Quaternion.h 16.5 KB
Newer Older
LM's avatar
LM committed
1
// This file is part of Eigen, a lightweight C++ template library
Don Gagne's avatar
Don Gagne committed
2
// for linear algebra.
LM's avatar
LM committed
3 4 5
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11

// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway

Don Gagne's avatar
Don Gagne committed
12 13
namespace Eigen { 

LM's avatar
LM committed
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
template<typename Other,
         int OtherRows=Other::RowsAtCompileTime,
         int OtherCols=Other::ColsAtCompileTime>
struct ei_quaternion_assign_impl;

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Quaternion
  *
  * \brief The quaternion class used to represent 3D orientations and rotations
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients
  *
  * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
  * orientations and rotations of objects in three dimensions. Compared to other representations
  * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
  * \li \b compact storage (4 scalars)
  * \li \b efficient to compose (28 flops),
  * \li \b stable spherical interpolation
  *
  * The following two typedefs are provided for convenience:
  * \li \c Quaternionf for \c float
  * \li \c Quaterniond for \c double
  *
  * \sa  class AngleAxis, class Transform
  */

template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> >
{
  typedef _Scalar Scalar;
};

template<typename _Scalar>
class Quaternion : public RotationBase<Quaternion<_Scalar>,3>
{
  typedef RotationBase<Quaternion<_Scalar>,3> Base;

public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4)

  using Base::operator*;

  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;

  /** the type of the Coefficients 4-vector */
  typedef Matrix<Scalar, 4, 1> Coefficients;
  /** the type of a 3D vector */
  typedef Matrix<Scalar,3,1> Vector3;
  /** the equivalent rotation matrix type */
  typedef Matrix<Scalar,3,3> Matrix3;
  /** the equivalent angle-axis type */
  typedef AngleAxis<Scalar> AngleAxisType;

  /** \returns the \c x coefficient */
  inline Scalar x() const { return m_coeffs.coeff(0); }
  /** \returns the \c y coefficient */
  inline Scalar y() const { return m_coeffs.coeff(1); }
  /** \returns the \c z coefficient */
  inline Scalar z() const { return m_coeffs.coeff(2); }
  /** \returns the \c w coefficient */
  inline Scalar w() const { return m_coeffs.coeff(3); }

  /** \returns a reference to the \c x coefficient */
  inline Scalar& x() { return m_coeffs.coeffRef(0); }
  /** \returns a reference to the \c y coefficient */
  inline Scalar& y() { return m_coeffs.coeffRef(1); }
  /** \returns a reference to the \c z coefficient */
  inline Scalar& z() { return m_coeffs.coeffRef(2); }
  /** \returns a reference to the \c w coefficient */
  inline Scalar& w() { return m_coeffs.coeffRef(3); }

  /** \returns a read-only vector expression of the imaginary part (x,y,z) */
  inline const Block<const Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }

  /** \returns a vector expression of the imaginary part (x,y,z) */
  inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }

  /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
  inline const Coefficients& coeffs() const { return m_coeffs; }

  /** \returns a vector expression of the coefficients (x,y,z,w) */
  inline Coefficients& coeffs() { return m_coeffs; }

  /** Default constructor leaving the quaternion uninitialized. */
  inline Quaternion() {}

  /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
    * its four coefficients \a w, \a x, \a y and \a z.
    *
    * \warning Note the order of the arguments: the real \a w coefficient first,
    * while internally the coefficients are stored in the following order:
    * [\c x, \c y, \c z, \c w]
    */
  inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
  { m_coeffs << x, y, z, w; }

  /** Copy constructor */
  inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }

  /** Constructs and initializes a quaternion from the angle-axis \a aa */
  explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }

  /** Constructs and initializes a quaternion from either:
    *  - a rotation matrix expression,
    *  - a 4D vector expression representing quaternion coefficients.
    * \sa operator=(MatrixBase<Derived>)
    */
  template<typename Derived>
  explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }

  Quaternion& operator=(const Quaternion& other);
  Quaternion& operator=(const AngleAxisType& aa);
  template<typename Derived>
  Quaternion& operator=(const MatrixBase<Derived>& m);

  /** \returns a quaternion representing an identity rotation
    * \sa MatrixBase::Identity()
    */
Don Gagne's avatar
Don Gagne committed
133
  static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); }
LM's avatar
LM committed
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

  /** \sa Quaternion::Identity(), MatrixBase::setIdentity()
    */
  inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; }

  /** \returns the squared norm of the quaternion's coefficients
    * \sa Quaternion::norm(), MatrixBase::squaredNorm()
    */
  inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); }

  /** \returns the norm of the quaternion's coefficients
    * \sa Quaternion::squaredNorm(), MatrixBase::norm()
    */
  inline Scalar norm() const { return m_coeffs.norm(); }

  /** Normalizes the quaternion \c *this
    * \sa normalized(), MatrixBase::normalize() */
  inline void normalize() { m_coeffs.normalize(); }
  /** \returns a normalized version of \c *this
    * \sa normalize(), MatrixBase::normalized() */
  inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); }

  /** \returns the dot product of \c *this and \a other
    * Geometrically speaking, the dot product of two unit quaternions
    * corresponds to the cosine of half the angle between the two rotations.
    * \sa angularDistance()
    */
  inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); }

  inline Scalar angularDistance(const Quaternion& other) const;

  Matrix3 toRotationMatrix(void) const;

  template<typename Derived1, typename Derived2>
  Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);

  inline Quaternion operator* (const Quaternion& q) const;
  inline Quaternion& operator*= (const Quaternion& q);

  Quaternion inverse(void) const;
  Quaternion conjugate(void) const;

  Quaternion slerp(Scalar t, const Quaternion& other) const;

  template<typename Derived>
  Vector3 operator* (const MatrixBase<Derived>& vec) const;

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
  { return typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit Quaternion(const Quaternion<OtherScalarType>& other)
  { m_coeffs = other.coeffs().template cast<Scalar>(); }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
  { return m_coeffs.isApprox(other.m_coeffs, prec); }

protected:
  Coefficients m_coeffs;
};

/** \ingroup Geometry_Module
  * single precision quaternion type */
typedef Quaternion<float> Quaternionf;
/** \ingroup Geometry_Module
  * double precision quaternion type */
typedef Quaternion<double> Quaterniond;

// Generic Quaternion * Quaternion product
template<typename Scalar> inline Quaternion<Scalar>
ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b)
{
  return Quaternion<Scalar>
  (
    a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
    a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
    a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
    a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
  );
}

/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
{
  return ei_quaternion_product(*this,other);
}

/** \sa operator*(Quaternion) */
template <typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
{
  return (*this = *this * other);
}

/** Rotation of a vector by a quaternion.
  * \remarks If the quaternion is used to rotate several points (>1)
  * then it is much more efficient to first convert it to a 3x3 Matrix.
  * Comparison of the operation cost for n transformations:
  *   - Quaternion:    30n
  *   - Via a Matrix3: 24 + 15n
  */
template <typename Scalar>
template<typename Derived>
inline typename Quaternion<Scalar>::Vector3
Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
{
    // Note that this algorithm comes from the optimization by hand
    // of the conversion to a Matrix followed by a Matrix/Vector product.
    // It appears to be much faster than the common algorithm found
    // in the litterature (30 versus 39 flops). It also requires two
    // Vector3 as temporaries.
    Vector3 uv;
    uv = 2 * this->vec().cross(v);
    return v + this->w() * uv + this->vec().cross(uv);
}

template<typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other)
{
  m_coeffs = other.m_coeffs;
  return *this;
}

/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
  */
template<typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
{
  Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
  this->w() = ei_cos(ha);
  this->vec() = ei_sin(ha) * aa.axis();
  return *this;
}

/** Set \c *this from the expression \a xpr:
  *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
  *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
  *     and \a xpr is converted to a quaternion
  */
template<typename Scalar>
template<typename Derived>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr)
{
  ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived());
  return *this;
}

/** Convert the quaternion to a 3x3 rotation matrix */
template<typename Scalar>
inline typename Quaternion<Scalar>::Matrix3
Quaternion<Scalar>::toRotationMatrix(void) const
{
  // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
  // if not inlined then the cost of the return by value is huge ~ +35%,
  // however, not inlining this function is an order of magnitude slower, so
  // it has to be inlined, and so the return by value is not an issue
  Matrix3 res;

Don Gagne's avatar
Don Gagne committed
304 305 306
  const Scalar tx  = Scalar(2)*this->x();
  const Scalar ty  = Scalar(2)*this->y();
  const Scalar tz  = Scalar(2)*this->z();
LM's avatar
LM committed
307 308 309 310 311 312 313 314 315 316
  const Scalar twx = tx*this->w();
  const Scalar twy = ty*this->w();
  const Scalar twz = tz*this->w();
  const Scalar txx = tx*this->x();
  const Scalar txy = ty*this->x();
  const Scalar txz = tz*this->x();
  const Scalar tyy = ty*this->y();
  const Scalar tyz = tz*this->y();
  const Scalar tzz = tz*this->z();

Don Gagne's avatar
Don Gagne committed
317
  res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
LM's avatar
LM committed
318 319 320
  res.coeffRef(0,1) = txy-twz;
  res.coeffRef(0,2) = txz+twy;
  res.coeffRef(1,0) = txy+twz;
Don Gagne's avatar
Don Gagne committed
321
  res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
LM's avatar
LM committed
322 323 324
  res.coeffRef(1,2) = tyz-twx;
  res.coeffRef(2,0) = txz-twy;
  res.coeffRef(2,1) = tyz+twx;
Don Gagne's avatar
Don Gagne committed
325
  res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
LM's avatar
LM committed
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

  return res;
}

/** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b.
  *
  * \returns a reference to *this.
  *
  * Note that the two input vectors do \b not have to be normalized.
  */
template<typename Scalar>
template<typename Derived1, typename Derived2>
inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
  Vector3 v0 = a.normalized();
  Vector3 v1 = b.normalized();
  Scalar c = v0.eigen2_dot(v1);

  // if dot == 1, vectors are the same
  if (ei_isApprox(c,Scalar(1)))
  {
    // set to identity
    this->w() = 1; this->vec().setZero();
    return *this;
  }
  // if dot == -1, vectors are opposites
  if (ei_isApprox(c,Scalar(-1)))
  {
    this->vec() = v0.unitOrthogonal();
    this->w() = 0;
    return *this;
  }

  Vector3 axis = v0.cross(v1);
  Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
  Scalar invs = Scalar(1)/s;
  this->vec() = axis * invs;
  this->w() = s * Scalar(0.5);

  return *this;
}

/** \returns the multiplicative inverse of \c *this
  * Note that in most cases, i.e., if you simply want the opposite rotation,
  * and/or the quaternion is normalized, then it is enough to use the conjugate.
  *
  * \sa Quaternion::conjugate()
  */
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
{
  // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
  Scalar n2 = this->squaredNorm();
  if (n2 > 0)
    return Quaternion(conjugate().coeffs() / n2);
  else
  {
    // return an invalid result to flag the error
    return Quaternion(Coefficients::Zero());
  }
}

/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
  * if the quaternion is normalized.
  * The conjugate of a quaternion represents the opposite rotation.
  *
  * \sa Quaternion::inverse()
  */
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
{
  return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
}

/** \returns the angle (in radian) between two rotations
  * \sa eigen2_dot()
  */
template <typename Scalar>
inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
{
  double d = ei_abs(this->eigen2_dot(other));
  if (d>=1.0)
    return 0;
  return Scalar(2) * std::acos(d);
}

/** \returns the spherical linear interpolation between the two quaternions
  * \c *this and \a other at the parameter \a t
  */
template <typename Scalar>
Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
{
  static const Scalar one = Scalar(1) - machine_epsilon<Scalar>();
  Scalar d = this->eigen2_dot(other);
  Scalar absD = ei_abs(d);

  Scalar scale0;
  Scalar scale1;

  if (absD>=one)
  {
    scale0 = Scalar(1) - t;
    scale1 = t;
  }
  else
  {
    // theta is the angle between the 2 quaternions
    Scalar theta = std::acos(absD);
    Scalar sinTheta = ei_sin(theta);

    scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
    scale1 = ei_sin( ( t * theta) ) / sinTheta;
    if (d<0)
      scale1 = -scale1;
  }

  return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
}

// set from a rotation matrix
template<typename Other>
struct ei_quaternion_assign_impl<Other,3,3>
{
  typedef typename Other::Scalar Scalar;
Don Gagne's avatar
Don Gagne committed
450
  static inline void run(Quaternion<Scalar>& q, const Other& mat)
LM's avatar
LM committed
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
  {
    // This algorithm comes from  "Quaternion Calculus and Fast Animation",
    // Ken Shoemake, 1987 SIGGRAPH course notes
    Scalar t = mat.trace();
    if (t > 0)
    {
      t = ei_sqrt(t + Scalar(1.0));
      q.w() = Scalar(0.5)*t;
      t = Scalar(0.5)/t;
      q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
      q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
      q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
    }
    else
    {
      int i = 0;
      if (mat.coeff(1,1) > mat.coeff(0,0))
        i = 1;
      if (mat.coeff(2,2) > mat.coeff(i,i))
        i = 2;
      int j = (i+1)%3;
      int k = (j+1)%3;

      t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
      q.coeffs().coeffRef(i) = Scalar(0.5) * t;
      t = Scalar(0.5)/t;
      q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
      q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
      q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
    }
  }
};

// set from a vector of coefficients assumed to be a quaternion
template<typename Other>
struct ei_quaternion_assign_impl<Other,4,1>
{
  typedef typename Other::Scalar Scalar;
Don Gagne's avatar
Don Gagne committed
489
  static inline void run(Quaternion<Scalar>& q, const Other& vec)
LM's avatar
LM committed
490 491 492 493
  {
    q.coeffs() = vec;
  }
};
Don Gagne's avatar
Don Gagne committed
494 495

} // end namespace Eigen