node_hash_map.h 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: node_hash_map.h
// -----------------------------------------------------------------------------
//
// An `absl::node_hash_map<K, V>` is an unordered associative container of
// unique keys and associated values designed to be a more efficient replacement
// for `std::unordered_map`. Like `unordered_map`, search, insertion, and
// deletion of map elements can be done as an `O(1)` operation. However,
// `node_hash_map` (and other unordered associative containers known as the
// collection of Abseil "Swiss tables") contain other optimizations that result
// in both memory and computation advantages.
//
// In most cases, your default choice for a hash map should be a map of type
// `flat_hash_map`. However, if you need pointer stability and cannot store
// a `flat_hash_map` with `unique_ptr` elements, a `node_hash_map` may be a
// valid alternative. As well, if you are migrating your code from using
// `std::unordered_map`, a `node_hash_map` provides a more straightforward
// migration, because it guarantees pointer stability. Consider migrating to
// `node_hash_map` and perhaps converting to a more efficient `flat_hash_map`
// upon further review.

#ifndef ABSL_CONTAINER_NODE_HASH_MAP_H_
#define ABSL_CONTAINER_NODE_HASH_MAP_H_

#include <tuple>
#include <type_traits>
#include <utility>

#include "absl/algorithm/container.h"
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/hash_function_defaults.h"  // IWYU pragma: export
#include "absl/container/internal/node_hash_policy.h"
#include "absl/container/internal/raw_hash_map.h"  // IWYU pragma: export
#include "absl/memory/memory.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
template <class Key, class Value>
class NodeHashMapPolicy;
}  // namespace container_internal

// -----------------------------------------------------------------------------
// absl::node_hash_map
// -----------------------------------------------------------------------------
//
// An `absl::node_hash_map<K, V>` is an unordered associative container which
// has been optimized for both speed and memory footprint in most common use
// cases. Its interface is similar to that of `std::unordered_map<K, V>` with
// the following notable differences:
//
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
//   `insert()`, provided that the map is provided a compatible heterogeneous
//   hashing function and equality operator.
// * Contains a `capacity()` member function indicating the number of element
//   slots (open, deleted, and empty) within the hash map.
// * Returns `void` from the `erase(iterator)` overload.
//
// By default, `node_hash_map` uses the `absl::Hash` hashing framework.
// All fundamental and Abseil types that support the `absl::Hash` framework have
// a compatible equality operator for comparing insertions into `node_hash_map`.
// If your type is not yet supported by the `absl::Hash` framework, see
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
// types.
//
// Example:
//
//   // Create a node hash map of three strings (that map to strings)
//   absl::node_hash_map<std::string, std::string> ducks =
//     {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
//
//  // Insert a new element into the node hash map
//  ducks.insert({"d", "donald"}};
//
//  // Force a rehash of the node hash map
//  ducks.rehash(0);
//
//  // Find the element with the key "b"
//  std::string search_key = "b";
//  auto result = ducks.find(search_key);
//  if (result != ducks.end()) {
//    std::cout << "Result: " << result->second << std::endl;
//  }
template <class Key, class Value,
          class Hash = absl::container_internal::hash_default_hash<Key>,
          class Eq = absl::container_internal::hash_default_eq<Key>,
          class Alloc = std::allocator<std::pair<const Key, Value>>>
class node_hash_map
    : public absl::container_internal::raw_hash_map<
          absl::container_internal::NodeHashMapPolicy<Key, Value>, Hash, Eq,
          Alloc> {
  using Base = typename node_hash_map::raw_hash_map;

 public:
  // Constructors and Assignment Operators
  //
  // A node_hash_map supports the same overload set as `std::unordered_map`
  // for construction and assignment:
  //
  // *  Default constructor
  //
  //    // No allocation for the table's elements is made.
  //    absl::node_hash_map<int, std::string> map1;
  //
  // * Initializer List constructor
  //
  //   absl::node_hash_map<int, std::string> map2 =
  //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
  //
  // * Copy constructor
  //
  //   absl::node_hash_map<int, std::string> map3(map2);
  //
  // * Copy assignment operator
  //
  //  // Hash functor and Comparator are copied as well
  //  absl::node_hash_map<int, std::string> map4;
  //  map4 = map3;
  //
  // * Move constructor
  //
  //   // Move is guaranteed efficient
  //   absl::node_hash_map<int, std::string> map5(std::move(map4));
  //
  // * Move assignment operator
  //
  //   // May be efficient if allocators are compatible
  //   absl::node_hash_map<int, std::string> map6;
  //   map6 = std::move(map5);
  //
  // * Range constructor
  //
  //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
  //   absl::node_hash_map<int, std::string> map7(v.begin(), v.end());
  node_hash_map() {}
  using Base::Base;

  // node_hash_map::begin()
  //
  // Returns an iterator to the beginning of the `node_hash_map`.
  using Base::begin;

  // node_hash_map::cbegin()
  //
  // Returns a const iterator to the beginning of the `node_hash_map`.
  using Base::cbegin;

  // node_hash_map::cend()
  //
  // Returns a const iterator to the end of the `node_hash_map`.
  using Base::cend;

  // node_hash_map::end()
  //
  // Returns an iterator to the end of the `node_hash_map`.
  using Base::end;

  // node_hash_map::capacity()
  //
  // Returns the number of element slots (assigned, deleted, and empty)
  // available within the `node_hash_map`.
  //
  // NOTE: this member function is particular to `absl::node_hash_map` and is
  // not provided in the `std::unordered_map` API.
  using Base::capacity;

  // node_hash_map::empty()
  //
  // Returns whether or not the `node_hash_map` is empty.
  using Base::empty;

  // node_hash_map::max_size()
  //
  // Returns the largest theoretical possible number of elements within a
  // `node_hash_map` under current memory constraints. This value can be thought
  // of as the largest value of `std::distance(begin(), end())` for a
  // `node_hash_map<K, V>`.
  using Base::max_size;

  // node_hash_map::size()
  //
  // Returns the number of elements currently within the `node_hash_map`.
  using Base::size;

  // node_hash_map::clear()
  //
  // Removes all elements from the `node_hash_map`. Invalidates any references,
  // pointers, or iterators referring to contained elements.
  //
  // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
  // the underlying buffer call `erase(begin(), end())`.
  using Base::clear;

  // node_hash_map::erase()
  //
  // Erases elements within the `node_hash_map`. Erasing does not trigger a
  // rehash. Overloads are listed below.
  //
  // void erase(const_iterator pos):
  //
  //   Erases the element at `position` of the `node_hash_map`, returning
  //   `void`.
  //
  //   NOTE: this return behavior is different than that of STL containers in
  //   general and `std::unordered_map` in particular.
  //
  // iterator erase(const_iterator first, const_iterator last):
  //
  //   Erases the elements in the open interval [`first`, `last`), returning an
  //   iterator pointing to `last`.
  //
  // size_type erase(const key_type& key):
  //
  //   Erases the element with the matching key, if it exists.
  using Base::erase;

  // node_hash_map::insert()
  //
  // Inserts an element of the specified value into the `node_hash_map`,
  // returning an iterator pointing to the newly inserted element, provided that
  // an element with the given key does not already exist. If rehashing occurs
  // due to the insertion, all iterators are invalidated. Overloads are listed
  // below.
  //
  // std::pair<iterator,bool> insert(const init_type& value):
  //
  //   Inserts a value into the `node_hash_map`. Returns a pair consisting of an
  //   iterator to the inserted element (or to the element that prevented the
  //   insertion) and a `bool` denoting whether the insertion took place.
  //
  // std::pair<iterator,bool> insert(T&& value):
  // std::pair<iterator,bool> insert(init_type&& value):
  //
  //   Inserts a moveable value into the `node_hash_map`. Returns a `std::pair`
  //   consisting of an iterator to the inserted element (or to the element that
  //   prevented the insertion) and a `bool` denoting whether the insertion took
  //   place.
  //
  // iterator insert(const_iterator hint, const init_type& value):
  // iterator insert(const_iterator hint, T&& value):
  // iterator insert(const_iterator hint, init_type&& value);
  //
  //   Inserts a value, using the position of `hint` as a non-binding suggestion
  //   for where to begin the insertion search. Returns an iterator to the
  //   inserted element, or to the existing element that prevented the
  //   insertion.
  //
  // void insert(InputIterator first, InputIterator last):
  //
  //   Inserts a range of values [`first`, `last`).
  //
  //   NOTE: Although the STL does not specify which element may be inserted if
  //   multiple keys compare equivalently, for `node_hash_map` we guarantee the
  //   first match is inserted.
  //
  // void insert(std::initializer_list<init_type> ilist):
  //
  //   Inserts the elements within the initializer list `ilist`.
  //
  //   NOTE: Although the STL does not specify which element may be inserted if
  //   multiple keys compare equivalently within the initializer list, for
  //   `node_hash_map` we guarantee the first match is inserted.
  using Base::insert;

  // node_hash_map::insert_or_assign()
  //
  // Inserts an element of the specified value into the `node_hash_map` provided
  // that a value with the given key does not already exist, or replaces it with
  // the element value if a key for that value already exists, returning an
  // iterator pointing to the newly inserted element. If rehashing occurs due to
  // the insertion, all iterators are invalidated. Overloads are listed
  // below.
  //
  // std::pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
  // std::pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
  //
  //   Inserts/Assigns (or moves) the element of the specified key into the
  //   `node_hash_map`.
  //
  // iterator insert_or_assign(const_iterator hint,
  //                           const init_type& k, T&& obj):
  // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
  //
  //   Inserts/Assigns (or moves) the element of the specified key into the
  //   `node_hash_map` using the position of `hint` as a non-binding suggestion
  //   for where to begin the insertion search.
  using Base::insert_or_assign;

  // node_hash_map::emplace()
  //
  // Inserts an element of the specified value by constructing it in-place
  // within the `node_hash_map`, provided that no element with the given key
  // already exists.
  //
  // The element may be constructed even if there already is an element with the
  // key in the container, in which case the newly constructed element will be
  // destroyed immediately. Prefer `try_emplace()` unless your key is not
  // copyable or moveable.
  //
  // If rehashing occurs due to the insertion, all iterators are invalidated.
  using Base::emplace;

  // node_hash_map::emplace_hint()
  //
  // Inserts an element of the specified value by constructing it in-place
  // within the `node_hash_map`, using the position of `hint` as a non-binding
  // suggestion for where to begin the insertion search, and only inserts
  // provided that no element with the given key already exists.
  //
  // The element may be constructed even if there already is an element with the
  // key in the container, in which case the newly constructed element will be
  // destroyed immediately. Prefer `try_emplace()` unless your key is not
  // copyable or moveable.
  //
  // If rehashing occurs due to the insertion, all iterators are invalidated.
  using Base::emplace_hint;

  // node_hash_map::try_emplace()
  //
  // Inserts an element of the specified value by constructing it in-place
  // within the `node_hash_map`, provided that no element with the given key
  // already exists. Unlike `emplace()`, if an element with the given key
  // already exists, we guarantee that no element is constructed.
  //
  // If rehashing occurs due to the insertion, all iterators are invalidated.
  // Overloads are listed below.
  //
  //   std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
  //   std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
  //
  // Inserts (via copy or move) the element of the specified key into the
  // `node_hash_map`.
  //
  //   iterator try_emplace(const_iterator hint,
  //                        const init_type& k, Args&&... args):
  //   iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args):
  //
  // Inserts (via copy or move) the element of the specified key into the
  // `node_hash_map` using the position of `hint` as a non-binding suggestion
  // for where to begin the insertion search.
  //
  // All `try_emplace()` overloads make the same guarantees regarding rvalue
  // arguments as `std::unordered_map::try_emplace()`, namely that these
  // functions will not move from rvalue arguments if insertions do not happen.
  using Base::try_emplace;

  // node_hash_map::extract()
  //
  // Extracts the indicated element, erasing it in the process, and returns it
  // as a C++17-compatible node handle. Overloads are listed below.
  //
  // node_type extract(const_iterator position):
  //
  //   Extracts the key,value pair of the element at the indicated position and
  //   returns a node handle owning that extracted data.
  //
  // node_type extract(const key_type& x):
  //
  //   Extracts the key,value pair of the element with a key matching the passed
  //   key value and returns a node handle owning that extracted data. If the
  //   `node_hash_map` does not contain an element with a matching key, this
  //   function returns an empty node handle.
  using Base::extract;

  // node_hash_map::merge()
  //
  // Extracts elements from a given `source` node hash map into this
  // `node_hash_map`. If the destination `node_hash_map` already contains an
  // element with an equivalent key, that element is not extracted.
  using Base::merge;

  // node_hash_map::swap(node_hash_map& other)
  //
  // Exchanges the contents of this `node_hash_map` with those of the `other`
  // node hash map, avoiding invocation of any move, copy, or swap operations on
  // individual elements.
  //
  // All iterators and references on the `node_hash_map` remain valid, excepting
  // for the past-the-end iterator, which is invalidated.
  //
  // `swap()` requires that the node hash map's hashing and key equivalence
  // functions be Swappable, and are exchaged using unqualified calls to
  // non-member `swap()`. If the map's allocator has
  // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
  // set to `true`, the allocators are also exchanged using an unqualified call
  // to non-member `swap()`; otherwise, the allocators are not swapped.
  using Base::swap;

  // node_hash_map::rehash(count)
  //
  // Rehashes the `node_hash_map`, setting the number of slots to be at least
  // the passed value. If the new number of slots increases the load factor more
  // than the current maximum load factor
  // (`count` < `size()` / `max_load_factor()`), then the new number of slots
  // will be at least `size()` / `max_load_factor()`.
  //
  // To force a rehash, pass rehash(0).
  using Base::rehash;

  // node_hash_map::reserve(count)
  //
  // Sets the number of slots in the `node_hash_map` to the number needed to
  // accommodate at least `count` total elements without exceeding the current
  // maximum load factor, and may rehash the container if needed.
  using Base::reserve;

  // node_hash_map::at()
  //
  // Returns a reference to the mapped value of the element with key equivalent
  // to the passed key.
  using Base::at;

  // node_hash_map::contains()
  //
  // Determines whether an element with a key comparing equal to the given `key`
  // exists within the `node_hash_map`, returning `true` if so or `false`
  // otherwise.
  using Base::contains;

  // node_hash_map::count(const Key& key) const
  //
  // Returns the number of elements with a key comparing equal to the given
  // `key` within the `node_hash_map`. note that this function will return
  // either `1` or `0` since duplicate keys are not allowed within a
  // `node_hash_map`.
  using Base::count;

  // node_hash_map::equal_range()
  //
  // Returns a closed range [first, last], defined by a `std::pair` of two
  // iterators, containing all elements with the passed key in the
  // `node_hash_map`.
  using Base::equal_range;

  // node_hash_map::find()
  //
  // Finds an element with the passed `key` within the `node_hash_map`.
  using Base::find;

  // node_hash_map::operator[]()
  //
  // Returns a reference to the value mapped to the passed key within the
  // `node_hash_map`, performing an `insert()` if the key does not already
  // exist. If an insertion occurs and results in a rehashing of the container,
  // all iterators are invalidated. Otherwise iterators are not affected and
  // references are not invalidated. Overloads are listed below.
  //
  // T& operator[](const Key& key):
  //
  //   Inserts an init_type object constructed in-place if the element with the
  //   given key does not exist.
  //
  // T& operator[](Key&& key):
  //
  //   Inserts an init_type object constructed in-place provided that an element
  //   with the given key does not exist.
  using Base::operator[];

  // node_hash_map::bucket_count()
  //
  // Returns the number of "buckets" within the `node_hash_map`.
  using Base::bucket_count;

  // node_hash_map::load_factor()
  //
  // Returns the current load factor of the `node_hash_map` (the average number
  // of slots occupied with a value within the hash map).
  using Base::load_factor;

  // node_hash_map::max_load_factor()
  //
  // Manages the maximum load factor of the `node_hash_map`. Overloads are
  // listed below.
  //
  // float node_hash_map::max_load_factor()
  //
  //   Returns the current maximum load factor of the `node_hash_map`.
  //
  // void node_hash_map::max_load_factor(float ml)
  //
  //   Sets the maximum load factor of the `node_hash_map` to the passed value.
  //
  //   NOTE: This overload is provided only for API compatibility with the STL;
  //   `node_hash_map` will ignore any set load factor and manage its rehashing
  //   internally as an implementation detail.
  using Base::max_load_factor;

  // node_hash_map::get_allocator()
  //
  // Returns the allocator function associated with this `node_hash_map`.
  using Base::get_allocator;

  // node_hash_map::hash_function()
  //
  // Returns the hashing function used to hash the keys within this
  // `node_hash_map`.
  using Base::hash_function;

  // node_hash_map::key_eq()
  //
  // Returns the function used for comparing keys equality.
  using Base::key_eq;

  ABSL_DEPRECATED("Call `hash_function()` instead.")
  typename Base::hasher hash_funct() { return this->hash_function(); }

  ABSL_DEPRECATED("Call `rehash()` instead.")
  void resize(typename Base::size_type hint) { this->rehash(hint); }
};

// erase_if(node_hash_map<>, Pred)
//
// Erases all elements that satisfy the predicate `pred` from the container `c`.
template <typename K, typename V, typename H, typename E, typename A,
          typename Predicate>
void erase_if(node_hash_map<K, V, H, E, A>& c, Predicate pred) {
  container_internal::EraseIf(pred, &c);
}

namespace container_internal {

template <class Key, class Value>
class NodeHashMapPolicy
    : public absl::container_internal::node_hash_policy<
          std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>> {
  using value_type = std::pair<const Key, Value>;

 public:
  using key_type = Key;
  using mapped_type = Value;
  using init_type = std::pair</*non const*/ key_type, mapped_type>;

  template <class Allocator, class... Args>
  static value_type* new_element(Allocator* alloc, Args&&... args) {
    using PairAlloc = typename absl::allocator_traits<
        Allocator>::template rebind_alloc<value_type>;
    PairAlloc pair_alloc(*alloc);
    value_type* res =
        absl::allocator_traits<PairAlloc>::allocate(pair_alloc, 1);
    absl::allocator_traits<PairAlloc>::construct(pair_alloc, res,
                                                 std::forward<Args>(args)...);
    return res;
  }

  template <class Allocator>
  static void delete_element(Allocator* alloc, value_type* pair) {
    using PairAlloc = typename absl::allocator_traits<
        Allocator>::template rebind_alloc<value_type>;
    PairAlloc pair_alloc(*alloc);
    absl::allocator_traits<PairAlloc>::destroy(pair_alloc, pair);
    absl::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1);
  }

  template <class F, class... Args>
  static decltype(absl::container_internal::DecomposePair(
      std::declval<F>(), std::declval<Args>()...))
  apply(F&& f, Args&&... args) {
    return absl::container_internal::DecomposePair(std::forward<F>(f),
                                                   std::forward<Args>(args)...);
  }

  static size_t element_space_used(const value_type*) {
    return sizeof(value_type);
  }

  static Value& value(value_type* elem) { return elem->second; }
  static const Value& value(const value_type* elem) { return elem->second; }
};
}  // namespace container_internal

namespace container_algorithm_internal {

// Specialization of trait in absl/algorithm/container.h
template <class Key, class T, class Hash, class KeyEqual, class Allocator>
struct IsUnorderedContainer<
    absl::node_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};

}  // namespace container_algorithm_internal

ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_CONTAINER_NODE_HASH_MAP_H_