SolverBase.h 4.26 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SOLVERBASE_H
#define EIGEN_SOLVERBASE_H

namespace Eigen {

namespace internal {



} // end namespace internal

/** \class SolverBase
  * \brief A base class for matrix decomposition and solvers
  *
  * \tparam Derived the actual type of the decomposition/solver.
  *
  * Any matrix decomposition inheriting this base class provide the following API:
  *
  * \code
  * MatrixType A, b, x;
  * DecompositionType dec(A);
  * x = dec.solve(b);             // solve A   * x = b
  * x = dec.transpose().solve(b); // solve A^T * x = b
  * x = dec.adjoint().solve(b);   // solve A'  * x = b
  * \endcode
  *
  * \warning Currently, any other usage of transpose() and adjoint() are not supported and will produce compilation errors.
  *
  * \sa class PartialPivLU, class FullPivLU
  */
template<typename Derived>
class SolverBase : public EigenBase<Derived>
{
  public:

    typedef EigenBase<Derived> Base;
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef Scalar CoeffReturnType;

    enum {
      RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
      ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
      SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
                                                          internal::traits<Derived>::ColsAtCompileTime>::ret),
      MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
      MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
                                                             internal::traits<Derived>::MaxColsAtCompileTime>::ret),
      IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1
                           || internal::traits<Derived>::MaxColsAtCompileTime == 1
    };

    /** Default constructor */
    SolverBase()
    {}

    ~SolverBase()
    {}

    using Base::derived;

    /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A.
      */
    template<typename Rhs>
    inline const Solve<Derived, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
      return Solve<Derived, Rhs>(derived(), b.derived());
    }

    /** \internal the return type of transpose() */
    typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType;
    /** \returns an expression of the transposed of the factored matrix.
      *
      * A typical usage is to solve for the transposed problem A^T x = b:
      * \code x = dec.transpose().solve(b); \endcode
      *
      * \sa adjoint(), solve()
      */
    inline ConstTransposeReturnType transpose() const
    {
      return ConstTransposeReturnType(derived());
    }

    /** \internal the return type of adjoint() */
    typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
                        CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>,
                        ConstTransposeReturnType
                     >::type AdjointReturnType;
    /** \returns an expression of the adjoint of the factored matrix
      *
      * A typical usage is to solve for the adjoint problem A' x = b:
      * \code x = dec.adjoint().solve(b); \endcode
      *
      * For real scalar types, this function is equivalent to transpose().
      *
      * \sa transpose(), solve()
      */
    inline AdjointReturnType adjoint() const
    {
      return AdjointReturnType(derived().transpose());
    }

  protected:
};

namespace internal {

template<typename Derived>
struct generic_xpr_base<Derived, MatrixXpr, SolverStorage>
{
  typedef SolverBase<Derived> type;

};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_SOLVERBASE_H