m_matrix.coeff(0,1), m_matrix.coeff(1,1),
                      m_matrix.coeff(0,2), m_matrix.coeff(1,2));
  else
    return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
                      m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
                      m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
}
#endif

/*********************
*** Procedural API ***
*********************/

/** Applies on the right the non uniform scale transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \sa prescale()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  linearExt().noalias() = (linearExt() * other.asDiagonal());
  return *this;
}

/** Applies on the right a uniform scale of a factor \a c to \c *this
  * and returns a reference to \c *this.
  * \sa prescale(Scalar)
  */
template<typename Scalar, int Dim, int Mode, int Options>
Don Gagne's avatar
Don Gagne committed
797
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
LM's avatar
LM committed
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
{
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  linearExt() *= s;
  return *this;
}

/** Applies on the left the non uniform scale transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \sa scale()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0));
  return *this;
}

/** Applies on the left a uniform scale of a factor \a c to \c *this
  * and returns a reference to \c *this.
  * \sa scale(Scalar)
  */
template<typename Scalar, int Dim, int Mode, int Options>
Don Gagne's avatar
Don Gagne committed
824
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
LM's avatar
LM committed
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
{
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  m_matrix.template topRows<Dim>() *= s;
  return *this;
}

/** Applies on the right the translation matrix represented by the vector \a other
  * to \c *this and returns a reference to \c *this.
  * \sa pretranslate()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  translationExt() += linearExt() * other;
  return *this;
}

/** Applies on the left the translation matrix represented by the vector \a other
  * to \c *this and returns a reference to \c *this.
  * \sa translate()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  if(int(Mode)==int(Projective))
    affine() += other * m_matrix.row(Dim);
  else
    translation() += other;
  return *this;
}

/** Applies on the right the rotation represented by the rotation \a rotation
  * to \c *this and returns a reference to \c *this.
  *
  * The template parameter \a RotationType is the type of the rotation which
  * must be known by internal::toRotationMatrix<>.
  *
  * Natively supported types includes:
  *   - any scalar (2D),
  *   - a Dim x Dim matrix expression,
  *   - a Quaternion (3D),
  *   - a AngleAxis (3D)
  *
  * This mechanism is easily extendable to support user types such as Euler angles,
  * or a pair of Quaternion for 4D rotations.
  *
  * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationType>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
{
  linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
  return *this;
}

/** Applies on the left the rotation represented by the rotation \a rotation
  * to \c *this and returns a reference to \c *this.
  *
  * See rotate() for further details.
  *
  * \sa rotate()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationType>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
{
  m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
                                         * m_matrix.template block<Dim,HDim>(0,0);
  return *this;
}

/** Applies on the right the shear transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \warning 2D only.
  * \sa preshear()
  */
template<typename Scalar, int Dim, int Mode, int Options>
Transform<Scalar,Dim,Mode,Options>&
Don Gagne's avatar
Don Gagne committed
912
Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
LM's avatar
LM committed
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
{
  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  VectorType tmp = linear().col(0)*sy + linear().col(1);
  linear() << linear().col(0) + linear().col(1)*sx, tmp;
  return *this;
}

/** Applies on the left the shear transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \warning 2D only.
  * \sa shear()
  */
template<typename Scalar, int Dim, int Mode, int Options>
Transform<Scalar,Dim,Mode,Options>&
Don Gagne's avatar
Don Gagne committed
928
Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
LM's avatar
LM committed
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
{
  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
  return *this;
}

/******************************************************
*** Scaling, Translation and Rotation compatibility ***
******************************************************/

template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
{
  linear().setIdentity();
  translation() = t.vector();
  makeAffine();
  return *this;
}

template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
{
  Transform res = *this;
  res.translate(t.vector());
  return res;
}

template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
{
  m_matrix.setZero();
  linear().diagonal().fill(s.factor());
  makeAffine();
  return *this;
}

template<typename Scalar, int Dim, int Mode, int Options>
template<typename Derived>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
{
  linear() = internal::toRotationMatrix<Scalar,Dim>(r);
  translation().setZero();
  makeAffine();
  return *this;
}

template<typename Scalar, int Dim, int Mode, int Options>
template<typename Derived>
inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
{
  Transform res = *this;
  res.rotate(r.derived());
  return res;
}

/************************
*** Special functions ***
************************/

/** \returns the rotation part of the transformation
  *
  *
  * \svd_module
  *
  * \sa computeRotationScaling(), computeScalingRotation(), class SVD
  */
template<typename Scalar, int Dim, int Mode, int Options>
const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType
Transform<Scalar,Dim,Mode,Options>::rotation() const
{
  LinearMatrixType result;
  computeRotationScaling(&result, (LinearMatrixType*)0);
  return result;
}


/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
  * not necessarily positive.
  *
  * If either pointer is zero, the corresponding computation is skipped.
  *
  *
  *
  * \svd_module
  *
  * \sa computeScalingRotation(), rotation(), class SVD
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationMatrixType, typename ScalingMatrixType>
void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
{
  JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);

  Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
  VectorType sv(svd.singularValues());
  sv.coeffRef(0) *= x;
  if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint());
  if(rotation)
  {
    LinearMatrixType m(svd.matrixU());
    m.col(0) /= x;
    rotation->lazyAssign(m * svd.matrixV().adjoint());
  }
}

/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
  * not necessarily positive.
  *
  * If either pointer is zero, the corresponding computation is skipped.
  *
  *
  *
  * \svd_module
  *
  * \sa computeRotationScaling(), rotation(), class SVD
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename ScalingMatrixType, typename RotationMatrixType>
void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
{
  JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);

  Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
  VectorType sv(svd.singularValues());
  sv.coeffRef(0) *= x;
  if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint());
  if(rotation)
  {
    LinearMatrixType m(svd.matrixU());
    m.col(0) /= x;
    rotation->lazyAssign(m * svd.matrixV().adjoint());
  }
}

/** Convenient method to set \c *this from a position, orientation and scale
  * of a 3D object.
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
  const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
{
  linear() = internal::toRotationMatrix<Scalar,Dim>(orientation);
  linear() *= scale.asDiagonal();
  translation() = position;
  makeAffine();
  return *this;
}

namespace internal {

// selector needed to avoid taking the inverse of a 3x4 matrix
template<typename TransformType, int Mode=TransformType::Mode>
struct projective_transform_inverse
{
  static inline void run(const TransformType&, TransformType&)
  {}
};

template<typename TransformType>
struct projective_transform_inverse<TransformType, Projective>
{
  static inline void run(const TransformType& m, TransformType& res)
  {
    res.matrix() = m.matrix().inverse();
  }
};

} // end namespace internal


/**
  *
  * \returns the inverse transformation according to some given knowledge
  * on \c *this.
  *
  * \param hint allows to optimize the inversion process when the transformation
  * is known to be not a general transformation (optional). The possible values are:
  *  - #Projective if the transformation is not necessarily affine, i.e., if the
  *    last row is not guaranteed to be [0 ... 0 1]
  *  - #Affine if the last row can be assumed to be [0 ... 0 1]
  *  - #Isometry if the transformation is only a concatenations of translations
  *    and rotations.
  *  The default is the template class parameter \c Mode.
  *
  * \warning unless \a traits is always set to NoShear or NoScaling, this function
  * requires the generic inverse method of MatrixBase defined in the LU module. If
  * you forget to include this module, then you will get hard to debug linking errors.
  *
  * \sa MatrixBase::inverse()
  */
template<typename Scalar, int Dim, int Mode, int Options>
Transform<Scalar,Dim,Mode,Options>
Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const
{
  Transform res;
  if (hint == Projective)
  {
    internal::projective_transform_inverse<Transform>::run(*this, res);
  }
  else
  {
    if (hint == Isometry)
    {
      res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose();
    }
    else if(hint&Affine)
    {
      res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse();
    }
    else
    {
      eigen_assert(false && "Invalid transform traits in Transform::Inverse");
    }
    // translation and remaining parts
    res.matrix().template topRightCorner<Dim,1>()
      = - res.matrix().template topLeftCorner<Dim,Dim>() * translation();
    res.makeAffine(); // we do need this, because in the beginning res is uninitialized
  }
  return res;
}

namespace internal {

/*****************************************************
*** Specializations of take affine part            ***
*****************************************************/

template<typename TransformType> struct transform_take_affine_part {
  typedef typename TransformType::MatrixType MatrixType;
  typedef typename TransformType::AffinePart AffinePart;
  typedef typename TransformType::ConstAffinePart ConstAffinePart;
  static inline AffinePart run(MatrixType& m)
  { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
  static inline ConstAffinePart run(const MatrixType& m)
  { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
};

template<typename Scalar, int Dim, int Options>
struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > {
  typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType;
  static inline MatrixType& run(MatrixType& m) { return m; }
  static inline const MatrixType& run(const MatrixType& m) { return m; }
};

/*****************************************************
*** Specializations of construct from matrix       ***
*****************************************************/

template<typename Other, int Mode, int Options, int Dim, int HDim>
struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim>
{
  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
  {
    transform->linear() = other;
    transform->translation().setZero();
    transform->makeAffine();
  }
};

template<typename Other, int Mode, int Options, int Dim, int HDim>
struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim>
{
  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
  {
    transform->affine() = other;
    transform->makeAffine();
  }
};

template<typename Other, int Mode, int Options, int Dim, int HDim>
struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim>
{
  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
  { transform->matrix() = other; }
};

template<typename Other, int Options, int Dim, int HDim>
struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim>
{
  static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other)
  { transform->matrix() = other.template block<Dim,HDim>(0,0); }
};

/**********************************************************
***   Specializations of operator* with rhs EigenBase   ***
**********************************************************/

template<int LhsMode,int RhsMode>
struct transform_product_result
{
  enum 
  { 
    Mode =
      (LhsMode == (int)Projective    || RhsMode == (int)Projective    ) ? Projective :
      (LhsMode == (int)Affine        || RhsMode == (int)Affine        ) ? Affine :
      (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact :
      (LhsMode == (int)Isometry      || RhsMode == (int)Isometry      ) ? Isometry : Projective
  };
};

template< typename TransformType, typename MatrixType >
struct transform_right_product_impl< TransformType, MatrixType, 0 >
{
  typedef typename MatrixType::PlainObject ResultType;

Don Gagne's avatar
Don Gagne committed
1237
  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
LM's avatar
LM committed
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
  {
    return T.matrix() * other;
  }
};

template< typename TransformType, typename MatrixType >
struct transform_right_product_impl< TransformType, MatrixType, 1 >
{
  enum { 
    Dim = TransformType::Dim, 
    HDim = TransformType::HDim,
    OtherRows = MatrixType::RowsAtCompileTime,
    OtherCols = MatrixType::ColsAtCompileTime
  };

  typedef typename MatrixType::PlainObject ResultType;

Don Gagne's avatar
Don Gagne committed
1255
  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
LM's avatar
LM committed
1256 1257 1258
  {
    EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);

Don Gagne's avatar
Don Gagne committed
1259
    typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs;
LM's avatar
LM committed
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

    ResultType res(other.rows(),other.cols());
    TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
    res.row(OtherRows-1) = other.row(OtherRows-1);
    
    return res;
  }
};

template< typename TransformType, typename MatrixType >
struct transform_right_product_impl< TransformType, MatrixType, 2 >
{
  enum { 
    Dim = TransformType::Dim, 
    HDim = TransformType::HDim,
    OtherRows = MatrixType::RowsAtCompileTime,
    OtherCols = MatrixType::ColsAtCompileTime
  };

  typedef typename MatrixType::PlainObject ResultType;

Don Gagne's avatar
Don Gagne committed
1281
  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
LM's avatar
LM committed
1282 1283 1284
  {
    EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);

Don Gagne's avatar
Don Gagne committed
1285 1286 1287
    typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs;
    ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols()));
    TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other;
LM's avatar
LM committed
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

    return res;
  }
};

/**********************************************************
***   Specializations of operator* with lhs EigenBase   ***
**********************************************************/

// generic HDim x HDim matrix * T => Projective
template<typename Other,int Mode, int Options, int Dim, int HDim>
struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim>
{
  typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
  static ResultType run(const Other& other,const TransformType& tr)
  { return ResultType(other * tr.matrix()); }
};

// generic HDim x HDim matrix * AffineCompact => Projective
template<typename Other, int Options, int Dim, int HDim>
struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim>
{
  typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
  static ResultType run(const Other& other,const TransformType& tr)
  {
    ResultType res;
    res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix();
    res.matrix().col(Dim) += other.col(Dim);
    return res;
  }
};

// affine matrix * T
template<typename Other,int Mode, int Options, int Dim, int HDim>
struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim>
{
  typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef TransformType ResultType;
  static ResultType run(const Other& other,const TransformType& tr)
  {
    ResultType res;
    res.affine().noalias() = other * tr.matrix();
    res.matrix().row(Dim) = tr.matrix().row(Dim);
    return res;
  }
};

// affine matrix * AffineCompact
template<typename Other, int Options, int Dim, int HDim>
struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim>
{
  typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef TransformType ResultType;
  static ResultType run(const Other& other,const TransformType& tr)
  {
    ResultType res;
    res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix();
    res.translation() += other.col(Dim);
    return res;
  }
};

// linear matrix * T
template<typename Other,int Mode, int Options, int Dim, int HDim>
struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim>
{
  typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef TransformType ResultType;
  static ResultType run(const Other& other, const TransformType& tr)
  {
    TransformType res;
    if(Mode!=int(AffineCompact))
      res.matrix().row(Dim) = tr.matrix().row(Dim);
    res.matrix().template topRows<Dim>().noalias()
      = other * tr.matrix().template topRows<Dim>();
    return res;
  }
};

/**********************************************************
*** Specializations of operator* with another Transform ***
**********************************************************/

template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false >
{
  enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode };
  typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
  typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
  typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType;
  static ResultType run(const Lhs& lhs, const Rhs& rhs)
  {
    ResultType res;
    res.linear() = lhs.linear() * rhs.linear();
    res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
    res.makeAffine();
    return res;
  }
};

template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true >
{
  typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
  typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
  typedef Transform<Scalar,Dim,Projective> ResultType;
  static ResultType run(const Lhs& lhs, const Rhs& rhs)
  {
    return ResultType( lhs.matrix() * rhs.matrix() );
  }
};

Don Gagne's avatar
Don Gagne committed
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true >
{
  typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs;
  typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs;
  typedef Transform<Scalar,Dim,Projective> ResultType;
  static ResultType run(const Lhs& lhs, const Rhs& rhs)
  {
    ResultType res;
    res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix();
    res.matrix().row(Dim) = rhs.matrix().row(Dim);
    return res;
  }
};

template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true >
{
  typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs;
  typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs;
  typedef Transform<Scalar,Dim,Projective> ResultType;
  static ResultType run(const Lhs& lhs, const Rhs& rhs)
  {
    ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix());
    res.matrix().col(Dim) += lhs.matrix().col(Dim);
    return res;
  }
};

LM's avatar
LM committed
1436 1437
} // end namespace internal

Don Gagne's avatar
Don Gagne committed
1438 1439
} // end namespace Eigen

LM's avatar
LM committed
1440
#endif // EIGEN_TRANSFORM_H