OrthoMethods.h 8.12 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12 13

#ifndef EIGEN_ORTHOMETHODS_H
#define EIGEN_ORTHOMETHODS_H

Don Gagne's avatar
Don Gagne committed
14 15
namespace Eigen { 

LM's avatar
LM committed
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/** \geometry_module
  *
  * \returns the cross product of \c *this and \a other
  *
  * Here is a very good explanation of cross-product: http://xkcd.com/199/
  * \sa MatrixBase::cross3()
  */
template<typename Derived>
template<typename OtherDerived>
inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type
MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3)
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)

  // Note that there is no need for an expression here since the compiler
  // optimize such a small temporary very well (even within a complex expression)
Don Gagne's avatar
Don Gagne committed
33 34
  typename internal::nested<Derived,2>::type lhs(derived());
  typename internal::nested<OtherDerived,2>::type rhs(other.derived());
LM's avatar
LM committed
35
  return typename cross_product_return_type<OtherDerived>::type(
Don Gagne's avatar
Don Gagne committed
36 37 38
    numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
    numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
    numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0))
LM's avatar
LM committed
39 40 41 42 43 44 45
  );
}

namespace internal {

template< int Arch,typename VectorLhs,typename VectorRhs,
          typename Scalar = typename VectorLhs::Scalar,
Don Gagne's avatar
Don Gagne committed
46
          bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)>
LM's avatar
LM committed
47
struct cross3_impl {
Don Gagne's avatar
Don Gagne committed
48
  static inline typename internal::plain_matrix_type<VectorLhs>::type
LM's avatar
LM committed
49 50 51
  run(const VectorLhs& lhs, const VectorRhs& rhs)
  {
    return typename internal::plain_matrix_type<VectorLhs>::type(
Don Gagne's avatar
Don Gagne committed
52 53 54
      numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
      numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
      numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)),
LM's avatar
LM committed
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
      0
    );
  }
};

}

/** \geometry_module
  *
  * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients
  *
  * The size of \c *this and \a other must be four. This function is especially useful
  * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
  *
  * \sa MatrixBase::cross()
  */
template<typename Derived>
template<typename OtherDerived>
inline typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4)
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4)

  typedef typename internal::nested<Derived,2>::type DerivedNested;
  typedef typename internal::nested<OtherDerived,2>::type OtherDerivedNested;
Don Gagne's avatar
Don Gagne committed
81 82
  DerivedNested lhs(derived());
  OtherDerivedNested rhs(other.derived());
LM's avatar
LM committed
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

  return internal::cross3_impl<Architecture::Target,
                        typename internal::remove_all<DerivedNested>::type,
                        typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs);
}

/** \returns a matrix expression of the cross product of each column or row
  * of the referenced expression with the \a other vector.
  *
  * The referenced matrix must have one dimension equal to 3.
  * The result matrix has the same dimensions than the referenced one.
  *
  * \geometry_module
  *
  * \sa MatrixBase::cross() */
template<typename ExpressionType, int Direction>
template<typename OtherDerived>
const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType
VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

  CrossReturnType res(_expression().rows(),_expression().cols());
  if(Direction==Vertical)
  {
    eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows");
    res.row(0) = (_expression().row(1) * other.coeff(2) - _expression().row(2) * other.coeff(1)).conjugate();
    res.row(1) = (_expression().row(2) * other.coeff(0) - _expression().row(0) * other.coeff(2)).conjugate();
    res.row(2) = (_expression().row(0) * other.coeff(1) - _expression().row(1) * other.coeff(0)).conjugate();
  }
  else
  {
    eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns");
    res.col(0) = (_expression().col(1) * other.coeff(2) - _expression().col(2) * other.coeff(1)).conjugate();
    res.col(1) = (_expression().col(2) * other.coeff(0) - _expression().col(0) * other.coeff(2)).conjugate();
    res.col(2) = (_expression().col(0) * other.coeff(1) - _expression().col(1) * other.coeff(0)).conjugate();
  }
  return res;
}

namespace internal {

template<typename Derived, int Size = Derived::SizeAtCompileTime>
struct unitOrthogonal_selector
{
  typedef typename plain_matrix_type<Derived>::type VectorType;
  typedef typename traits<Derived>::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef typename Derived::Index Index;
  typedef Matrix<Scalar,2,1> Vector2;
Don Gagne's avatar
Don Gagne committed
135
  static inline VectorType run(const Derived& src)
LM's avatar
LM committed
136 137 138 139 140 141 142 143
  {
    VectorType perp = VectorType::Zero(src.size());
    Index maxi = 0;
    Index sndi = 0;
    src.cwiseAbs().maxCoeff(&maxi);
    if (maxi==0)
      sndi = 1;
    RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm();
Don Gagne's avatar
Don Gagne committed
144 145
    perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm;
    perp.coeffRef(sndi) =  numext::conj(src.coeff(maxi)) * invnm;
LM's avatar
LM committed
146 147 148 149 150 151 152 153 154 155 156

    return perp;
   }
};

template<typename Derived>
struct unitOrthogonal_selector<Derived,3>
{
  typedef typename plain_matrix_type<Derived>::type VectorType;
  typedef typename traits<Derived>::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
Don Gagne's avatar
Don Gagne committed
157
  static inline VectorType run(const Derived& src)
LM's avatar
LM committed
158 159 160 161 162 163 164 165 166 167 168 169 170
  {
    VectorType perp;
    /* Let us compute the crossed product of *this with a vector
     * that is not too close to being colinear to *this.
     */

    /* unless the x and y coords are both close to zero, we can
     * simply take ( -y, x, 0 ) and normalize it.
     */
    if((!isMuchSmallerThan(src.x(), src.z()))
    || (!isMuchSmallerThan(src.y(), src.z())))
    {
      RealScalar invnm = RealScalar(1)/src.template head<2>().norm();
Don Gagne's avatar
Don Gagne committed
171 172
      perp.coeffRef(0) = -numext::conj(src.y())*invnm;
      perp.coeffRef(1) = numext::conj(src.x())*invnm;
LM's avatar
LM committed
173 174 175 176 177 178 179 180 181 182
      perp.coeffRef(2) = 0;
    }
    /* if both x and y are close to zero, then the vector is close
     * to the z-axis, so it's far from colinear to the x-axis for instance.
     * So we take the crossed product with (1,0,0) and normalize it.
     */
    else
    {
      RealScalar invnm = RealScalar(1)/src.template tail<2>().norm();
      perp.coeffRef(0) = 0;
Don Gagne's avatar
Don Gagne committed
183 184
      perp.coeffRef(1) = -numext::conj(src.z())*invnm;
      perp.coeffRef(2) = numext::conj(src.y())*invnm;
LM's avatar
LM committed
185 186 187 188 189 190 191 192 193 194
    }

    return perp;
   }
};

template<typename Derived>
struct unitOrthogonal_selector<Derived,2>
{
  typedef typename plain_matrix_type<Derived>::type VectorType;
Don Gagne's avatar
Don Gagne committed
195 196
  static inline VectorType run(const Derived& src)
  { return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); }
LM's avatar
LM committed
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
};

} // end namespace internal

/** \returns a unit vector which is orthogonal to \c *this
  *
  * The size of \c *this must be at least 2. If the size is exactly 2,
  * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized().
  *
  * \sa cross()
  */
template<typename Derived>
typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::unitOrthogonal() const
{
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
  return internal::unitOrthogonal_selector<Derived>::run(derived());
}

Don Gagne's avatar
Don Gagne committed
216 217
} // end namespace Eigen

LM's avatar
LM committed
218
#endif // EIGEN_ORTHOMETHODS_H