SelfAdjointEigenSolver.h 29 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12 13 14 15

#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
#define EIGEN_SELFADJOINTEIGENSOLVER_H

#include "./Tridiagonalization.h"

Don Gagne's avatar
Don Gagne committed
16 17
namespace Eigen { 

LM's avatar
LM committed
18 19 20
template<typename _MatrixType>
class GeneralizedSelfAdjointEigenSolver;

Don Gagne's avatar
Don Gagne committed
21 22 23 24
namespace internal {
template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
}

LM's avatar
LM committed
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \class SelfAdjointEigenSolver
  *
  * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
  *
  * \tparam _MatrixType the type of the matrix of which we are computing the
  * eigendecomposition; this is expected to be an instantiation of the Matrix
  * class template.
  *
  * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
  * matrices, this means that the matrix is symmetric: it equals its
  * transpose. This class computes the eigenvalues and eigenvectors of a
  * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
  * \f$ v \f$ such that \f$ Av = \lambda v \f$.  The eigenvalues of a
  * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
  * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
  * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint
  * matrices, the matrix \f$ V \f$ is always invertible). This is called the
  * eigendecomposition.
  *
  * The algorithm exploits the fact that the matrix is selfadjoint, making it
  * faster and more accurate than the general purpose eigenvalue algorithms
  * implemented in EigenSolver and ComplexEigenSolver.
  *
  * Only the \b lower \b triangular \b part of the input matrix is referenced.
  *
  * Call the function compute() to compute the eigenvalues and eigenvectors of
  * a given matrix. Alternatively, you can use the
  * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
  * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
  * and eigenvectors are computed, they can be retrieved with the eigenvalues()
  * and eigenvectors() functions.
  *
  * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
  * contains an example of the typical use of this class.
  *
  * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
  * the likes, see the class GeneralizedSelfAdjointEigenSolver.
  *
  * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
  */
template<typename _MatrixType> class SelfAdjointEigenSolver
{
  public:

    typedef _MatrixType MatrixType;
    enum {
      Size = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
Don Gagne's avatar
Don Gagne committed
79
    
LM's avatar
LM committed
80 81 82 83 84 85 86 87 88 89 90
    /** \brief Scalar type for matrices of type \p _MatrixType. */
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::Index Index;

    /** \brief Real scalar type for \p _MatrixType.
      *
      * This is just \c Scalar if #Scalar is real (e.g., \c float or
      * \c double), and the type of the real part of \c Scalar if #Scalar is
      * complex.
      */
    typedef typename NumTraits<Scalar>::Real RealScalar;
Don Gagne's avatar
Don Gagne committed
91 92
    
    friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
LM's avatar
LM committed
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    /** \brief Type for vector of eigenvalues as returned by eigenvalues().
      *
      * This is a column vector with entries of type #RealScalar.
      * The length of the vector is the size of \p _MatrixType.
      */
    typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
    typedef Tridiagonalization<MatrixType> TridiagonalizationType;

    /** \brief Default constructor for fixed-size matrices.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via compute(). This constructor
      * can only be used if \p _MatrixType is a fixed-size matrix; use
      * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
      *
      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
      */
    SelfAdjointEigenSolver()
        : m_eivec(),
          m_eivalues(),
          m_subdiag(),
          m_isInitialized(false)
    { }

    /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
      *
      * \param [in]  size  Positive integer, size of the matrix whose
      * eigenvalues and eigenvectors will be computed.
      *
      * This constructor is useful for dynamic-size matrices, when the user
      * intends to perform decompositions via compute(). The \p size
      * parameter is only used as a hint. It is not an error to give a wrong
      * \p size, but it may impair performance.
      *
      * \sa compute() for an example
      */
    SelfAdjointEigenSolver(Index size)
        : m_eivec(size, size),
          m_eivalues(size),
          m_subdiag(size > 1 ? size - 1 : 1),
          m_isInitialized(false)
    {}

    /** \brief Constructor; computes eigendecomposition of given matrix.
      *
      * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to
      *    be computed. Only the lower triangular part of the matrix is referenced.
      * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
      *
      * This constructor calls compute(const MatrixType&, int) to compute the
      * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
      * \p options equals #ComputeEigenvectors.
      *
      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
      *
      * \sa compute(const MatrixType&, int)
      */
    SelfAdjointEigenSolver(const MatrixType& matrix, int options = ComputeEigenvectors)
      : m_eivec(matrix.rows(), matrix.cols()),
        m_eivalues(matrix.cols()),
        m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
        m_isInitialized(false)
    {
      compute(matrix, options);
    }

    /** \brief Computes eigendecomposition of given matrix.
      *
      * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to
      *    be computed. Only the lower triangular part of the matrix is referenced.
      * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
      * \returns    Reference to \c *this
      *
      * This function computes the eigenvalues of \p matrix.  The eigenvalues()
      * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors,
      * then the eigenvectors are also computed and can be retrieved by
      * calling eigenvectors().
      *
      * This implementation uses a symmetric QR algorithm. The matrix is first
      * reduced to tridiagonal form using the Tridiagonalization class. The
      * tridiagonal matrix is then brought to diagonal form with implicit
      * symmetric QR steps with Wilkinson shift. Details can be found in
      * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
      *
      * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
      * are required and \f$ 4n^3/3 \f$ if they are not required.
      *
      * This method reuses the memory in the SelfAdjointEigenSolver object that
      * was allocated when the object was constructed, if the size of the
      * matrix does not change.
      *
      * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
      *
      * \sa SelfAdjointEigenSolver(const MatrixType&, int)
      */
    SelfAdjointEigenSolver& compute(const MatrixType& matrix, int options = ComputeEigenvectors);
Don Gagne's avatar
Don Gagne committed
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    
    /** \brief Computes eigendecomposition of given matrix using a direct algorithm
      *
      * This is a variant of compute(const MatrixType&, int options) which
      * directly solves the underlying polynomial equation.
      * 
      * Currently only 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
      * 
      * This method is usually significantly faster than the QR algorithm
      * but it might also be less accurate. It is also worth noting that
      * for 3x3 matrices it involves trigonometric operations which are
      * not necessarily available for all scalar types.
      *
      * \sa compute(const MatrixType&, int options)
      */
    SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
LM's avatar
LM committed
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

    /** \brief Returns the eigenvectors of given matrix.
      *
      * \returns  A const reference to the matrix whose columns are the eigenvectors.
      *
      * \pre The eigenvectors have been computed before.
      *
      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
      * eigenvectors are normalized to have (Euclidean) norm equal to one. If
      * this object was used to solve the eigenproblem for the selfadjoint
      * matrix \f$ A \f$, then the matrix returned by this function is the
      * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
      *
      * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
      *
      * \sa eigenvalues()
      */
    const MatrixType& eigenvectors() const
    {
      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
      return m_eivec;
    }

    /** \brief Returns the eigenvalues of given matrix.
      *
      * \returns A const reference to the column vector containing the eigenvalues.
      *
      * \pre The eigenvalues have been computed before.
      *
      * The eigenvalues are repeated according to their algebraic multiplicity,
      * so there are as many eigenvalues as rows in the matrix. The eigenvalues
      * are sorted in increasing order.
      *
      * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
      *
      * \sa eigenvectors(), MatrixBase::eigenvalues()
      */
    const RealVectorType& eigenvalues() const
    {
      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
      return m_eivalues;
    }

    /** \brief Computes the positive-definite square root of the matrix.
      *
      * \returns the positive-definite square root of the matrix
      *
      * \pre The eigenvalues and eigenvectors of a positive-definite matrix
      * have been computed before.
      *
      * The square root of a positive-definite matrix \f$ A \f$ is the
      * positive-definite matrix whose square equals \f$ A \f$. This function
      * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
      * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
      *
      * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
      *
      * \sa operatorInverseSqrt(),
      *     \ref MatrixFunctions_Module "MatrixFunctions Module"
      */
    MatrixType operatorSqrt() const
    {
      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
      return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
    }

    /** \brief Computes the inverse square root of the matrix.
      *
      * \returns the inverse positive-definite square root of the matrix
      *
      * \pre The eigenvalues and eigenvectors of a positive-definite matrix
      * have been computed before.
      *
      * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
      * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
      * cheaper than first computing the square root with operatorSqrt() and
      * then its inverse with MatrixBase::inverse().
      *
      * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
      *
      * \sa operatorSqrt(), MatrixBase::inverse(),
      *     \ref MatrixFunctions_Module "MatrixFunctions Module"
      */
    MatrixType operatorInverseSqrt() const
    {
      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
      return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
    }

    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
      return m_info;
    }

    /** \brief Maximum number of iterations.
      *
Don Gagne's avatar
Don Gagne committed
318 319
      * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
      * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
LM's avatar
LM committed
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
      */
    static const int m_maxIterations = 30;

    #ifdef EIGEN2_SUPPORT
    SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors)
      : m_eivec(matrix.rows(), matrix.cols()),
        m_eivalues(matrix.cols()),
        m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
        m_isInitialized(false)
    {
      compute(matrix, computeEigenvectors);
    }
    
    SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
        : m_eivec(matA.cols(), matA.cols()),
          m_eivalues(matA.cols()),
          m_subdiag(matA.cols() > 1 ? matA.cols() - 1 : 1),
          m_isInitialized(false)
    {
      static_cast<GeneralizedSelfAdjointEigenSolver<MatrixType>*>(this)->compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
    }
    
    void compute(const MatrixType& matrix, bool computeEigenvectors)
    {
      compute(matrix, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
    }

    void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
    {
      compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
    }
    #endif // EIGEN2_SUPPORT

  protected:
    MatrixType m_eivec;
    RealVectorType m_eivalues;
    typename TridiagonalizationType::SubDiagonalType m_subdiag;
    ComputationInfo m_info;
    bool m_isInitialized;
    bool m_eigenvectorsOk;
};

/** \internal
  *
  * \eigenvalues_module \ingroup Eigenvalues_Module
  *
  * Performs a QR step on a tridiagonal symmetric matrix represented as a
  * pair of two vectors \a diag and \a subdiag.
  *
  * \param matA the input selfadjoint matrix
  * \param hCoeffs returned Householder coefficients
  *
  * For compilation efficiency reasons, this procedure does not use eigen expression
  * for its arguments.
  *
  * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
  * "implicit symmetric QR step with Wilkinson shift"
  */
namespace internal {
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
}

template<typename MatrixType>
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
::compute(const MatrixType& matrix, int options)
{
Don Gagne's avatar
Don Gagne committed
387
  using std::abs;
LM's avatar
LM committed
388 389 390 391 392 393 394 395 396 397
  eigen_assert(matrix.cols() == matrix.rows());
  eigen_assert((options&~(EigVecMask|GenEigMask))==0
          && (options&EigVecMask)!=EigVecMask
          && "invalid option parameter");
  bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
  Index n = matrix.cols();
  m_eivalues.resize(n,1);

  if(n==1)
  {
Don Gagne's avatar
Don Gagne committed
398
    m_eivalues.coeffRef(0,0) = numext::real(matrix.coeff(0,0));
LM's avatar
LM committed
399
    if(computeEigenvectors)
Don Gagne's avatar
Don Gagne committed
400
      m_eivec.setOnes(n,n);
LM's avatar
LM committed
401 402 403 404 405 406 407 408 409 410 411
    m_info = Success;
    m_isInitialized = true;
    m_eigenvectorsOk = computeEigenvectors;
    return *this;
  }

  // declare some aliases
  RealVectorType& diag = m_eivalues;
  MatrixType& mat = m_eivec;

  // map the matrix coefficients to [-1:1] to avoid over- and underflow.
Don Gagne's avatar
Don Gagne committed
412 413 414 415
  mat = matrix.template triangularView<Lower>();
  RealScalar scale = mat.cwiseAbs().maxCoeff();
  if(scale==RealScalar(0)) scale = RealScalar(1);
  mat.template triangularView<Lower>() /= scale;
LM's avatar
LM committed
416 417 418 419 420
  m_subdiag.resize(n-1);
  internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors);
  
  Index end = n-1;
  Index start = 0;
Don Gagne's avatar
Don Gagne committed
421
  Index iter = 0; // total number of iterations
LM's avatar
LM committed
422 423 424 425

  while (end>0)
  {
    for (Index i = start; i<end; ++i)
Don Gagne's avatar
Don Gagne committed
426
      if (internal::isMuchSmallerThan(abs(m_subdiag[i]),(abs(diag[i])+abs(diag[i+1]))))
LM's avatar
LM committed
427 428 429 430 431 432 433 434 435 436
        m_subdiag[i] = 0;

    // find the largest unreduced block
    while (end>0 && m_subdiag[end-1]==0)
    {
      end--;
    }
    if (end<=0)
      break;

Don Gagne's avatar
Don Gagne committed
437
    // if we spent too many iterations, we give up
LM's avatar
LM committed
438
    iter++;
Don Gagne's avatar
Don Gagne committed
439
    if(iter > m_maxIterations * n) break;
LM's avatar
LM committed
440 441 442 443 444 445 446 447

    start = end - 1;
    while (start>0 && m_subdiag[start-1]!=0)
      start--;

    internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
  }

Don Gagne's avatar
Don Gagne committed
448
  if (iter <= m_maxIterations * n)
LM's avatar
LM committed
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    m_info = Success;
  else
    m_info = NoConvergence;

  // Sort eigenvalues and corresponding vectors.
  // TODO make the sort optional ?
  // TODO use a better sort algorithm !!
  if (m_info == Success)
  {
    for (Index i = 0; i < n-1; ++i)
    {
      Index k;
      m_eivalues.segment(i,n-i).minCoeff(&k);
      if (k > 0)
      {
        std::swap(m_eivalues[i], m_eivalues[k+i]);
        if(computeEigenvectors)
          m_eivec.col(i).swap(m_eivec.col(k+i));
      }
    }
  }
  
  // scale back the eigen values
  m_eivalues *= scale;

  m_isInitialized = true;
  m_eigenvectorsOk = computeEigenvectors;
  return *this;
}

Don Gagne's avatar
Don Gagne committed
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

namespace internal {
  
template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
{
  static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
  { eig.compute(A,options); }
};

template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
{
  typedef typename SolverType::MatrixType MatrixType;
  typedef typename SolverType::RealVectorType VectorType;
  typedef typename SolverType::Scalar Scalar;
  
  static inline void computeRoots(const MatrixType& m, VectorType& roots)
  {
    using std::sqrt;
    using std::atan2;
    using std::cos;
    using std::sin;
    const Scalar s_inv3 = Scalar(1.0)/Scalar(3.0);
    const Scalar s_sqrt3 = sqrt(Scalar(3.0));

    // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The
    // eigenvalues are the roots to this equation, all guaranteed to be
    // real-valued, because the matrix is symmetric.
    Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
    Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
    Scalar c2 = m(0,0) + m(1,1) + m(2,2);

    // Construct the parameters used in classifying the roots of the equation
    // and in solving the equation for the roots in closed form.
    Scalar c2_over_3 = c2*s_inv3;
    Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
    if (a_over_3 > Scalar(0))
      a_over_3 = Scalar(0);

    Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));

    Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
    if (q > Scalar(0))
      q = Scalar(0);

    // Compute the eigenvalues by solving for the roots of the polynomial.
    Scalar rho = sqrt(-a_over_3);
    Scalar theta = atan2(sqrt(-q),half_b)*s_inv3;
    Scalar cos_theta = cos(theta);
    Scalar sin_theta = sin(theta);
    roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
    roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
    roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);

    // Sort in increasing order.
    if (roots(0) >= roots(1))
      std::swap(roots(0),roots(1));
    if (roots(1) >= roots(2))
    {
      std::swap(roots(1),roots(2));
      if (roots(0) >= roots(1))
        std::swap(roots(0),roots(1));
    }
  }
  
  static inline void run(SolverType& solver, const MatrixType& mat, int options)
  {
    using std::sqrt;
    eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
    eigen_assert((options&~(EigVecMask|GenEigMask))==0
            && (options&EigVecMask)!=EigVecMask
            && "invalid option parameter");
    bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
    
    MatrixType& eivecs = solver.m_eivec;
    VectorType& eivals = solver.m_eivalues;
  
    // map the matrix coefficients to [-1:1] to avoid over- and underflow.
    Scalar scale = mat.cwiseAbs().maxCoeff();
    MatrixType scaledMat = mat / scale;

    // compute the eigenvalues
    computeRoots(scaledMat,eivals);

    // compute the eigen vectors
    if(computeEigenvectors)
    {
      Scalar safeNorm2 = Eigen::NumTraits<Scalar>::epsilon();
      safeNorm2 *= safeNorm2;
      if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
      {
        eivecs.setIdentity();
      }
      else
      {
        scaledMat = scaledMat.template selfadjointView<Lower>();
        MatrixType tmp;
        tmp = scaledMat;

        Scalar d0 = eivals(2) - eivals(1);
        Scalar d1 = eivals(1) - eivals(0);
        int k =  d0 > d1 ? 2 : 0;
        d0 = d0 > d1 ? d1 : d0;

        tmp.diagonal().array () -= eivals(k);
        VectorType cross;
        Scalar n;
        n = (cross = tmp.row(0).cross(tmp.row(1))).squaredNorm();

        if(n>safeNorm2)
          eivecs.col(k) = cross / sqrt(n);
        else
        {
          n = (cross = tmp.row(0).cross(tmp.row(2))).squaredNorm();

          if(n>safeNorm2)
            eivecs.col(k) = cross / sqrt(n);
          else
          {
            n = (cross = tmp.row(1).cross(tmp.row(2))).squaredNorm();

            if(n>safeNorm2)
              eivecs.col(k) = cross / sqrt(n);
            else
            {
              // the input matrix and/or the eigenvaues probably contains some inf/NaN,
              // => exit
              // scale back to the original size.
              eivals *= scale;

              solver.m_info = NumericalIssue;
              solver.m_isInitialized = true;
              solver.m_eigenvectorsOk = computeEigenvectors;
              return;
            }
          }
        }

        tmp = scaledMat;
        tmp.diagonal().array() -= eivals(1);

        if(d0<=Eigen::NumTraits<Scalar>::epsilon())
          eivecs.col(1) = eivecs.col(k).unitOrthogonal();
        else
        {
          n = (cross = eivecs.col(k).cross(tmp.row(0).normalized())).squaredNorm();
          if(n>safeNorm2)
            eivecs.col(1) = cross / sqrt(n);
          else
          {
            n = (cross = eivecs.col(k).cross(tmp.row(1))).squaredNorm();
            if(n>safeNorm2)
              eivecs.col(1) = cross / sqrt(n);
            else
            {
              n = (cross = eivecs.col(k).cross(tmp.row(2))).squaredNorm();
              if(n>safeNorm2)
                eivecs.col(1) = cross / sqrt(n);
              else
              {
                // we should never reach this point,
                // if so the last two eigenvalues are likely to ve very closed to each other
                eivecs.col(1) = eivecs.col(k).unitOrthogonal();
              }
            }
          }

          // make sure that eivecs[1] is orthogonal to eivecs[2]
          Scalar d = eivecs.col(1).dot(eivecs.col(k));
          eivecs.col(1) = (eivecs.col(1) - d * eivecs.col(k)).normalized();
        }

        eivecs.col(k==2 ? 0 : 2) = eivecs.col(k).cross(eivecs.col(1)).normalized();
      }
    }
    // Rescale back to the original size.
    eivals *= scale;
    
    solver.m_info = Success;
    solver.m_isInitialized = true;
    solver.m_eigenvectorsOk = computeEigenvectors;
  }
};

// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2,false>
{
  typedef typename SolverType::MatrixType MatrixType;
  typedef typename SolverType::RealVectorType VectorType;
  typedef typename SolverType::Scalar Scalar;
  
  static inline void computeRoots(const MatrixType& m, VectorType& roots)
  {
    using std::sqrt;
    const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*m(1,0)*m(1,0));
    const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
    roots(0) = t1 - t0;
    roots(1) = t1 + t0;
  }
  
  static inline void run(SolverType& solver, const MatrixType& mat, int options)
  {
    using std::sqrt;
    eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
    eigen_assert((options&~(EigVecMask|GenEigMask))==0
            && (options&EigVecMask)!=EigVecMask
            && "invalid option parameter");
    bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
    
    MatrixType& eivecs = solver.m_eivec;
    VectorType& eivals = solver.m_eivalues;
  
    // map the matrix coefficients to [-1:1] to avoid over- and underflow.
    Scalar scale = mat.cwiseAbs().maxCoeff();
    scale = (std::max)(scale,Scalar(1));
    MatrixType scaledMat = mat / scale;
    
    // Compute the eigenvalues
    computeRoots(scaledMat,eivals);
    
    // compute the eigen vectors
    if(computeEigenvectors)
    {
      scaledMat.diagonal().array () -= eivals(1);
      Scalar a2 = numext::abs2(scaledMat(0,0));
      Scalar c2 = numext::abs2(scaledMat(1,1));
      Scalar b2 = numext::abs2(scaledMat(1,0));
      if(a2>c2)
      {
        eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
        eivecs.col(1) /= sqrt(a2+b2);
      }
      else
      {
        eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
        eivecs.col(1) /= sqrt(c2+b2);
      }

      eivecs.col(0) << eivecs.col(1).unitOrthogonal();
    }
    
    // Rescale back to the original size.
    eivals *= scale;
    
    solver.m_info = Success;
    solver.m_isInitialized = true;
    solver.m_eigenvectorsOk = computeEigenvectors;
  }
};

}

template<typename MatrixType>
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
::computeDirect(const MatrixType& matrix, int options)
{
  internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
  return *this;
}

LM's avatar
LM committed
738 739 740 741
namespace internal {
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
{
Don Gagne's avatar
Don Gagne committed
742
  using std::abs;
LM's avatar
LM committed
743
  RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
Don Gagne's avatar
Don Gagne committed
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
  RealScalar e = subdiag[end-1];
  // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
  // underflow thus leading to inf/NaN values when using the following commented code:
//   RealScalar e2 = numext::abs2(subdiag[end-1]);
//   RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
  // This explain the following, somewhat more complicated, version:
  RealScalar mu = diag[end];
  if(td==0)
    mu -= abs(e);
  else
  {
    RealScalar e2 = numext::abs2(subdiag[end-1]);
    RealScalar h = numext::hypot(td,e);
    if(e2==0)  mu -= (e / (td + (td>0 ? 1 : -1))) * (e / h);
    else       mu -= e2 / (td + (td>0 ? h : -h));
  }
  
LM's avatar
LM committed
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
  RealScalar x = diag[start] - mu;
  RealScalar z = subdiag[start];
  for (Index k = start; k < end; ++k)
  {
    JacobiRotation<RealScalar> rot;
    rot.makeGivens(x, z);

    // do T = G' T G
    RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
    RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];

    diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
    diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
    subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
    

    if (k > start)
      subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;

    x = subdiag[k];

    if (k < end - 1)
    {
      z = -rot.s() * subdiag[k+1];
      subdiag[k + 1] = rot.c() * subdiag[k+1];
    }
    
    // apply the givens rotation to the unit matrix Q = Q * G
    if (matrixQ)
    {
      // FIXME if StorageOrder == RowMajor this operation is not very efficient
      Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
      q.applyOnTheRight(k,k+1,rot);
    }
  }
}
Don Gagne's avatar
Don Gagne committed
797

LM's avatar
LM committed
798 799
} // end namespace internal

Don Gagne's avatar
Don Gagne committed
800 801
} // end namespace Eigen

LM's avatar
LM committed
802
#endif // EIGEN_SELFADJOINTEIGENSOLVER_H