Transpositions.h 15 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_TRANSPOSITIONS_H
#define EIGEN_TRANSPOSITIONS_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen { 

LM's avatar
LM committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/** \class Transpositions
  * \ingroup Core_Module
  *
  * \brief Represents a sequence of transpositions (row/column interchange)
  *
  * \param SizeAtCompileTime the number of transpositions, or Dynamic
  * \param MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
  *
  * This class represents a permutation transformation as a sequence of \em n transpositions
  * \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices.
  * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
  * the rows \c i and \c indices[i] of the matrix \c M.
  * A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange.
  *
  * Compared to the class PermutationMatrix, such a sequence of transpositions is what is
  * computed during a decomposition with pivoting, and it is faster when applying the permutation in-place.
  * 
  * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
  * \code
  * Transpositions tr;
  * MatrixXf mat;
  * mat = tr * mat;
  * \endcode
  * In this example, we detect that the matrix appears on both side, and so the transpositions
  * are applied in-place without any temporary or extra copy.
  *
  * \sa class PermutationMatrix
  */

namespace internal {
template<typename TranspositionType, typename MatrixType, int Side, bool Transposed=false> struct transposition_matrix_product_retval;
}

template<typename Derived>
class TranspositionsBase
{
    typedef internal::traits<Derived> Traits;
    
  public:

    typedef typename Traits::IndicesType IndicesType;
    typedef typename IndicesType::Scalar Index;

    Derived& derived() { return *static_cast<Derived*>(this); }
    const Derived& derived() const { return *static_cast<const Derived*>(this); }

    /** Copies the \a other transpositions into \c *this */
    template<typename OtherDerived>
    Derived& operator=(const TranspositionsBase<OtherDerived>& other)
    {
      indices() = other.indices();
      return derived();
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** This is a special case of the templated operator=. Its purpose is to
      * prevent a default operator= from hiding the templated operator=.
      */
    Derived& operator=(const TranspositionsBase& other)
    {
      indices() = other.indices();
      return derived();
    }
    #endif

    /** \returns the number of transpositions */
    inline Index size() const { return indices().size(); }

    /** Direct access to the underlying index vector */
    inline const Index& coeff(Index i) const { return indices().coeff(i); }
    /** Direct access to the underlying index vector */
    inline Index& coeffRef(Index i) { return indices().coeffRef(i); }
    /** Direct access to the underlying index vector */
    inline const Index& operator()(Index i) const { return indices()(i); }
    /** Direct access to the underlying index vector */
    inline Index& operator()(Index i) { return indices()(i); }
    /** Direct access to the underlying index vector */
    inline const Index& operator[](Index i) const { return indices()(i); }
    /** Direct access to the underlying index vector */
    inline Index& operator[](Index i) { return indices()(i); }

    /** const version of indices(). */
    const IndicesType& indices() const { return derived().indices(); }
    /** \returns a reference to the stored array representing the transpositions. */
    IndicesType& indices() { return derived().indices(); }

    /** Resizes to given size. */
Don Gagne's avatar
Don Gagne committed
102
    inline void resize(int newSize)
LM's avatar
LM committed
103
    {
Don Gagne's avatar
Don Gagne committed
104
      indices().resize(newSize);
LM's avatar
LM committed
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    }

    /** Sets \c *this to represents an identity transformation */
    void setIdentity()
    {
      for(int i = 0; i < indices().size(); ++i)
        coeffRef(i) = i;
    }

    // FIXME: do we want such methods ?
    // might be usefull when the target matrix expression is complex, e.g.:
    // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..);
    /*
    template<typename MatrixType>
    void applyForwardToRows(MatrixType& mat) const
    {
      for(Index k=0 ; k<size() ; ++k)
        if(m_indices(k)!=k)
          mat.row(k).swap(mat.row(m_indices(k)));
    }

    template<typename MatrixType>
    void applyBackwardToRows(MatrixType& mat) const
    {
      for(Index k=size()-1 ; k>=0 ; --k)
        if(m_indices(k)!=k)
          mat.row(k).swap(mat.row(m_indices(k)));
    }
    */

    /** \returns the inverse transformation */
    inline Transpose<TranspositionsBase> inverse() const
    { return Transpose<TranspositionsBase>(derived()); }

    /** \returns the tranpose transformation */
    inline Transpose<TranspositionsBase> transpose() const
    { return Transpose<TranspositionsBase>(derived()); }

  protected:
};

namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
{
  typedef IndexType Index;
  typedef Matrix<Index, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
};
}

template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
{
    typedef internal::traits<Transpositions> Traits;
  public:

    typedef TranspositionsBase<Transpositions> Base;
    typedef typename Traits::IndicesType IndicesType;
    typedef typename IndicesType::Scalar Index;

    inline Transpositions() {}

    /** Copy constructor. */
    template<typename OtherDerived>
    inline Transpositions(const TranspositionsBase<OtherDerived>& other)
      : m_indices(other.indices()) {}

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** Standard copy constructor. Defined only to prevent a default copy constructor
      * from hiding the other templated constructor */
    inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {}
    #endif

    /** Generic constructor from expression of the transposition indices. */
    template<typename Other>
Don Gagne's avatar
Don Gagne committed
180
    explicit inline Transpositions(const MatrixBase<Other>& a_indices) : m_indices(a_indices)
LM's avatar
LM committed
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    {}

    /** Copies the \a other transpositions into \c *this */
    template<typename OtherDerived>
    Transpositions& operator=(const TranspositionsBase<OtherDerived>& other)
    {
      return Base::operator=(other);
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** This is a special case of the templated operator=. Its purpose is to
      * prevent a default operator= from hiding the templated operator=.
      */
    Transpositions& operator=(const Transpositions& other)
    {
      m_indices = other.m_indices;
      return *this;
    }
    #endif

    /** Constructs an uninitialized permutation matrix of given size.
      */
    inline Transpositions(Index size) : m_indices(size)
    {}

    /** const version of indices(). */
    const IndicesType& indices() const { return m_indices; }
    /** \returns a reference to the stored array representing the transpositions. */
    IndicesType& indices() { return m_indices; }

  protected:

    IndicesType m_indices;
};


namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,_PacketAccess> >
{
  typedef IndexType Index;
  typedef Map<const Matrix<Index,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
};
}

template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int PacketAccess>
class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess>
 : public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess> >
{
    typedef internal::traits<Map> Traits;
  public:

    typedef TranspositionsBase<Map> Base;
    typedef typename Traits::IndicesType IndicesType;
    typedef typename IndicesType::Scalar Index;

Don Gagne's avatar
Don Gagne committed
237 238
    inline Map(const Index* indicesPtr)
      : m_indices(indicesPtr)
LM's avatar
LM committed
239 240
    {}

Don Gagne's avatar
Don Gagne committed
241 242
    inline Map(const Index* indicesPtr, Index size)
      : m_indices(indicesPtr,size)
LM's avatar
LM committed
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    {}

    /** Copies the \a other transpositions into \c *this */
    template<typename OtherDerived>
    Map& operator=(const TranspositionsBase<OtherDerived>& other)
    {
      return Base::operator=(other);
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** This is a special case of the templated operator=. Its purpose is to
      * prevent a default operator= from hiding the templated operator=.
      */
    Map& operator=(const Map& other)
    {
      m_indices = other.m_indices;
      return *this;
    }
    #endif

    /** const version of indices(). */
    const IndicesType& indices() const { return m_indices; }
    
    /** \returns a reference to the stored array representing the transpositions. */
    IndicesType& indices() { return m_indices; }

  protected:

    IndicesType m_indices;
};

namespace internal {
template<typename _IndicesType>
struct traits<TranspositionsWrapper<_IndicesType> >
{
  typedef typename _IndicesType::Scalar Index;
  typedef _IndicesType IndicesType;
};
}

template<typename _IndicesType>
class TranspositionsWrapper
 : public TranspositionsBase<TranspositionsWrapper<_IndicesType> >
{
    typedef internal::traits<TranspositionsWrapper> Traits;
  public:

    typedef TranspositionsBase<TranspositionsWrapper> Base;
    typedef typename Traits::IndicesType IndicesType;
    typedef typename IndicesType::Scalar Index;

Don Gagne's avatar
Don Gagne committed
294 295
    inline TranspositionsWrapper(IndicesType& a_indices)
      : m_indices(a_indices)
LM's avatar
LM committed
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    {}

    /** Copies the \a other transpositions into \c *this */
    template<typename OtherDerived>
    TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other)
    {
      return Base::operator=(other);
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** This is a special case of the templated operator=. Its purpose is to
      * prevent a default operator= from hiding the templated operator=.
      */
    TranspositionsWrapper& operator=(const TranspositionsWrapper& other)
    {
      m_indices = other.m_indices;
      return *this;
    }
    #endif

    /** const version of indices(). */
    const IndicesType& indices() const { return m_indices; }

    /** \returns a reference to the stored array representing the transpositions. */
    IndicesType& indices() { return m_indices; }

  protected:

    const typename IndicesType::Nested m_indices;
};

/** \returns the \a matrix with the \a transpositions applied to the columns.
  */
template<typename Derived, typename TranspositionsDerived>
inline const internal::transposition_matrix_product_retval<TranspositionsDerived, Derived, OnTheRight>
operator*(const MatrixBase<Derived>& matrix,
          const TranspositionsBase<TranspositionsDerived> &transpositions)
{
  return internal::transposition_matrix_product_retval
           <TranspositionsDerived, Derived, OnTheRight>
           (transpositions.derived(), matrix.derived());
}

/** \returns the \a matrix with the \a transpositions applied to the rows.
  */
template<typename Derived, typename TranspositionDerived>
inline const internal::transposition_matrix_product_retval
               <TranspositionDerived, Derived, OnTheLeft>
operator*(const TranspositionsBase<TranspositionDerived> &transpositions,
          const MatrixBase<Derived>& matrix)
{
  return internal::transposition_matrix_product_retval
           <TranspositionDerived, Derived, OnTheLeft>
           (transpositions.derived(), matrix.derived());
}

namespace internal {

template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
struct traits<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
{
  typedef typename MatrixType::PlainObject ReturnType;
};

template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
struct transposition_matrix_product_retval
 : public ReturnByValue<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
{
    typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
    typedef typename TranspositionType::Index Index;

    transposition_matrix_product_retval(const TranspositionType& tr, const MatrixType& matrix)
      : m_transpositions(tr), m_matrix(matrix)
    {}

    inline int rows() const { return m_matrix.rows(); }
    inline int cols() const { return m_matrix.cols(); }

    template<typename Dest> inline void evalTo(Dest& dst) const
    {
      const int size = m_transpositions.size();
      Index j = 0;

      if(!(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix)))
        dst = m_matrix;

      for(int k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
        if((j=m_transpositions.coeff(k))!=k)
        {
          if(Side==OnTheLeft)
            dst.row(k).swap(dst.row(j));
          else if(Side==OnTheRight)
            dst.col(k).swap(dst.col(j));
        }
    }

  protected:
    const TranspositionType& m_transpositions;
Don Gagne's avatar
Don Gagne committed
394
    typename MatrixType::Nested m_matrix;
LM's avatar
LM committed
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
};

} // end namespace internal

/* Template partial specialization for transposed/inverse transpositions */

template<typename TranspositionsDerived>
class Transpose<TranspositionsBase<TranspositionsDerived> >
{
    typedef TranspositionsDerived TranspositionType;
    typedef typename TranspositionType::IndicesType IndicesType;
  public:

    Transpose(const TranspositionType& t) : m_transpositions(t) {}

    inline int size() const { return m_transpositions.size(); }

    /** \returns the \a matrix with the inverse transpositions applied to the columns.
      */
    template<typename Derived> friend
    inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>
    operator*(const MatrixBase<Derived>& matrix, const Transpose& trt)
    {
      return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>(trt.m_transpositions, matrix.derived());
    }

    /** \returns the \a matrix with the inverse transpositions applied to the rows.
      */
    template<typename Derived>
    inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>
    operator*(const MatrixBase<Derived>& matrix) const
    {
      return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>(m_transpositions, matrix.derived());
    }

  protected:
    const TranspositionType& m_transpositions;
};

Don Gagne's avatar
Don Gagne committed
434 435
} // end namespace Eigen

LM's avatar
LM committed
436
#endif // EIGEN_TRANSPOSITIONS_H