ComplexSchur.h 16.4 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Claire Maurice
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
Don Gagne's avatar
Don Gagne committed
6
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
LM's avatar
LM committed
7
//
Don Gagne's avatar
Don Gagne committed
8 9 10
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
11 12 13 14 15 16

#ifndef EIGEN_COMPLEX_SCHUR_H
#define EIGEN_COMPLEX_SCHUR_H

#include "./HessenbergDecomposition.h"

Don Gagne's avatar
Don Gagne committed
17 18
namespace Eigen { 

LM's avatar
LM committed
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
namespace internal {
template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
}

/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \class ComplexSchur
  *
  * \brief Performs a complex Schur decomposition of a real or complex square matrix
  *
  * \tparam _MatrixType the type of the matrix of which we are
  * computing the Schur decomposition; this is expected to be an
  * instantiation of the Matrix class template.
  *
  * Given a real or complex square matrix A, this class computes the
  * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
  * complex matrix, and T is a complex upper triangular matrix.  The
  * diagonal of the matrix T corresponds to the eigenvalues of the
  * matrix A.
  *
  * Call the function compute() to compute the Schur decomposition of
  * a given matrix. Alternatively, you can use the 
  * ComplexSchur(const MatrixType&, bool) constructor which computes
  * the Schur decomposition at construction time. Once the
  * decomposition is computed, you can use the matrixU() and matrixT()
  * functions to retrieve the matrices U and V in the decomposition.
  *
  * \note This code is inspired from Jampack
  *
  * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
  */
template<typename _MatrixType> class ComplexSchur
{
  public:
    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };

    /** \brief Scalar type for matrices of type \p _MatrixType. */
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef typename MatrixType::Index Index;

    /** \brief Complex scalar type for \p _MatrixType. 
      *
      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
      * \c float or \c double) and just \c Scalar if #Scalar is
      * complex.
      */
    typedef std::complex<RealScalar> ComplexScalar;

    /** \brief Type for the matrices in the Schur decomposition.
      *
      * This is a square matrix with entries of type #ComplexScalar. 
      * The size is the same as the size of \p _MatrixType.
      */
    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;

    /** \brief Default constructor.
      *
      * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
      *
      * The default constructor is useful in cases in which the user
      * intends to perform decompositions via compute().  The \p size
      * parameter is only used as a hint. It is not an error to give a
      * wrong \p size, but it may impair performance.
      *
      * \sa compute() for an example.
      */
    ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
      : m_matT(size,size),
        m_matU(size,size),
        m_hess(size),
        m_isInitialized(false),
Don Gagne's avatar
Don Gagne committed
99 100
        m_matUisUptodate(false),
        m_maxIters(-1)
LM's avatar
LM committed
101 102 103 104 105 106 107 108 109 110 111 112
    {}

    /** \brief Constructor; computes Schur decomposition of given matrix. 
      * 
      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
      *
      * This constructor calls compute() to compute the Schur decomposition.
      *
      * \sa matrixT() and matrixU() for examples.
      */
    ComplexSchur(const MatrixType& matrix, bool computeU = true)
Don Gagne's avatar
Don Gagne committed
113 114 115 116 117 118
      : m_matT(matrix.rows(),matrix.cols()),
        m_matU(matrix.rows(),matrix.cols()),
        m_hess(matrix.rows()),
        m_isInitialized(false),
        m_matUisUptodate(false),
        m_maxIters(-1)
LM's avatar
LM committed
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    {
      compute(matrix, computeU);
    }

    /** \brief Returns the unitary matrix in the Schur decomposition. 
      *
      * \returns A const reference to the matrix U.
      *
      * It is assumed that either the constructor
      * ComplexSchur(const MatrixType& matrix, bool computeU) or the
      * member function compute(const MatrixType& matrix, bool computeU)
      * has been called before to compute the Schur decomposition of a
      * matrix, and that \p computeU was set to true (the default
      * value).
      *
      * Example: \include ComplexSchur_matrixU.cpp
      * Output: \verbinclude ComplexSchur_matrixU.out
      */
    const ComplexMatrixType& matrixU() const
    {
      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
      eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
      return m_matU;
    }

    /** \brief Returns the triangular matrix in the Schur decomposition. 
      *
      * \returns A const reference to the matrix T.
      *
      * It is assumed that either the constructor
      * ComplexSchur(const MatrixType& matrix, bool computeU) or the
      * member function compute(const MatrixType& matrix, bool computeU)
      * has been called before to compute the Schur decomposition of a
      * matrix.
      *
      * Note that this function returns a plain square matrix. If you want to reference
      * only the upper triangular part, use:
      * \code schur.matrixT().triangularView<Upper>() \endcode 
      *
      * Example: \include ComplexSchur_matrixT.cpp
      * Output: \verbinclude ComplexSchur_matrixT.out
      */
    const ComplexMatrixType& matrixT() const
    {
      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
      return m_matT;
    }

    /** \brief Computes Schur decomposition of given matrix. 
      * 
      * \param[in]  matrix  Square matrix whose Schur decomposition is to be computed.
      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
Don Gagne's avatar
Don Gagne committed
171

LM's avatar
LM committed
172 173 174 175 176 177 178 179 180 181 182 183 184 185
      * \returns    Reference to \c *this
      *
      * The Schur decomposition is computed by first reducing the
      * matrix to Hessenberg form using the class
      * HessenbergDecomposition. The Hessenberg matrix is then reduced
      * to triangular form by performing QR iterations with a single
      * shift. The cost of computing the Schur decomposition depends
      * on the number of iterations; as a rough guide, it may be taken
      * on the number of iterations; as a rough guide, it may be taken
      * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
      * if \a computeU is false.
      *
      * Example: \include ComplexSchur_compute.cpp
      * Output: \verbinclude ComplexSchur_compute.out
Don Gagne's avatar
Don Gagne committed
186 187
      *
      * \sa compute(const MatrixType&, bool, Index)
LM's avatar
LM committed
188 189
      */
    ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
Don Gagne's avatar
Don Gagne committed
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    
    /** \brief Compute Schur decomposition from a given Hessenberg matrix
     *  \param[in] matrixH Matrix in Hessenberg form H
     *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
     *  \param computeU Computes the matriX U of the Schur vectors
     * \return Reference to \c *this
     * 
     *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
     *  using either the class HessenbergDecomposition or another mean. 
     *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
     *  When computeU is true, this routine computes the matrix U such that 
     *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
     * 
     * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
     * is not available, the user should give an identity matrix (Q.setIdentity())
     * 
     * \sa compute(const MatrixType&, bool)
     */
    template<typename HessMatrixType, typename OrthMatrixType>
    ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU=true);
LM's avatar
LM committed
210 211 212 213 214 215 216

    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
      */
    ComputationInfo info() const
    {
Don Gagne's avatar
Don Gagne committed
217
      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
LM's avatar
LM committed
218 219 220
      return m_info;
    }

Don Gagne's avatar
Don Gagne committed
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    /** \brief Sets the maximum number of iterations allowed. 
      *
      * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
      * of the matrix.
      */
    ComplexSchur& setMaxIterations(Index maxIters)
    {
      m_maxIters = maxIters;
      return *this;
    }

    /** \brief Returns the maximum number of iterations. */
    Index getMaxIterations()
    {
      return m_maxIters;
    }

    /** \brief Maximum number of iterations per row.
LM's avatar
LM committed
239
      *
Don Gagne's avatar
Don Gagne committed
240 241
      * If not otherwise specified, the maximum number of iterations is this number times the size of the
      * matrix. It is currently set to 30.
LM's avatar
LM committed
242
      */
Don Gagne's avatar
Don Gagne committed
243
    static const int m_maxIterationsPerRow = 30;
LM's avatar
LM committed
244 245 246 247 248 249 250

  protected:
    ComplexMatrixType m_matT, m_matU;
    HessenbergDecomposition<MatrixType> m_hess;
    ComputationInfo m_info;
    bool m_isInitialized;
    bool m_matUisUptodate;
Don Gagne's avatar
Don Gagne committed
251
    Index m_maxIters;
LM's avatar
LM committed
252 253 254 255 256 257 258 259 260 261 262 263 264 265

  private:  
    bool subdiagonalEntryIsNeglegible(Index i);
    ComplexScalar computeShift(Index iu, Index iter);
    void reduceToTriangularForm(bool computeU);
    friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
};

/** If m_matT(i+1,i) is neglegible in floating point arithmetic
  * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
  * return true, else return false. */
template<typename MatrixType>
inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
{
Don Gagne's avatar
Don Gagne committed
266 267
  RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
  RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
LM's avatar
LM committed
268 269 270 271 272 273 274 275 276 277 278 279 280
  if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
  {
    m_matT.coeffRef(i+1,i) = ComplexScalar(0);
    return true;
  }
  return false;
}


/** Compute the shift in the current QR iteration. */
template<typename MatrixType>
typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
{
Don Gagne's avatar
Don Gagne committed
281
  using std::abs;
LM's avatar
LM committed
282 283 284
  if (iter == 10 || iter == 20) 
  {
    // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
Don Gagne's avatar
Don Gagne committed
285
    return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
LM's avatar
LM committed
286 287 288 289 290 291 292 293 294 295
  }

  // compute the shift as one of the eigenvalues of t, the 2x2
  // diagonal block on the bottom of the active submatrix
  Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
  RealScalar normt = t.cwiseAbs().sum();
  t /= normt;     // the normalization by sf is to avoid under/overflow

  ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
  ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
Don Gagne's avatar
Don Gagne committed
296
  ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
LM's avatar
LM committed
297 298 299 300 301
  ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
  ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
  ComplexScalar eival1 = (trace + disc) / RealScalar(2);
  ComplexScalar eival2 = (trace - disc) / RealScalar(2);

Don Gagne's avatar
Don Gagne committed
302
  if(numext::norm1(eival1) > numext::norm1(eival2))
LM's avatar
LM committed
303 304 305 306 307
    eival2 = det / eival1;
  else
    eival1 = det / eival2;

  // choose the eigenvalue closest to the bottom entry of the diagonal
Don Gagne's avatar
Don Gagne committed
308
  if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
LM's avatar
LM committed
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    return normt * eival1;
  else
    return normt * eival2;
}


template<typename MatrixType>
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
{
  m_matUisUptodate = false;
  eigen_assert(matrix.cols() == matrix.rows());

  if(matrix.cols() == 1)
  {
    m_matT = matrix.template cast<ComplexScalar>();
    if(computeU)  m_matU = ComplexMatrixType::Identity(1,1);
    m_info = Success;
    m_isInitialized = true;
    m_matUisUptodate = computeU;
    return *this;
  }

  internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
Don Gagne's avatar
Don Gagne committed
332
  computeFromHessenberg(m_matT, m_matU, computeU);
LM's avatar
LM committed
333 334 335
  return *this;
}

Don Gagne's avatar
Don Gagne committed
336 337 338 339 340 341 342 343 344 345
template<typename MatrixType>
template<typename HessMatrixType, typename OrthMatrixType>
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
{
  m_matT = matrixH;
  if(computeU)
    m_matU = matrixQ;
  reduceToTriangularForm(computeU);
  return *this;
}
LM's avatar
LM committed
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
namespace internal {

/* Reduce given matrix to Hessenberg form */
template<typename MatrixType, bool IsComplex>
struct complex_schur_reduce_to_hessenberg
{
  // this is the implementation for the case IsComplex = true
  static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
  {
    _this.m_hess.compute(matrix);
    _this.m_matT = _this.m_hess.matrixH();
    if(computeU)  _this.m_matU = _this.m_hess.matrixQ();
  }
};

template<typename MatrixType>
struct complex_schur_reduce_to_hessenberg<MatrixType, false>
{
  static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
  {
    typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;

    // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
    _this.m_hess.compute(matrix);
    _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
    if(computeU)  
    {
      // This may cause an allocation which seems to be avoidable
      MatrixType Q = _this.m_hess.matrixQ(); 
      _this.m_matU = Q.template cast<ComplexScalar>();
    }
  }
};

} // end namespace internal

// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
template<typename MatrixType>
void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
{  
Don Gagne's avatar
Don Gagne committed
386 387 388 389
  Index maxIters = m_maxIters;
  if (maxIters == -1)
    maxIters = m_maxIterationsPerRow * m_matT.rows();

LM's avatar
LM committed
390 391 392 393 394 395 396
  // The matrix m_matT is divided in three parts. 
  // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. 
  // Rows il,...,iu is the part we are working on (the active submatrix).
  // Rows iu+1,...,end are already brought in triangular form.
  Index iu = m_matT.cols() - 1;
  Index il;
  Index iter = 0; // number of iterations we are working on the (iu,iu) element
Don Gagne's avatar
Don Gagne committed
397
  Index totalIter = 0; // number of iterations for whole matrix
LM's avatar
LM committed
398 399 400 401 402 403 404 405 406 407 408 409 410 411

  while(true)
  {
    // find iu, the bottom row of the active submatrix
    while(iu > 0)
    {
      if(!subdiagonalEntryIsNeglegible(iu-1)) break;
      iter = 0;
      --iu;
    }

    // if iu is zero then we are done; the whole matrix is triangularized
    if(iu==0) break;

Don Gagne's avatar
Don Gagne committed
412
    // if we spent too many iterations, we give up
LM's avatar
LM committed
413
    iter++;
Don Gagne's avatar
Don Gagne committed
414 415
    totalIter++;
    if(totalIter > maxIters) break;
LM's avatar
LM committed
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

    // find il, the top row of the active submatrix
    il = iu-1;
    while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
    {
      --il;
    }

    /* perform the QR step using Givens rotations. The first rotation
       creates a bulge; the (il+2,il) element becomes nonzero. This
       bulge is chased down to the bottom of the active submatrix. */

    ComplexScalar shift = computeShift(iu, iter);
    JacobiRotation<ComplexScalar> rot;
    rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
    m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
Don Gagne's avatar
Don Gagne committed
432
    m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
LM's avatar
LM committed
433 434 435 436 437 438 439
    if(computeU) m_matU.applyOnTheRight(il, il+1, rot);

    for(Index i=il+1 ; i<iu ; i++)
    {
      rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
      m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
      m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
Don Gagne's avatar
Don Gagne committed
440
      m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
LM's avatar
LM committed
441 442 443 444
      if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
    }
  }

Don Gagne's avatar
Don Gagne committed
445
  if(totalIter <= maxIters)
LM's avatar
LM committed
446 447 448 449 450 451 452 453
    m_info = Success;
  else
    m_info = NoConvergence;

  m_isInitialized = true;
  m_matUisUptodate = computeU;
}

Don Gagne's avatar
Don Gagne committed
454 455
} // end namespace Eigen

LM's avatar
LM committed
456
#endif // EIGEN_COMPLEX_SCHUR_H