inlined_vector.h 31 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: inlined_vector.h
// -----------------------------------------------------------------------------
//
// This header file contains the declaration and definition of an "inlined
// vector" which behaves in an equivalent fashion to a `std::vector`, except
// that storage for small sequences of the vector are provided inline without
// requiring any heap allocation.
//
// An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of
// its template parameters. Instances where `size() <= N` hold contained
// elements in inline space. Typically `N` is very small so that sequences that
// are expected to be short do not require allocations.
//
// An `absl::InlinedVector` does not usually require a specific allocator. If
// the inlined vector grows beyond its initial constraints, it will need to
// allocate (as any normal `std::vector` would). This is usually performed with
// the default allocator (defined as `std::allocator<T>`). Optionally, a custom
// allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.

#ifndef ABSL_CONTAINER_INLINED_VECTOR_H_
#define ABSL_CONTAINER_INLINED_VECTOR_H_

#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <initializer_list>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>

#include "absl/algorithm/algorithm.h"
#include "absl/base/internal/throw_delegate.h"
#include "absl/base/optimization.h"
#include "absl/base/port.h"
#include "absl/container/internal/inlined_vector.h"
#include "absl/memory/memory.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
// -----------------------------------------------------------------------------
// InlinedVector
// -----------------------------------------------------------------------------
//
// An `absl::InlinedVector` is designed to be a drop-in replacement for
// `std::vector` for use cases where the vector's size is sufficiently small
// that it can be inlined. If the inlined vector does grow beyond its estimated
// capacity, it will trigger an initial allocation on the heap, and will behave
// as a `std:vector`. The API of the `absl::InlinedVector` within this file is
// designed to cover the same API footprint as covered by `std::vector`.
template <typename T, size_t N, typename A = std::allocator<T>>
class InlinedVector {
  static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity.");

  using Storage = inlined_vector_internal::Storage<T, N, A>;

  using AllocatorTraits = typename Storage::AllocatorTraits;
  using RValueReference = typename Storage::RValueReference;
  using MoveIterator = typename Storage::MoveIterator;
  using IsMemcpyOk = typename Storage::IsMemcpyOk;

  template <typename Iterator>
  using IteratorValueAdapter =
      typename Storage::template IteratorValueAdapter<Iterator>;
  using CopyValueAdapter = typename Storage::CopyValueAdapter;
  using DefaultValueAdapter = typename Storage::DefaultValueAdapter;

  template <typename Iterator>
  using EnableIfAtLeastForwardIterator = absl::enable_if_t<
      inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
  template <typename Iterator>
  using DisableIfAtLeastForwardIterator = absl::enable_if_t<
      !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;

 public:
  using allocator_type = typename Storage::allocator_type;
  using value_type = typename Storage::value_type;
  using pointer = typename Storage::pointer;
  using const_pointer = typename Storage::const_pointer;
  using size_type = typename Storage::size_type;
  using difference_type = typename Storage::difference_type;
  using reference = typename Storage::reference;
  using const_reference = typename Storage::const_reference;
  using iterator = typename Storage::iterator;
  using const_iterator = typename Storage::const_iterator;
  using reverse_iterator = typename Storage::reverse_iterator;
  using const_reverse_iterator = typename Storage::const_reverse_iterator;

  // ---------------------------------------------------------------------------
  // InlinedVector Constructors and Destructor
  // ---------------------------------------------------------------------------

  // Creates an empty inlined vector with a value-initialized allocator.
  InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}

  // Creates an empty inlined vector with a copy of `alloc`.
  explicit InlinedVector(const allocator_type& alloc) noexcept
      : storage_(alloc) {}

  // Creates an inlined vector with `n` copies of `value_type()`.
  explicit InlinedVector(size_type n,
                         const allocator_type& alloc = allocator_type())
      : storage_(alloc) {
    storage_.Initialize(DefaultValueAdapter(), n);
  }

  // Creates an inlined vector with `n` copies of `v`.
  InlinedVector(size_type n, const_reference v,
                const allocator_type& alloc = allocator_type())
      : storage_(alloc) {
    storage_.Initialize(CopyValueAdapter(v), n);
  }

  // Creates an inlined vector with copies of the elements of `list`.
  InlinedVector(std::initializer_list<value_type> list,
                const allocator_type& alloc = allocator_type())
      : InlinedVector(list.begin(), list.end(), alloc) {}

  // Creates an inlined vector with elements constructed from the provided
  // forward iterator range [`first`, `last`).
  //
  // NOTE: the `enable_if` prevents ambiguous interpretation between a call to
  // this constructor with two integral arguments and a call to the above
  // `InlinedVector(size_type, const_reference)` constructor.
  template <typename ForwardIterator,
            EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
  InlinedVector(ForwardIterator first, ForwardIterator last,
                const allocator_type& alloc = allocator_type())
      : storage_(alloc) {
    storage_.Initialize(IteratorValueAdapter<ForwardIterator>(first),
                        std::distance(first, last));
  }

  // Creates an inlined vector with elements constructed from the provided input
  // iterator range [`first`, `last`).
  template <typename InputIterator,
            DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
  InlinedVector(InputIterator first, InputIterator last,
                const allocator_type& alloc = allocator_type())
      : storage_(alloc) {
    std::copy(first, last, std::back_inserter(*this));
  }

  // Creates an inlined vector by copying the contents of `other` using
  // `other`'s allocator.
  InlinedVector(const InlinedVector& other)
      : InlinedVector(other, *other.storage_.GetAllocPtr()) {}

  // Creates an inlined vector by copying the contents of `other` using `alloc`.
  InlinedVector(const InlinedVector& other, const allocator_type& alloc)
      : storage_(alloc) {
    if (IsMemcpyOk::value && !other.storage_.GetIsAllocated()) {
      storage_.MemcpyFrom(other.storage_);
    } else {
      storage_.Initialize(IteratorValueAdapter<const_pointer>(other.data()),
                          other.size());
    }
  }

  // Creates an inlined vector by moving in the contents of `other` without
  // allocating. If `other` contains allocated memory, the newly-created inlined
  // vector will take ownership of that memory. However, if `other` does not
  // contain allocated memory, the newly-created inlined vector will perform
  // element-wise move construction of the contents of `other`.
  //
  // NOTE: since no allocation is performed for the inlined vector in either
  // case, the `noexcept(...)` specification depends on whether moving the
  // underlying objects can throw. It is assumed assumed that...
  //  a) move constructors should only throw due to allocation failure.
  //  b) if `value_type`'s move constructor allocates, it uses the same
  //     allocation function as the inlined vector's allocator.
  // Thus, the move constructor is non-throwing if the allocator is non-throwing
  // or `value_type`'s move constructor is specified as `noexcept`.
  InlinedVector(InlinedVector&& other) noexcept(
      absl::allocator_is_nothrow<allocator_type>::value ||
      std::is_nothrow_move_constructible<value_type>::value)
      : storage_(*other.storage_.GetAllocPtr()) {
    if (IsMemcpyOk::value) {
      storage_.MemcpyFrom(other.storage_);

      other.storage_.SetInlinedSize(0);
    } else if (other.storage_.GetIsAllocated()) {
      storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
                                other.storage_.GetAllocatedCapacity());
      storage_.SetAllocatedSize(other.storage_.GetSize());

      other.storage_.SetInlinedSize(0);
    } else {
      IteratorValueAdapter<MoveIterator> other_values(
          MoveIterator(other.storage_.GetInlinedData()));

      inlined_vector_internal::ConstructElements(
          storage_.GetAllocPtr(), storage_.GetInlinedData(), &other_values,
          other.storage_.GetSize());

      storage_.SetInlinedSize(other.storage_.GetSize());
    }
  }

  // Creates an inlined vector by moving in the contents of `other` with a copy
  // of `alloc`.
  //
  // NOTE: if `other`'s allocator is not equal to `alloc`, even if `other`
  // contains allocated memory, this move constructor will still allocate. Since
  // allocation is performed, this constructor can only be `noexcept` if the
  // specified allocator is also `noexcept`.
  InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
      absl::allocator_is_nothrow<allocator_type>::value)
      : storage_(alloc) {
    if (IsMemcpyOk::value) {
      storage_.MemcpyFrom(other.storage_);

      other.storage_.SetInlinedSize(0);
    } else if ((*storage_.GetAllocPtr() == *other.storage_.GetAllocPtr()) &&
               other.storage_.GetIsAllocated()) {
      storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
                                other.storage_.GetAllocatedCapacity());
      storage_.SetAllocatedSize(other.storage_.GetSize());

      other.storage_.SetInlinedSize(0);
    } else {
      storage_.Initialize(
          IteratorValueAdapter<MoveIterator>(MoveIterator(other.data())),
          other.size());
    }
  }

  ~InlinedVector() {}

  // ---------------------------------------------------------------------------
  // InlinedVector Member Accessors
  // ---------------------------------------------------------------------------

  // `InlinedVector::empty()`
  //
  // Returns whether the inlined vector contains no elements.
  bool empty() const noexcept { return !size(); }

  // `InlinedVector::size()`
  //
  // Returns the number of elements in the inlined vector.
  size_type size() const noexcept { return storage_.GetSize(); }

  // `InlinedVector::max_size()`
  //
  // Returns the maximum number of elements the inlined vector can hold.
  size_type max_size() const noexcept {
    // One bit of the size storage is used to indicate whether the inlined
    // vector contains allocated memory. As a result, the maximum size that the
    // inlined vector can express is half of the max for `size_type`.
    return (std::numeric_limits<size_type>::max)() / 2;
  }

  // `InlinedVector::capacity()`
  //
  // Returns the number of elements that could be stored in the inlined vector
  // without requiring a reallocation.
  //
  // NOTE: for most inlined vectors, `capacity()` should be equal to the
  // template parameter `N`. For inlined vectors which exceed this capacity,
  // they will no longer be inlined and `capacity()` will equal the capactity of
  // the allocated memory.
  size_type capacity() const noexcept {
    return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
                                     : storage_.GetInlinedCapacity();
  }

  // `InlinedVector::data()`
  //
  // Returns a `pointer` to the elements of the inlined vector. This pointer
  // can be used to access and modify the contained elements.
  //
  // NOTE: only elements within [`data()`, `data() + size()`) are valid.
  pointer data() noexcept {
    return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
                                     : storage_.GetInlinedData();
  }

  // Overload of `InlinedVector::data()` that returns a `const_pointer` to the
  // elements of the inlined vector. This pointer can be used to access but not
  // modify the contained elements.
  //
  // NOTE: only elements within [`data()`, `data() + size()`) are valid.
  const_pointer data() const noexcept {
    return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
                                     : storage_.GetInlinedData();
  }

  // `InlinedVector::operator[](...)`
  //
  // Returns a `reference` to the `i`th element of the inlined vector.
  reference operator[](size_type i) {
    assert(i < size());

    return data()[i];
  }

  // Overload of `InlinedVector::operator[](...)` that returns a
  // `const_reference` to the `i`th element of the inlined vector.
  const_reference operator[](size_type i) const {
    assert(i < size());

    return data()[i];
  }

  // `InlinedVector::at(...)`
  //
  // Returns a `reference` to the `i`th element of the inlined vector.
  //
  // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
  // in both debug and non-debug builds, `std::out_of_range` will be thrown.
  reference at(size_type i) {
    if (ABSL_PREDICT_FALSE(i >= size())) {
      base_internal::ThrowStdOutOfRange(
          "`InlinedVector::at(size_type)` failed bounds check");
    }

    return data()[i];
  }

  // Overload of `InlinedVector::at(...)` that returns a `const_reference` to
  // the `i`th element of the inlined vector.
  //
  // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
  // in both debug and non-debug builds, `std::out_of_range` will be thrown.
  const_reference at(size_type i) const {
    if (ABSL_PREDICT_FALSE(i >= size())) {
      base_internal::ThrowStdOutOfRange(
          "`InlinedVector::at(size_type) const` failed bounds check");
    }

    return data()[i];
  }

  // `InlinedVector::front()`
  //
  // Returns a `reference` to the first element of the inlined vector.
  reference front() {
    assert(!empty());

    return at(0);
  }

  // Overload of `InlinedVector::front()` that returns a `const_reference` to
  // the first element of the inlined vector.
  const_reference front() const {
    assert(!empty());

    return at(0);
  }

  // `InlinedVector::back()`
  //
  // Returns a `reference` to the last element of the inlined vector.
  reference back() {
    assert(!empty());

    return at(size() - 1);
  }

  // Overload of `InlinedVector::back()` that returns a `const_reference` to the
  // last element of the inlined vector.
  const_reference back() const {
    assert(!empty());

    return at(size() - 1);
  }

  // `InlinedVector::begin()`
  //
  // Returns an `iterator` to the beginning of the inlined vector.
  iterator begin() noexcept { return data(); }

  // Overload of `InlinedVector::begin()` that returns a `const_iterator` to
  // the beginning of the inlined vector.
  const_iterator begin() const noexcept { return data(); }

  // `InlinedVector::end()`
  //
  // Returns an `iterator` to the end of the inlined vector.
  iterator end() noexcept { return data() + size(); }

  // Overload of `InlinedVector::end()` that returns a `const_iterator` to the
  // end of the inlined vector.
  const_iterator end() const noexcept { return data() + size(); }

  // `InlinedVector::cbegin()`
  //
  // Returns a `const_iterator` to the beginning of the inlined vector.
  const_iterator cbegin() const noexcept { return begin(); }

  // `InlinedVector::cend()`
  //
  // Returns a `const_iterator` to the end of the inlined vector.
  const_iterator cend() const noexcept { return end(); }

  // `InlinedVector::rbegin()`
  //
  // Returns a `reverse_iterator` from the end of the inlined vector.
  reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }

  // Overload of `InlinedVector::rbegin()` that returns a
  // `const_reverse_iterator` from the end of the inlined vector.
  const_reverse_iterator rbegin() const noexcept {
    return const_reverse_iterator(end());
  }

  // `InlinedVector::rend()`
  //
  // Returns a `reverse_iterator` from the beginning of the inlined vector.
  reverse_iterator rend() noexcept { return reverse_iterator(begin()); }

  // Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator`
  // from the beginning of the inlined vector.
  const_reverse_iterator rend() const noexcept {
    return const_reverse_iterator(begin());
  }

  // `InlinedVector::crbegin()`
  //
  // Returns a `const_reverse_iterator` from the end of the inlined vector.
  const_reverse_iterator crbegin() const noexcept { return rbegin(); }

  // `InlinedVector::crend()`
  //
  // Returns a `const_reverse_iterator` from the beginning of the inlined
  // vector.
  const_reverse_iterator crend() const noexcept { return rend(); }

  // `InlinedVector::get_allocator()`
  //
  // Returns a copy of the inlined vector's allocator.
  allocator_type get_allocator() const { return *storage_.GetAllocPtr(); }

  // ---------------------------------------------------------------------------
  // InlinedVector Member Mutators
  // ---------------------------------------------------------------------------

  // `InlinedVector::operator=(...)`
  //
  // Replaces the elements of the inlined vector with copies of the elements of
  // `list`.
  InlinedVector& operator=(std::initializer_list<value_type> list) {
    assign(list.begin(), list.end());

    return *this;
  }

  // Overload of `InlinedVector::operator=(...)` that replaces the elements of
  // the inlined vector with copies of the elements of `other`.
  InlinedVector& operator=(const InlinedVector& other) {
    if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
      const_pointer other_data = other.data();
      assign(other_data, other_data + other.size());
    }

    return *this;
  }

  // Overload of `InlinedVector::operator=(...)` that moves the elements of
  // `other` into the inlined vector.
  //
  // NOTE: as a result of calling this overload, `other` is left in a valid but
  // unspecified state.
  InlinedVector& operator=(InlinedVector&& other) {
    if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
      if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) {
        inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
                                                 size());
        storage_.DeallocateIfAllocated();
        storage_.MemcpyFrom(other.storage_);

        other.storage_.SetInlinedSize(0);
      } else {
        storage_.Assign(IteratorValueAdapter<MoveIterator>(
                            MoveIterator(other.storage_.GetInlinedData())),
                        other.size());
      }
    }

    return *this;
  }

  // `InlinedVector::assign(...)`
  //
  // Replaces the contents of the inlined vector with `n` copies of `v`.
  void assign(size_type n, const_reference v) {
    storage_.Assign(CopyValueAdapter(v), n);
  }

  // Overload of `InlinedVector::assign(...)` that replaces the contents of the
  // inlined vector with copies of the elements of `list`.
  void assign(std::initializer_list<value_type> list) {
    assign(list.begin(), list.end());
  }

  // Overload of `InlinedVector::assign(...)` to replace the contents of the
  // inlined vector with the range [`first`, `last`).
  //
  // NOTE: this overload is for iterators that are "forward" category or better.
  template <typename ForwardIterator,
            EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
  void assign(ForwardIterator first, ForwardIterator last) {
    storage_.Assign(IteratorValueAdapter<ForwardIterator>(first),
                    std::distance(first, last));
  }

  // Overload of `InlinedVector::assign(...)` to replace the contents of the
  // inlined vector with the range [`first`, `last`).
  //
  // NOTE: this overload is for iterators that are "input" category.
  template <typename InputIterator,
            DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
  void assign(InputIterator first, InputIterator last) {
    size_type i = 0;
    for (; i < size() && first != last; ++i, static_cast<void>(++first)) {
      at(i) = *first;
    }

    erase(data() + i, data() + size());
    std::copy(first, last, std::back_inserter(*this));
  }

  // `InlinedVector::resize(...)`
  //
  // Resizes the inlined vector to contain `n` elements.
  //
  // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
  // is larger than `size()`, new elements are value-initialized.
  void resize(size_type n) { storage_.Resize(DefaultValueAdapter(), n); }

  // Overload of `InlinedVector::resize(...)` that resizes the inlined vector to
  // contain `n` elements.
  //
  // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
  // is larger than `size()`, new elements are copied-constructed from `v`.
  void resize(size_type n, const_reference v) {
    storage_.Resize(CopyValueAdapter(v), n);
  }

  // `InlinedVector::insert(...)`
  //
  // Inserts a copy of `v` at `pos`, returning an `iterator` to the newly
  // inserted element.
  iterator insert(const_iterator pos, const_reference v) {
    return emplace(pos, v);
  }

  // Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using
  // move semantics, returning an `iterator` to the newly inserted element.
  iterator insert(const_iterator pos, RValueReference v) {
    return emplace(pos, std::move(v));
  }

  // Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies
  // of `v` starting at `pos`, returning an `iterator` pointing to the first of
  // the newly inserted elements.
  iterator insert(const_iterator pos, size_type n, const_reference v) {
    assert(pos >= begin());
    assert(pos <= end());

    if (ABSL_PREDICT_TRUE(n != 0)) {
      value_type dealias = v;
      return storage_.Insert(pos, CopyValueAdapter(dealias), n);
    } else {
      return const_cast<iterator>(pos);
    }
  }

  // Overload of `InlinedVector::insert(...)` that inserts copies of the
  // elements of `list` starting at `pos`, returning an `iterator` pointing to
  // the first of the newly inserted elements.
  iterator insert(const_iterator pos, std::initializer_list<value_type> list) {
    return insert(pos, list.begin(), list.end());
  }

  // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
  // `last`) starting at `pos`, returning an `iterator` pointing to the first
  // of the newly inserted elements.
  //
  // NOTE: this overload is for iterators that are "forward" category or better.
  template <typename ForwardIterator,
            EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
  iterator insert(const_iterator pos, ForwardIterator first,
                  ForwardIterator last) {
    assert(pos >= begin());
    assert(pos <= end());

    if (ABSL_PREDICT_TRUE(first != last)) {
      return storage_.Insert(pos, IteratorValueAdapter<ForwardIterator>(first),
                             std::distance(first, last));
    } else {
      return const_cast<iterator>(pos);
    }
  }

  // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
  // `last`) starting at `pos`, returning an `iterator` pointing to the first
  // of the newly inserted elements.
  //
  // NOTE: this overload is for iterators that are "input" category.
  template <typename InputIterator,
            DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
  iterator insert(const_iterator pos, InputIterator first, InputIterator last) {
    assert(pos >= begin());
    assert(pos <= end());

    size_type index = std::distance(cbegin(), pos);
    for (size_type i = index; first != last; ++i, static_cast<void>(++first)) {
      insert(data() + i, *first);
    }

    return iterator(data() + index);
  }

  // `InlinedVector::emplace(...)`
  //
  // Constructs and inserts an element using `args...` in the inlined vector at
  // `pos`, returning an `iterator` pointing to the newly emplaced element.
  template <typename... Args>
  iterator emplace(const_iterator pos, Args&&... args) {
    assert(pos >= begin());
    assert(pos <= end());

    value_type dealias(std::forward<Args>(args)...);
    return storage_.Insert(pos,
                           IteratorValueAdapter<MoveIterator>(
                               MoveIterator(std::addressof(dealias))),
                           1);
  }

  // `InlinedVector::emplace_back(...)`
  //
  // Constructs and inserts an element using `args...` in the inlined vector at
  // `end()`, returning a `reference` to the newly emplaced element.
  template <typename... Args>
  reference emplace_back(Args&&... args) {
    return storage_.EmplaceBack(std::forward<Args>(args)...);
  }

  // `InlinedVector::push_back(...)`
  //
  // Inserts a copy of `v` in the inlined vector at `end()`.
  void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }

  // Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()`
  // using move semantics.
  void push_back(RValueReference v) {
    static_cast<void>(emplace_back(std::move(v)));
  }

  // `InlinedVector::pop_back()`
  //
  // Destroys the element at `back()`, reducing the size by `1`.
  void pop_back() noexcept {
    assert(!empty());

    AllocatorTraits::destroy(*storage_.GetAllocPtr(), data() + (size() - 1));
    storage_.SubtractSize(1);
  }

  // `InlinedVector::erase(...)`
  //
  // Erases the element at `pos`, returning an `iterator` pointing to where the
  // erased element was located.
  //
  // NOTE: may return `end()`, which is not dereferencable.
  iterator erase(const_iterator pos) {
    assert(pos >= begin());
    assert(pos < end());

    return storage_.Erase(pos, pos + 1);
  }

  // Overload of `InlinedVector::erase(...)` that erases every element in the
  // range [`from`, `to`), returning an `iterator` pointing to where the first
  // erased element was located.
  //
  // NOTE: may return `end()`, which is not dereferencable.
  iterator erase(const_iterator from, const_iterator to) {
    assert(from >= begin());
    assert(from <= to);
    assert(to <= end());

    if (ABSL_PREDICT_TRUE(from != to)) {
      return storage_.Erase(from, to);
    } else {
      return const_cast<iterator>(from);
    }
  }

  // `InlinedVector::clear()`
  //
  // Destroys all elements in the inlined vector, setting the size to `0` and
  // deallocating any held memory.
  void clear() noexcept {
    inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
                                             size());
    storage_.DeallocateIfAllocated();

    storage_.SetInlinedSize(0);
  }

  // `InlinedVector::reserve(...)`
  //
  // Ensures that there is enough room for at least `n` elements.
  void reserve(size_type n) { storage_.Reserve(n); }

  // `InlinedVector::shrink_to_fit()`
  //
  // Reduces memory usage by freeing unused memory. After being called, calls to
  // `capacity()` will be equal to `max(N, size())`.
  //
  // If `size() <= N` and the inlined vector contains allocated memory, the
  // elements will all be moved to the inlined space and the allocated memory
  // will be deallocated.
  //
  // If `size() > N` and `size() < capacity()`, the elements will be moved to a
  // smaller allocation.
  void shrink_to_fit() {
    if (storage_.GetIsAllocated()) {
      storage_.ShrinkToFit();
    }
  }

  // `InlinedVector::swap(...)`
  //
  // Swaps the contents of the inlined vector with `other`.
  void swap(InlinedVector& other) {
    if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
      storage_.Swap(std::addressof(other.storage_));
    }
  }

 private:
  template <typename H, typename TheT, size_t TheN, typename TheA>
  friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a);

  Storage storage_;
};

// -----------------------------------------------------------------------------
// InlinedVector Non-Member Functions
// -----------------------------------------------------------------------------

// `swap(...)`
//
// Swaps the contents of two inlined vectors.
template <typename T, size_t N, typename A>
void swap(absl::InlinedVector<T, N, A>& a,
          absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
  a.swap(b);
}

// `operator==(...)`
//
// Tests for value-equality of two inlined vectors.
template <typename T, size_t N, typename A>
bool operator==(const absl::InlinedVector<T, N, A>& a,
                const absl::InlinedVector<T, N, A>& b) {
  auto a_data = a.data();
  auto b_data = b.data();
  return absl::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
}

// `operator!=(...)`
//
// Tests for value-inequality of two inlined vectors.
template <typename T, size_t N, typename A>
bool operator!=(const absl::InlinedVector<T, N, A>& a,
                const absl::InlinedVector<T, N, A>& b) {
  return !(a == b);
}

// `operator<(...)`
//
// Tests whether the value of an inlined vector is less than the value of
// another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
bool operator<(const absl::InlinedVector<T, N, A>& a,
               const absl::InlinedVector<T, N, A>& b) {
  auto a_data = a.data();
  auto b_data = b.data();
  return std::lexicographical_compare(a_data, a_data + a.size(), b_data,
                                      b_data + b.size());
}

// `operator>(...)`
//
// Tests whether the value of an inlined vector is greater than the value of
// another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
bool operator>(const absl::InlinedVector<T, N, A>& a,
               const absl::InlinedVector<T, N, A>& b) {
  return b < a;
}

// `operator<=(...)`
//
// Tests whether the value of an inlined vector is less than or equal to the
// value of another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
bool operator<=(const absl::InlinedVector<T, N, A>& a,
                const absl::InlinedVector<T, N, A>& b) {
  return !(b < a);
}

// `operator>=(...)`
//
// Tests whether the value of an inlined vector is greater than or equal to the
// value of another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
bool operator>=(const absl::InlinedVector<T, N, A>& a,
                const absl::InlinedVector<T, N, A>& b) {
  return !(a < b);
}

// `AbslHashValue(...)`
//
// Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to
// call this directly.
template <typename H, typename T, size_t N, typename A>
H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) {
  auto size = a.size();
  return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size);
}

ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_CONTAINER_INLINED_VECTOR_H_