RealSchur.h 19.3 KB
Newer Older
LM's avatar
LM committed
1 2 3 4
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
Don Gagne's avatar
Don Gagne committed
5
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
LM's avatar
LM committed
6
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12 13 14 15

#ifndef EIGEN_REAL_SCHUR_H
#define EIGEN_REAL_SCHUR_H

#include "./HessenbergDecomposition.h"

Don Gagne's avatar
Don Gagne committed
16 17
namespace Eigen { 

LM's avatar
LM committed
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \class RealSchur
  *
  * \brief Performs a real Schur decomposition of a square matrix
  *
  * \tparam _MatrixType the type of the matrix of which we are computing the
  * real Schur decomposition; this is expected to be an instantiation of the
  * Matrix class template.
  *
  * Given a real square matrix A, this class computes the real Schur
  * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
  * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
  * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
  * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
  * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
  * blocks on the diagonal of T are the same as the eigenvalues of the matrix
  * A, and thus the real Schur decomposition is used in EigenSolver to compute
  * the eigendecomposition of a matrix.
  *
  * Call the function compute() to compute the real Schur decomposition of a
  * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
  * constructor which computes the real Schur decomposition at construction
  * time. Once the decomposition is computed, you can use the matrixU() and
  * matrixT() functions to retrieve the matrices U and T in the decomposition.
  *
  * The documentation of RealSchur(const MatrixType&, bool) contains an example
  * of the typical use of this class.
  *
  * \note The implementation is adapted from
  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
  * Their code is based on EISPACK.
  *
  * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
  */
template<typename _MatrixType> class RealSchur
{
  public:
    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
    typedef typename MatrixType::Index Index;

    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;

    /** \brief Default constructor.
      *
      * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via compute().  The \p size parameter is only
      * used as a hint. It is not an error to give a wrong \p size, but it may
      * impair performance.
      *
      * \sa compute() for an example.
      */
    RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
            : m_matT(size, size),
              m_matU(size, size),
              m_workspaceVector(size),
              m_hess(size),
              m_isInitialized(false),
Don Gagne's avatar
Don Gagne committed
89 90
              m_matUisUptodate(false),
              m_maxIters(-1)
LM's avatar
LM committed
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    { }

    /** \brief Constructor; computes real Schur decomposition of given matrix. 
      * 
      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
      *
      * This constructor calls compute() to compute the Schur decomposition.
      *
      * Example: \include RealSchur_RealSchur_MatrixType.cpp
      * Output: \verbinclude RealSchur_RealSchur_MatrixType.out
      */
    RealSchur(const MatrixType& matrix, bool computeU = true)
            : m_matT(matrix.rows(),matrix.cols()),
              m_matU(matrix.rows(),matrix.cols()),
              m_workspaceVector(matrix.rows()),
              m_hess(matrix.rows()),
              m_isInitialized(false),
Don Gagne's avatar
Don Gagne committed
109 110
              m_matUisUptodate(false),
              m_maxIters(-1)
LM's avatar
LM committed
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    {
      compute(matrix, computeU);
    }

    /** \brief Returns the orthogonal matrix in the Schur decomposition. 
      *
      * \returns A const reference to the matrix U.
      *
      * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
      * member function compute(const MatrixType&, bool) has been called before
      * to compute the Schur decomposition of a matrix, and \p computeU was set
      * to true (the default value).
      *
      * \sa RealSchur(const MatrixType&, bool) for an example
      */
    const MatrixType& matrixU() const
    {
      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
      eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
      return m_matU;
    }

    /** \brief Returns the quasi-triangular matrix in the Schur decomposition. 
      *
      * \returns A const reference to the matrix T.
      *
      * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
      * member function compute(const MatrixType&, bool) has been called before
      * to compute the Schur decomposition of a matrix.
      *
      * \sa RealSchur(const MatrixType&, bool) for an example
      */
    const MatrixType& matrixT() const
    {
      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
      return m_matT;
    }
  
    /** \brief Computes Schur decomposition of given matrix. 
      * 
      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
      * \returns    Reference to \c *this
      *
      * The Schur decomposition is computed by first reducing the matrix to
      * Hessenberg form using the class HessenbergDecomposition. The Hessenberg
      * matrix is then reduced to triangular form by performing Francis QR
      * iterations with implicit double shift. The cost of computing the Schur
      * decomposition depends on the number of iterations; as a rough guide, it
      * may be taken to be \f$25n^3\f$ flops if \a computeU is true and
      * \f$10n^3\f$ flops if \a computeU is false.
      *
      * Example: \include RealSchur_compute.cpp
      * Output: \verbinclude RealSchur_compute.out
Don Gagne's avatar
Don Gagne committed
165 166
      *
      * \sa compute(const MatrixType&, bool, Index)
LM's avatar
LM committed
167 168 169
      */
    RealSchur& compute(const MatrixType& matrix, bool computeU = true);

Don Gagne's avatar
Don Gagne committed
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
     *  \param[in] matrixH Matrix in Hessenberg form H
     *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
     *  \param computeU Computes the matriX U of the Schur vectors
     * \return Reference to \c *this
     * 
     *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
     *  using either the class HessenbergDecomposition or another mean. 
     *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
     *  When computeU is true, this routine computes the matrix U such that 
     *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
     * 
     * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
     * is not available, the user should give an identity matrix (Q.setIdentity())
     * 
     * \sa compute(const MatrixType&, bool)
     */
    template<typename HessMatrixType, typename OrthMatrixType>
    RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU);
LM's avatar
LM committed
189 190 191 192 193 194 195 196 197 198
    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
      return m_info;
    }

Don Gagne's avatar
Don Gagne committed
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    /** \brief Sets the maximum number of iterations allowed. 
      *
      * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
      * of the matrix.
      */
    RealSchur& setMaxIterations(Index maxIters)
    {
      m_maxIters = maxIters;
      return *this;
    }

    /** \brief Returns the maximum number of iterations. */
    Index getMaxIterations()
    {
      return m_maxIters;
    }

    /** \brief Maximum number of iterations per row.
LM's avatar
LM committed
217
      *
Don Gagne's avatar
Don Gagne committed
218 219
      * If not otherwise specified, the maximum number of iterations is this number times the size of the
      * matrix. It is currently set to 40.
LM's avatar
LM committed
220
      */
Don Gagne's avatar
Don Gagne committed
221
    static const int m_maxIterationsPerRow = 40;
LM's avatar
LM committed
222 223 224 225 226 227 228 229 230 231

  private:
    
    MatrixType m_matT;
    MatrixType m_matU;
    ColumnVectorType m_workspaceVector;
    HessenbergDecomposition<MatrixType> m_hess;
    ComputationInfo m_info;
    bool m_isInitialized;
    bool m_matUisUptodate;
Don Gagne's avatar
Don Gagne committed
232
    Index m_maxIters;
LM's avatar
LM committed
233 234 235 236

    typedef Matrix<Scalar,3,1> Vector3s;

    Scalar computeNormOfT();
Don Gagne's avatar
Don Gagne committed
237 238
    Index findSmallSubdiagEntry(Index iu, const Scalar& norm);
    void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
LM's avatar
LM committed
239 240 241 242 243 244 245 246 247
    void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
    void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
    void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
};


template<typename MatrixType>
RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
{
Don Gagne's avatar
Don Gagne committed
248 249 250 251
  eigen_assert(matrix.cols() == matrix.rows());
  Index maxIters = m_maxIters;
  if (maxIters == -1)
    maxIters = m_maxIterationsPerRow * matrix.rows();
LM's avatar
LM committed
252 253 254 255 256

  // Step 1. Reduce to Hessenberg form
  m_hess.compute(matrix);

  // Step 2. Reduce to real Schur form  
Don Gagne's avatar
Don Gagne committed
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
  
  return *this;
}
template<typename MatrixType>
template<typename HessMatrixType, typename OrthMatrixType>
RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU)
{  
  m_matT = matrixH; 
  if(computeU)
    m_matU = matrixQ;
  
  Index maxIters = m_maxIters;
  if (maxIters == -1)
    maxIters = m_maxIterationsPerRow * matrixH.rows();
LM's avatar
LM committed
272 273 274 275 276 277 278 279
  m_workspaceVector.resize(m_matT.cols());
  Scalar* workspace = &m_workspaceVector.coeffRef(0);

  // The matrix m_matT is divided in three parts. 
  // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. 
  // Rows il,...,iu is the part we are working on (the active window).
  // Rows iu+1,...,end are already brought in triangular form.
  Index iu = m_matT.cols() - 1;
Don Gagne's avatar
Don Gagne committed
280 281 282
  Index iter = 0;      // iteration count for current eigenvalue
  Index totalIter = 0; // iteration count for whole matrix
  Scalar exshift(0);   // sum of exceptional shifts
LM's avatar
LM committed
283 284
  Scalar norm = computeNormOfT();

Don Gagne's avatar
Don Gagne committed
285
  if(norm!=0)
LM's avatar
LM committed
286
  {
Don Gagne's avatar
Don Gagne committed
287
    while (iu >= 0)
LM's avatar
LM committed
288
    {
Don Gagne's avatar
Don Gagne committed
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
      Index il = findSmallSubdiagEntry(iu, norm);

      // Check for convergence
      if (il == iu) // One root found
      {
        m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
        if (iu > 0)
          m_matT.coeffRef(iu, iu-1) = Scalar(0);
        iu--;
        iter = 0;
      }
      else if (il == iu-1) // Two roots found
      {
        splitOffTwoRows(iu, computeU, exshift);
        iu -= 2;
        iter = 0;
      }
      else // No convergence yet
      {
        // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
        Vector3s firstHouseholderVector(0,0,0), shiftInfo;
        computeShift(iu, iter, exshift, shiftInfo);
        iter = iter + 1;
        totalIter = totalIter + 1;
        if (totalIter > maxIters) break;
        Index im;
        initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
        performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
      }
LM's avatar
LM committed
318
    }
Don Gagne's avatar
Don Gagne committed
319 320
  }
  if(totalIter <= maxIters)
LM's avatar
LM committed
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    m_info = Success;
  else
    m_info = NoConvergence;

  m_isInitialized = true;
  m_matUisUptodate = computeU;
  return *this;
}

/** \internal Computes and returns vector L1 norm of T */
template<typename MatrixType>
inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
{
  const Index size = m_matT.cols();
  // FIXME to be efficient the following would requires a triangular reduxion code
  // Scalar norm = m_matT.upper().cwiseAbs().sum() 
  //               + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
Don Gagne's avatar
Don Gagne committed
338
  Scalar norm(0);
LM's avatar
LM committed
339
  for (Index j = 0; j < size; ++j)
Don Gagne's avatar
Don Gagne committed
340
    norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
LM's avatar
LM committed
341 342 343 344 345
  return norm;
}

/** \internal Look for single small sub-diagonal element and returns its index */
template<typename MatrixType>
Don Gagne's avatar
Don Gagne committed
346
inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& norm)
LM's avatar
LM committed
347
{
Don Gagne's avatar
Don Gagne committed
348
  using std::abs;
LM's avatar
LM committed
349 350 351
  Index res = iu;
  while (res > 0)
  {
Don Gagne's avatar
Don Gagne committed
352
    Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
LM's avatar
LM committed
353 354
    if (s == 0.0)
      s = norm;
Don Gagne's avatar
Don Gagne committed
355
    if (abs(m_matT.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
LM's avatar
LM committed
356 357 358 359 360 361 362 363
      break;
    res--;
  }
  return res;
}

/** \internal Update T given that rows iu-1 and iu decouple from the rest. */
template<typename MatrixType>
Don Gagne's avatar
Don Gagne committed
364
inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
LM's avatar
LM committed
365
{
Don Gagne's avatar
Don Gagne committed
366 367
  using std::sqrt;
  using std::abs;
LM's avatar
LM committed
368 369 370 371 372 373 374 375 376 377 378
  const Index size = m_matT.cols();

  // The eigenvalues of the 2x2 matrix [a b; c d] are 
  // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
  Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
  Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);   // q = tr^2 / 4 - det = discr/4
  m_matT.coeffRef(iu,iu) += exshift;
  m_matT.coeffRef(iu-1,iu-1) += exshift;

  if (q >= Scalar(0)) // Two real eigenvalues
  {
Don Gagne's avatar
Don Gagne committed
379
    Scalar z = sqrt(abs(q));
LM's avatar
LM committed
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    JacobiRotation<Scalar> rot;
    if (p >= Scalar(0))
      rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
    else
      rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));

    m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
    m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
    m_matT.coeffRef(iu, iu-1) = Scalar(0); 
    if (computeU)
      m_matU.applyOnTheRight(iu-1, iu, rot);
  }

  if (iu > 1) 
    m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
}

/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
template<typename MatrixType>
inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
{
Don Gagne's avatar
Don Gagne committed
401 402
  using std::sqrt;
  using std::abs;
LM's avatar
LM committed
403 404 405 406 407 408 409 410 411 412
  shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
  shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
  shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);

  // Wilkinson's original ad hoc shift
  if (iter == 10)
  {
    exshift += shiftInfo.coeff(0);
    for (Index i = 0; i <= iu; ++i)
      m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
Don Gagne's avatar
Don Gagne committed
413
    Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
LM's avatar
LM committed
414 415 416 417 418 419 420 421 422 423 424 425
    shiftInfo.coeffRef(0) = Scalar(0.75) * s;
    shiftInfo.coeffRef(1) = Scalar(0.75) * s;
    shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
  }

  // MATLAB's new ad hoc shift
  if (iter == 30)
  {
    Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
    s = s * s + shiftInfo.coeff(2);
    if (s > Scalar(0))
    {
Don Gagne's avatar
Don Gagne committed
426
      s = sqrt(s);
LM's avatar
LM committed
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
      if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
        s = -s;
      s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
      s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
      exshift += s;
      for (Index i = 0; i <= iu; ++i)
        m_matT.coeffRef(i,i) -= s;
      shiftInfo.setConstant(Scalar(0.964));
    }
  }
}

/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
template<typename MatrixType>
inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
{
Don Gagne's avatar
Don Gagne committed
443
  using std::abs;
LM's avatar
LM committed
444 445 446 447 448 449 450 451 452 453 454 455 456
  Vector3s& v = firstHouseholderVector; // alias to save typing

  for (im = iu-2; im >= il; --im)
  {
    const Scalar Tmm = m_matT.coeff(im,im);
    const Scalar r = shiftInfo.coeff(0) - Tmm;
    const Scalar s = shiftInfo.coeff(1) - Tmm;
    v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
    v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
    v.coeffRef(2) = m_matT.coeff(im+2,im+1);
    if (im == il) {
      break;
    }
Don Gagne's avatar
Don Gagne committed
457 458 459
    const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
    const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
    if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
LM's avatar
LM committed
460 461 462 463 464 465 466 467 468 469
    {
      break;
    }
  }
}

/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
template<typename MatrixType>
inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
{
Don Gagne's avatar
Don Gagne committed
470 471
  eigen_assert(im >= il);
  eigen_assert(im <= iu-2);
LM's avatar
LM committed
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

  const Index size = m_matT.cols();

  for (Index k = im; k <= iu-2; ++k)
  {
    bool firstIteration = (k == im);

    Vector3s v;
    if (firstIteration)
      v = firstHouseholderVector;
    else
      v = m_matT.template block<3,1>(k,k-1);

    Scalar tau, beta;
    Matrix<Scalar, 2, 1> ess;
    v.makeHouseholder(ess, tau, beta);
    
    if (beta != Scalar(0)) // if v is not zero
    {
      if (firstIteration && k > il)
        m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
      else if (!firstIteration)
        m_matT.coeffRef(k,k-1) = beta;

      // These Householder transformations form the O(n^3) part of the algorithm
      m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
Don Gagne's avatar
Don Gagne committed
498
      m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
LM's avatar
LM committed
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
      if (computeU)
        m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
    }
  }

  Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
  Scalar tau, beta;
  Matrix<Scalar, 1, 1> ess;
  v.makeHouseholder(ess, tau, beta);

  if (beta != Scalar(0)) // if v is not zero
  {
    m_matT.coeffRef(iu-1, iu-2) = beta;
    m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
    m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
    if (computeU)
      m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
  }

  // clean up pollution due to round-off errors
  for (Index i = im+2; i <= iu; ++i)
  {
    m_matT.coeffRef(i,i-2) = Scalar(0);
    if (i > im+2)
      m_matT.coeffRef(i,i-3) = Scalar(0);
  }
}

Don Gagne's avatar
Don Gagne committed
527 528
} // end namespace Eigen

LM's avatar
LM committed
529
#endif // EIGEN_REAL_SCHUR_H