DenseCoeffsBase.h 27 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_DENSECOEFFSBASE_H
#define EIGEN_DENSECOEFFSBASE_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen {

LM's avatar
LM committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
namespace internal {
template<typename T> struct add_const_on_value_type_if_arithmetic
{
  typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type;
};
}

/** \brief Base class providing read-only coefficient access to matrices and arrays.
  * \ingroup Core_Module
  * \tparam Derived Type of the derived class
  * \tparam #ReadOnlyAccessors Constant indicating read-only access
  *
  * This class defines the \c operator() \c const function and friends, which can be used to read specific
  * entries of a matrix or array.
  * 
  * \sa DenseCoeffsBase<Derived, WriteAccessors>, DenseCoeffsBase<Derived, DirectAccessors>,
  *     \ref TopicClassHierarchy
  */
template<typename Derived>
class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
{
  public:
    typedef typename internal::traits<Derived>::StorageKind StorageKind;
    typedef typename internal::traits<Derived>::Index Index;
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename internal::packet_traits<Scalar>::type PacketScalar;

    // Explanation for this CoeffReturnType typedef.
    // - This is the return type of the coeff() method.
    // - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references
    // to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value).
    // - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems
    // while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is
    // not possible, since the underlying expressions might not offer a valid address the reference could be referring to.
    typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
                         const Scalar&,
                         typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type
                     >::type CoeffReturnType;

    typedef typename internal::add_const_on_value_type_if_arithmetic<
                         typename internal::packet_traits<Scalar>::type
                     >::type PacketReturnType;

    typedef EigenBase<Derived> Base;
    using Base::rows;
    using Base::cols;
    using Base::size;
    using Base::derived;

    EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const
    {
      return int(Derived::RowsAtCompileTime) == 1 ? 0
          : int(Derived::ColsAtCompileTime) == 1 ? inner
          : int(Derived::Flags)&RowMajorBit ? outer
          : inner;
    }

    EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const
    {
      return int(Derived::ColsAtCompileTime) == 1 ? 0
          : int(Derived::RowsAtCompileTime) == 1 ? inner
          : int(Derived::Flags)&RowMajorBit ? inner
          : outer;
    }

    /** Short version: don't use this function, use
      * \link operator()(Index,Index) const \endlink instead.
      *
      * Long version: this function is similar to
      * \link operator()(Index,Index) const \endlink, but without the assertion.
      * Use this for limiting the performance cost of debugging code when doing
      * repeated coefficient access. Only use this when it is guaranteed that the
      * parameters \a row and \a col are in range.
      *
      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
      * function equivalent to \link operator()(Index,Index) const \endlink.
      *
      * \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const
      */
    EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
    {
      eigen_internal_assert(row >= 0 && row < rows()
                        && col >= 0 && col < cols());
      return derived().coeff(row, col);
    }

    EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
    {
      return coeff(rowIndexByOuterInner(outer, inner),
                   colIndexByOuterInner(outer, inner));
    }

    /** \returns the coefficient at given the given row and column.
      *
      * \sa operator()(Index,Index), operator[](Index)
      */
    EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const
    {
      eigen_assert(row >= 0 && row < rows()
          && col >= 0 && col < cols());
      return derived().coeff(row, col);
    }

    /** Short version: don't use this function, use
      * \link operator[](Index) const \endlink instead.
      *
      * Long version: this function is similar to
      * \link operator[](Index) const \endlink, but without the assertion.
      * Use this for limiting the performance cost of debugging code when doing
      * repeated coefficient access. Only use this when it is guaranteed that the
      * parameter \a index is in range.
      *
      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
      * function equivalent to \link operator[](Index) const \endlink.
      *
      * \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const
      */

    EIGEN_STRONG_INLINE CoeffReturnType
    coeff(Index index) const
    {
      eigen_internal_assert(index >= 0 && index < size());
      return derived().coeff(index);
    }


    /** \returns the coefficient at given index.
      *
      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
      *
      * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
      * z() const, w() const
      */

    EIGEN_STRONG_INLINE CoeffReturnType
    operator[](Index index) const
    {
      #ifndef EIGEN2_SUPPORT
      EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
                          THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
      #endif
      eigen_assert(index >= 0 && index < size());
      return derived().coeff(index);
    }

    /** \returns the coefficient at given index.
      *
      * This is synonymous to operator[](Index) const.
      *
      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
      *
      * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
      * z() const, w() const
      */

    EIGEN_STRONG_INLINE CoeffReturnType
    operator()(Index index) const
    {
      eigen_assert(index >= 0 && index < size());
      return derived().coeff(index);
    }

    /** equivalent to operator[](0).  */

    EIGEN_STRONG_INLINE CoeffReturnType
    x() const { return (*this)[0]; }

    /** equivalent to operator[](1).  */

    EIGEN_STRONG_INLINE CoeffReturnType
    y() const { return (*this)[1]; }

    /** equivalent to operator[](2).  */

    EIGEN_STRONG_INLINE CoeffReturnType
    z() const { return (*this)[2]; }

    /** equivalent to operator[](3).  */

    EIGEN_STRONG_INLINE CoeffReturnType
    w() const { return (*this)[3]; }

    /** \internal
      * \returns the packet of coefficients starting at the given row and column. It is your responsibility
      * to ensure that a packet really starts there. This method is only available on expressions having the
      * PacketAccessBit.
      *
      * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
      * starting at an address which is a multiple of the packet size.
      */

    template<int LoadMode>
    EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
    {
      eigen_internal_assert(row >= 0 && row < rows()
                      && col >= 0 && col < cols());
      return derived().template packet<LoadMode>(row,col);
    }


    /** \internal */
    template<int LoadMode>
    EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const
    {
      return packet<LoadMode>(rowIndexByOuterInner(outer, inner),
                              colIndexByOuterInner(outer, inner));
    }

    /** \internal
      * \returns the packet of coefficients starting at the given index. It is your responsibility
      * to ensure that a packet really starts there. This method is only available on expressions having the
      * PacketAccessBit and the LinearAccessBit.
      *
      * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
      * starting at an address which is a multiple of the packet size.
      */

    template<int LoadMode>
    EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
    {
      eigen_internal_assert(index >= 0 && index < size());
      return derived().template packet<LoadMode>(index);
    }

  protected:
    // explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase.
    // But some methods are only available in the DirectAccess case.
    // So we add dummy methods here with these names, so that "using... " doesn't fail.
    // It's not private so that the child class DenseBase can access them, and it's not public
    // either since it's an implementation detail, so has to be protected.
    void coeffRef();
    void coeffRefByOuterInner();
    void writePacket();
    void writePacketByOuterInner();
    void copyCoeff();
    void copyCoeffByOuterInner();
    void copyPacket();
    void copyPacketByOuterInner();
    void stride();
    void innerStride();
    void outerStride();
    void rowStride();
    void colStride();
};

/** \brief Base class providing read/write coefficient access to matrices and arrays.
  * \ingroup Core_Module
  * \tparam Derived Type of the derived class
  * \tparam #WriteAccessors Constant indicating read/write access
  *
  * This class defines the non-const \c operator() function and friends, which can be used to write specific
  * entries of a matrix or array. This class inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which
  * defines the const variant for reading specific entries.
  * 
  * \sa DenseCoeffsBase<Derived, DirectAccessors>, \ref TopicClassHierarchy
  */
template<typename Derived>
class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
  public:

    typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;

    typedef typename internal::traits<Derived>::StorageKind StorageKind;
    typedef typename internal::traits<Derived>::Index Index;
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    using Base::coeff;
    using Base::rows;
    using Base::cols;
    using Base::size;
    using Base::derived;
    using Base::rowIndexByOuterInner;
    using Base::colIndexByOuterInner;
    using Base::operator[];
    using Base::operator();
    using Base::x;
    using Base::y;
    using Base::z;
    using Base::w;

    /** Short version: don't use this function, use
      * \link operator()(Index,Index) \endlink instead.
      *
      * Long version: this function is similar to
      * \link operator()(Index,Index) \endlink, but without the assertion.
      * Use this for limiting the performance cost of debugging code when doing
      * repeated coefficient access. Only use this when it is guaranteed that the
      * parameters \a row and \a col are in range.
      *
      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
      * function equivalent to \link operator()(Index,Index) \endlink.
      *
      * \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index)
      */
    EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
    {
      eigen_internal_assert(row >= 0 && row < rows()
                        && col >= 0 && col < cols());
      return derived().coeffRef(row, col);
    }

    EIGEN_STRONG_INLINE Scalar&
    coeffRefByOuterInner(Index outer, Index inner)
    {
      return coeffRef(rowIndexByOuterInner(outer, inner),
                      colIndexByOuterInner(outer, inner));
    }

    /** \returns a reference to the coefficient at given the given row and column.
      *
      * \sa operator[](Index)
      */

    EIGEN_STRONG_INLINE Scalar&
    operator()(Index row, Index col)
    {
      eigen_assert(row >= 0 && row < rows()
          && col >= 0 && col < cols());
      return derived().coeffRef(row, col);
    }


    /** Short version: don't use this function, use
      * \link operator[](Index) \endlink instead.
      *
      * Long version: this function is similar to
      * \link operator[](Index) \endlink, but without the assertion.
      * Use this for limiting the performance cost of debugging code when doing
      * repeated coefficient access. Only use this when it is guaranteed that the
      * parameters \a row and \a col are in range.
      *
      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
      * function equivalent to \link operator[](Index) \endlink.
      *
      * \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index)
      */

    EIGEN_STRONG_INLINE Scalar&
    coeffRef(Index index)
    {
      eigen_internal_assert(index >= 0 && index < size());
      return derived().coeffRef(index);
    }

    /** \returns a reference to the coefficient at given index.
      *
      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
      *
      * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
      */

    EIGEN_STRONG_INLINE Scalar&
    operator[](Index index)
    {
      #ifndef EIGEN2_SUPPORT
      EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
                          THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
      #endif
      eigen_assert(index >= 0 && index < size());
      return derived().coeffRef(index);
    }

    /** \returns a reference to the coefficient at given index.
      *
      * This is synonymous to operator[](Index).
      *
      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
      *
      * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
      */

    EIGEN_STRONG_INLINE Scalar&
    operator()(Index index)
    {
      eigen_assert(index >= 0 && index < size());
      return derived().coeffRef(index);
    }

    /** equivalent to operator[](0).  */

    EIGEN_STRONG_INLINE Scalar&
    x() { return (*this)[0]; }

    /** equivalent to operator[](1).  */

    EIGEN_STRONG_INLINE Scalar&
    y() { return (*this)[1]; }

    /** equivalent to operator[](2).  */

    EIGEN_STRONG_INLINE Scalar&
    z() { return (*this)[2]; }

    /** equivalent to operator[](3).  */

    EIGEN_STRONG_INLINE Scalar&
    w() { return (*this)[3]; }

    /** \internal
      * Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility
      * to ensure that a packet really starts there. This method is only available on expressions having the
      * PacketAccessBit.
      *
      * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
      * starting at an address which is a multiple of the packet size.
      */

    template<int StoreMode>
    EIGEN_STRONG_INLINE void writePacket
Don Gagne's avatar
Don Gagne committed
430
    (Index row, Index col, const typename internal::packet_traits<Scalar>::type& val)
LM's avatar
LM committed
431 432 433
    {
      eigen_internal_assert(row >= 0 && row < rows()
                        && col >= 0 && col < cols());
Don Gagne's avatar
Don Gagne committed
434
      derived().template writePacket<StoreMode>(row,col,val);
LM's avatar
LM committed
435 436 437 438 439 440
    }


    /** \internal */
    template<int StoreMode>
    EIGEN_STRONG_INLINE void writePacketByOuterInner
Don Gagne's avatar
Don Gagne committed
441
    (Index outer, Index inner, const typename internal::packet_traits<Scalar>::type& val)
LM's avatar
LM committed
442 443 444
    {
      writePacket<StoreMode>(rowIndexByOuterInner(outer, inner),
                            colIndexByOuterInner(outer, inner),
Don Gagne's avatar
Don Gagne committed
445
                            val);
LM's avatar
LM committed
446 447 448 449 450 451 452 453 454 455 456 457 458
    }

    /** \internal
      * Stores the given packet of coefficients, at the given index in this expression. It is your responsibility
      * to ensure that a packet really starts there. This method is only available on expressions having the
      * PacketAccessBit and the LinearAccessBit.
      *
      * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
      * starting at an address which is a multiple of the packet size.
      */
    template<int StoreMode>
    EIGEN_STRONG_INLINE void writePacket
Don Gagne's avatar
Don Gagne committed
459
    (Index index, const typename internal::packet_traits<Scalar>::type& val)
LM's avatar
LM committed
460 461
    {
      eigen_internal_assert(index >= 0 && index < size());
Don Gagne's avatar
Don Gagne committed
462
      derived().template writePacket<StoreMode>(index,val);
LM's avatar
LM committed
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
    }

#ifndef EIGEN_PARSED_BY_DOXYGEN

    /** \internal Copies the coefficient at position (row,col) of other into *this.
      *
      * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
      * with usual assignments.
      *
      * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
      */

    template<typename OtherDerived>
    EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
    {
      eigen_internal_assert(row >= 0 && row < rows()
                        && col >= 0 && col < cols());
      derived().coeffRef(row, col) = other.derived().coeff(row, col);
    }

    /** \internal Copies the coefficient at the given index of other into *this.
      *
      * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
      * with usual assignments.
      *
      * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
      */

    template<typename OtherDerived>
    EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
    {
      eigen_internal_assert(index >= 0 && index < size());
      derived().coeffRef(index) = other.derived().coeff(index);
    }


    template<typename OtherDerived>
    EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
    {
      const Index row = rowIndexByOuterInner(outer,inner);
      const Index col = colIndexByOuterInner(outer,inner);
      // derived() is important here: copyCoeff() may be reimplemented in Derived!
      derived().copyCoeff(row, col, other);
    }

    /** \internal Copies the packet at position (row,col) of other into *this.
      *
      * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
      * with usual assignments.
      *
      * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
      */

    template<typename OtherDerived, int StoreMode, int LoadMode>
    EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
    {
      eigen_internal_assert(row >= 0 && row < rows()
                        && col >= 0 && col < cols());
      derived().template writePacket<StoreMode>(row, col,
        other.derived().template packet<LoadMode>(row, col));
    }

    /** \internal Copies the packet at the given index of other into *this.
      *
      * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
      * with usual assignments.
      *
      * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
      */

    template<typename OtherDerived, int StoreMode, int LoadMode>
    EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase<OtherDerived>& other)
    {
      eigen_internal_assert(index >= 0 && index < size());
      derived().template writePacket<StoreMode>(index,
        other.derived().template packet<LoadMode>(index));
    }

    /** \internal */
    template<typename OtherDerived, int StoreMode, int LoadMode>
    EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
    {
      const Index row = rowIndexByOuterInner(outer,inner);
      const Index col = colIndexByOuterInner(outer,inner);
      // derived() is important here: copyCoeff() may be reimplemented in Derived!
      derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other);
    }
#endif

};

/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
  * \ingroup Core_Module
  * \tparam Derived Type of the derived class
  * \tparam #DirectAccessors Constant indicating direct access
  *
  * This class defines functions to work with strides which can be used to access entries directly. This class
  * inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which defines functions to access entries read-only using
  * \c operator() .
  *
  * \sa \ref TopicClassHierarchy
  */
template<typename Derived>
class DenseCoeffsBase<Derived, DirectAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
  public:

    typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
    typedef typename internal::traits<Derived>::Index Index;
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    using Base::rows;
    using Base::cols;
    using Base::size;
    using Base::derived;

    /** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
      *
      * \sa outerStride(), rowStride(), colStride()
      */
    inline Index innerStride() const
    {
      return derived().innerStride();
    }

    /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
      *          in a column-major matrix).
      *
      * \sa innerStride(), rowStride(), colStride()
      */
    inline Index outerStride() const
    {
      return derived().outerStride();
    }

    // FIXME shall we remove it ?
    inline Index stride() const
    {
      return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
    }

    /** \returns the pointer increment between two consecutive rows.
      *
      * \sa innerStride(), outerStride(), colStride()
      */
    inline Index rowStride() const
    {
      return Derived::IsRowMajor ? outerStride() : innerStride();
    }

    /** \returns the pointer increment between two consecutive columns.
      *
      * \sa innerStride(), outerStride(), rowStride()
      */
    inline Index colStride() const
    {
      return Derived::IsRowMajor ? innerStride() : outerStride();
    }
};

/** \brief Base class providing direct read/write coefficient access to matrices and arrays.
  * \ingroup Core_Module
  * \tparam Derived Type of the derived class
  * \tparam #DirectWriteAccessors Constant indicating direct access
  *
  * This class defines functions to work with strides which can be used to access entries directly. This class
  * inherits DenseCoeffsBase<Derived, WriteAccessors> which defines functions to access entries read/write using
  * \c operator().
  *
  * \sa \ref TopicClassHierarchy
  */
template<typename Derived>
class DenseCoeffsBase<Derived, DirectWriteAccessors>
  : public DenseCoeffsBase<Derived, WriteAccessors>
{
  public:

    typedef DenseCoeffsBase<Derived, WriteAccessors> Base;
    typedef typename internal::traits<Derived>::Index Index;
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    using Base::rows;
    using Base::cols;
    using Base::size;
    using Base::derived;

    /** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
      *
      * \sa outerStride(), rowStride(), colStride()
      */
    inline Index innerStride() const
    {
      return derived().innerStride();
    }

    /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
      *          in a column-major matrix).
      *
      * \sa innerStride(), rowStride(), colStride()
      */
    inline Index outerStride() const
    {
      return derived().outerStride();
    }

    // FIXME shall we remove it ?
    inline Index stride() const
    {
      return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
    }

    /** \returns the pointer increment between two consecutive rows.
      *
      * \sa innerStride(), outerStride(), colStride()
      */
    inline Index rowStride() const
    {
      return Derived::IsRowMajor ? outerStride() : innerStride();
    }

    /** \returns the pointer increment between two consecutive columns.
      *
      * \sa innerStride(), outerStride(), rowStride()
      */
    inline Index colStride() const
    {
      return Derived::IsRowMajor ? innerStride() : outerStride();
    }
};

namespace internal {

template<typename Derived, bool JustReturnZero>
struct first_aligned_impl
{
Don Gagne's avatar
Don Gagne committed
700
  static inline typename Derived::Index run(const Derived&)
LM's avatar
LM committed
701 702 703 704 705 706
  { return 0; }
};

template<typename Derived>
struct first_aligned_impl<Derived, false>
{
Don Gagne's avatar
Don Gagne committed
707
  static inline typename Derived::Index run(const Derived& m)
LM's avatar
LM committed
708
  {
Don Gagne's avatar
Don Gagne committed
709
    return internal::first_aligned(&m.const_cast_derived().coeffRef(0,0), m.size());
LM's avatar
LM committed
710 711 712 713 714 715 716 717 718
  }
};

/** \internal \returns the index of the first element of the array that is well aligned for vectorization.
  *
  * There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more
  * documentation.
  */
template<typename Derived>
Don Gagne's avatar
Don Gagne committed
719
static inline typename Derived::Index first_aligned(const Derived& m)
LM's avatar
LM committed
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
{
  return first_aligned_impl
          <Derived, (Derived::Flags & AlignedBit) || !(Derived::Flags & DirectAccessBit)>
          ::run(m);
}

template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct inner_stride_at_compile_time
{
  enum { ret = traits<Derived>::InnerStrideAtCompileTime };
};

template<typename Derived>
struct inner_stride_at_compile_time<Derived, false>
{
  enum { ret = 0 };
};

template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct outer_stride_at_compile_time
{
  enum { ret = traits<Derived>::OuterStrideAtCompileTime };
};

template<typename Derived>
struct outer_stride_at_compile_time<Derived, false>
{
  enum { ret = 0 };
};

} // end namespace internal

Don Gagne's avatar
Don Gagne committed
752 753
} // end namespace Eigen

LM's avatar
LM committed
754
#endif // EIGEN_DENSECOEFFSBASE_H