SparseQR.h 23.4 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SPARSE_QR_H
#define EIGEN_SPARSE_QR_H

namespace Eigen {

template<typename MatrixType, typename OrderingType> class SparseQR;
template<typename SparseQRType> struct SparseQRMatrixQReturnType;
template<typename SparseQRType> struct SparseQRMatrixQTransposeReturnType;
template<typename SparseQRType, typename Derived> struct SparseQR_QProduct;
namespace internal {
  template <typename SparseQRType> struct traits<SparseQRMatrixQReturnType<SparseQRType> >
  {
    typedef typename SparseQRType::MatrixType ReturnType;
    typedef typename ReturnType::Index Index;
    typedef typename ReturnType::StorageKind StorageKind;
  };
  template <typename SparseQRType> struct traits<SparseQRMatrixQTransposeReturnType<SparseQRType> >
  {
    typedef typename SparseQRType::MatrixType ReturnType;
  };
  template <typename SparseQRType, typename Derived> struct traits<SparseQR_QProduct<SparseQRType, Derived> >
  {
    typedef typename Derived::PlainObject ReturnType;
  };
} // End namespace internal

/**
  * \ingroup SparseQR_Module
  * \class SparseQR
  * \brief Sparse left-looking rank-revealing QR factorization
  * 
  * This class implements a left-looking rank-revealing QR decomposition 
  * of sparse matrices. When a column has a norm less than a given tolerance
  * it is implicitly permuted to the end. The QR factorization thus obtained is 
  * given by A*P = Q*R where R is upper triangular or trapezoidal. 
  * 
  * P is the column permutation which is the product of the fill-reducing and the
  * rank-revealing permutations. Use colsPermutation() to get it.
  * 
  * Q is the orthogonal matrix represented as products of Householder reflectors. 
  * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
  * You can then apply it to a vector.
  * 
  * R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient.
  * matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank.
  * 
  * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
  * \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module 
  *  OrderingMethods \endlink module for the list of built-in and external ordering methods.
  * 
  * 
  */
template<typename _MatrixType, typename _OrderingType>
class SparseQR
{
  public:
    typedef _MatrixType MatrixType;
    typedef _OrderingType OrderingType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    typedef SparseMatrix<Scalar,ColMajor,Index> QRMatrixType;
    typedef Matrix<Index, Dynamic, 1> IndexVector;
    typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
    typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
  public:
    SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
    { }
    
    SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
    {
      compute(mat);
    }
    void compute(const MatrixType& mat)
    {
      analyzePattern(mat);
      factorize(mat);
    }
    void analyzePattern(const MatrixType& mat);
    void factorize(const MatrixType& mat);
    
    /** \returns the number of rows of the represented matrix. 
      */
    inline Index rows() const { return m_pmat.rows(); }
    
    /** \returns the number of columns of the represented matrix. 
      */
    inline Index cols() const { return m_pmat.cols();}
    
    /** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization.
      */
    const QRMatrixType& matrixR() const { return m_R; }
    
    /** \returns the number of non linearly dependent columns as determined by the pivoting threshold.
      *
      * \sa setPivotThreshold()
      */
    Index rank() const 
    {
      eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
      return m_nonzeropivots; 
    }
    
    /** \returns an expression of the matrix Q as products of sparse Householder reflectors.
    * The common usage of this function is to apply it to a dense matrix or vector
    * \code
    * VectorXd B1, B2;
    * // Initialize B1
    * B2 = matrixQ() * B1;
    * \endcode
    *
    * To get a plain SparseMatrix representation of Q:
    * \code
    * SparseMatrix<double> Q;
    * Q = SparseQR<SparseMatrix<double> >(A).matrixQ();
    * \endcode
    * Internally, this call simply performs a sparse product between the matrix Q
    * and a sparse identity matrix. However, due to the fact that the sparse
    * reflectors are stored unsorted, two transpositions are needed to sort
    * them before performing the product.
    */
    SparseQRMatrixQReturnType<SparseQR> matrixQ() const 
    { return SparseQRMatrixQReturnType<SparseQR>(*this); }
    
    /** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R
      * It is the combination of the fill-in reducing permutation and numerical column pivoting.
      */
    const PermutationType& colsPermutation() const
    { 
      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
      return m_outputPerm_c;
    }
    
    /** \returns A string describing the type of error.
      * This method is provided to ease debugging, not to handle errors.
      */
    std::string lastErrorMessage() const { return m_lastError; }
    
    /** \internal */
    template<typename Rhs, typename Dest>
    bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const
    {
      eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
      eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");

      Index rank = this->rank();
      
      // Compute Q^T * b;
      typename Dest::PlainObject y, b;
      y = this->matrixQ().transpose() * B; 
      b = y;
      
      // Solve with the triangular matrix R
      y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(b.topRows(rank));
      y.bottomRows(y.size()-rank).setZero();

      // Apply the column permutation
      if (m_perm_c.size())  dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
      else                  dest = y.topRows(cols());
      
      m_info = Success;
      return true;
    }
    

    /** Sets the threshold that is used to determine linearly dependent columns during the factorization.
      *
      * In practice, if during the factorization the norm of the column that has to be eliminated is below
      * this threshold, then the entire column is treated as zero, and it is moved at the end.
      */
    void setPivotThreshold(const RealScalar& threshold)
    {
      m_useDefaultThreshold = false;
      m_threshold = threshold;
    }
    
    /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::solve_retval<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const 
    {
      eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
      eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
      return internal::solve_retval<SparseQR, Rhs>(*this, B.derived());
    }
    template<typename Rhs>
    inline const internal::sparse_solve_retval<SparseQR, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
    {
          eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
          eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
          return internal::sparse_solve_retval<SparseQR, Rhs>(*this, B.derived());
    }
    
    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the QR factorization reports a numerical problem
      *          \c InvalidInput if the input matrix is invalid
      *
      * \sa iparm()          
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
      return m_info;
    }

  protected:
    inline void sort_matrix_Q()
    {
      if(this->m_isQSorted) return;
      // The matrix Q is sorted during the transposition
      SparseMatrix<Scalar, RowMajor, Index> mQrm(this->m_Q);
      this->m_Q = mQrm;
      this->m_isQSorted = true;
    }

    
  protected:
    bool m_isInitialized;
    bool m_analysisIsok;
    bool m_factorizationIsok;
    mutable ComputationInfo m_info;
    std::string m_lastError;
    QRMatrixType m_pmat;            // Temporary matrix
    QRMatrixType m_R;               // The triangular factor matrix
    QRMatrixType m_Q;               // The orthogonal reflectors
    ScalarVector m_hcoeffs;         // The Householder coefficients
    PermutationType m_perm_c;       // Fill-reducing  Column  permutation
    PermutationType m_pivotperm;    // The permutation for rank revealing
    PermutationType m_outputPerm_c; // The final column permutation
    RealScalar m_threshold;         // Threshold to determine null Householder reflections
    bool m_useDefaultThreshold;     // Use default threshold
    Index m_nonzeropivots;          // Number of non zero pivots found 
    IndexVector m_etree;            // Column elimination tree
    IndexVector m_firstRowElt;      // First element in each row
    bool m_isQSorted;                 // whether Q is sorted or not
    
    template <typename, typename > friend struct SparseQR_QProduct;
    template <typename > friend struct SparseQRMatrixQReturnType;
    
};

/** \brief Preprocessing step of a QR factorization 
  * 
  * In this step, the fill-reducing permutation is computed and applied to the columns of A
  * and the column elimination tree is computed as well. Only the sparcity pattern of \a mat is exploited.
  * 
  * \note In this step it is assumed that there is no empty row in the matrix \a mat.
  */
template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
{
  // Compute the column fill reducing ordering
  OrderingType ord; 
  ord(mat, m_perm_c); 
  Index n = mat.cols();
  Index m = mat.rows();
  
  if (!m_perm_c.size())
  {
    m_perm_c.resize(n);
    m_perm_c.indices().setLinSpaced(n, 0,n-1);
  }
  
  // Compute the column elimination tree of the permuted matrix
  m_outputPerm_c = m_perm_c.inverse();
  internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
  
  m_R.resize(n, n);
  m_Q.resize(m, n);
  
  // Allocate space for nonzero elements : rough estimation
  m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
  m_Q.reserve(2*mat.nonZeros());
  m_hcoeffs.resize(n);
  m_analysisIsok = true;
}

/** \brief Performs the numerical QR factorization of the input matrix
  * 
  * The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with
  * a matrix having the same sparcity pattern than \a mat.
  * 
  * \param mat The sparse column-major matrix
  */
template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
{
  using std::abs;
  using std::max;
  
  eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
  Index m = mat.rows();
  Index n = mat.cols();
  IndexVector mark(m); mark.setConstant(-1);  // Record the visited nodes
  IndexVector Ridx(n), Qidx(m);               // Store temporarily the row indexes for the current column of R and Q
  Index nzcolR, nzcolQ;                       // Number of nonzero for the current column of R and Q
  ScalarVector tval(m);                       // The dense vector used to compute the current column
  bool found_diag;
    
  m_pmat = mat;
  m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
  // Apply the fill-in reducing permutation lazily:
  for (int i = 0; i < n; i++)
  {
    Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
    m_pmat.outerIndexPtr()[p] = mat.outerIndexPtr()[i]; 
    m_pmat.innerNonZeroPtr()[p] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i]; 
  }
  
  /* Compute the default threshold, see : 
   * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
   * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 
   */
  if(m_useDefaultThreshold) 
  {
    RealScalar max2Norm = 0.0;
    for (int j = 0; j < n; j++) max2Norm = (max)(max2Norm, m_pmat.col(j).norm());
    m_threshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
  }
  
  // Initialize the numerical permutation
  m_pivotperm.setIdentity(n);
  
  Index nonzeroCol = 0; // Record the number of valid pivots
  
  // Left looking rank-revealing QR factorization: compute a column of R and Q at a time
  for (Index col = 0; col < n; ++col)
  {
    mark.setConstant(-1);
    m_R.startVec(col);
    m_Q.startVec(col);
    mark(nonzeroCol) = col;
    Qidx(0) = nonzeroCol;
    nzcolR = 0; nzcolQ = 1;
    found_diag = false;
    tval.setZero(); 
    
    // Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
    // all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k.
    // Note: if the diagonal entry does not exist, then its contribution must be explicitly added,
    // thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
    for (typename MatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
    {
      Index curIdx = nonzeroCol ;
      if(itp) curIdx = itp.row();
      if(curIdx == nonzeroCol) found_diag = true;
      
      // Get the nonzeros indexes of the current column of R
      Index st = m_firstRowElt(curIdx); // The traversal of the etree starts here 
      if (st < 0 )
      {
        m_lastError = "Empty row found during numerical factorization";
        m_info = InvalidInput;
        return;
      }

      // Traverse the etree 
      Index bi = nzcolR;
      for (; mark(st) != col; st = m_etree(st))
      {
        Ridx(nzcolR) = st;  // Add this row to the list,
        mark(st) = col;     // and mark this row as visited
        nzcolR++;
      }

      // Reverse the list to get the topological ordering
      Index nt = nzcolR-bi;
      for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1));
       
      // Copy the current (curIdx,pcol) value of the input matrix
      if(itp) tval(curIdx) = itp.value();
      else    tval(curIdx) = Scalar(0);
      
      // Compute the pattern of Q(:,k)
      if(curIdx > nonzeroCol && mark(curIdx) != col ) 
      {
        Qidx(nzcolQ) = curIdx;  // Add this row to the pattern of Q,
        mark(curIdx) = col;     // and mark it as visited
        nzcolQ++;
      }
    }

    // Browse all the indexes of R(:,col) in reverse order
    for (Index i = nzcolR-1; i >= 0; i--)
    {
      Index curIdx = m_pivotperm.indices()(Ridx(i));
      
      // Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
      Scalar tdot(0);
      
      // First compute q' * tval
      tdot = m_Q.col(curIdx).dot(tval);

      tdot *= m_hcoeffs(curIdx);
      
      // Then update tval = tval - q * tau
      // FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse")
      for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
        tval(itq.row()) -= itq.value() * tdot;

      // Detect fill-in for the current column of Q
      if(m_etree(Ridx(i)) == nonzeroCol)
      {
        for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
        {
          Index iQ = itq.row();
          if (mark(iQ) != col)
          {
            Qidx(nzcolQ++) = iQ;  // Add this row to the pattern of Q,
            mark(iQ) = col;       // and mark it as visited
          }
        }
      }
    } // End update current column
        
    // Compute the Householder reflection that eliminate the current column
    // FIXME this step should call the Householder module.
    Scalar tau;
    RealScalar beta;
    Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
    
    // First, the squared norm of Q((col+1):m, col)
    RealScalar sqrNorm = 0.;
    for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
    
    if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
    {
      tau = RealScalar(0);
      beta = numext::real(c0);
      tval(Qidx(0)) = 1;
     }
    else
    {
      beta = std::sqrt(numext::abs2(c0) + sqrNorm);
      if(numext::real(c0) >= RealScalar(0))
        beta = -beta;
      tval(Qidx(0)) = 1;
      for (Index itq = 1; itq < nzcolQ; ++itq)
        tval(Qidx(itq)) /= (c0 - beta);
      tau = numext::conj((beta-c0) / beta);
        
    }

    // Insert values in R
    for (Index  i = nzcolR-1; i >= 0; i--)
    {
      Index curIdx = Ridx(i);
      if(curIdx < nonzeroCol) 
      {
        m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx);
        tval(curIdx) = Scalar(0.);
      }
    }

    if(abs(beta) >= m_threshold)
    {
      m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
      nonzeroCol++;
      // The householder coefficient
      m_hcoeffs(col) = tau;
      // Record the householder reflections
      for (Index itq = 0; itq < nzcolQ; ++itq)
      {
        Index iQ = Qidx(itq);
        m_Q.insertBackByOuterInnerUnordered(col,iQ) = tval(iQ);
        tval(iQ) = Scalar(0.);
      }    
    }
    else
    {
      // Zero pivot found: move implicitly this column to the end
      m_hcoeffs(col) = Scalar(0);
      for (Index j = nonzeroCol; j < n-1; j++) 
        std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
      
      // Recompute the column elimination tree
      internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data());
    }
  }
  
  // Finalize the column pointers of the sparse matrices R and Q
  m_Q.finalize();
  m_Q.makeCompressed();
  m_R.finalize();
  m_R.makeCompressed();
  m_isQSorted = false;
  
  m_nonzeropivots = nonzeroCol;
  
  if(nonzeroCol<n)
  {
    // Permute the triangular factor to put the 'dead' columns to the end
    MatrixType tempR(m_R);
    m_R = tempR * m_pivotperm;
    
    // Update the column permutation
    m_outputPerm_c = m_outputPerm_c * m_pivotperm;
  }
  
  m_isInitialized = true; 
  m_factorizationIsok = true;
  m_info = Success;
}

namespace internal {
  
template<typename _MatrixType, typename OrderingType, typename Rhs>
struct solve_retval<SparseQR<_MatrixType,OrderingType>, Rhs>
  : solve_retval_base<SparseQR<_MatrixType,OrderingType>, Rhs>
{
  typedef SparseQR<_MatrixType,OrderingType> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};
template<typename _MatrixType, typename OrderingType, typename Rhs>
struct sparse_solve_retval<SparseQR<_MatrixType, OrderingType>, Rhs>
 : sparse_solve_retval_base<SparseQR<_MatrixType, OrderingType>, Rhs>
{
  typedef SparseQR<_MatrixType, OrderingType> Dec;
  EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec, Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    this->defaultEvalTo(dst);
  }
};
} // end namespace internal

template <typename SparseQRType, typename Derived>
struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived> >
{
  typedef typename SparseQRType::QRMatrixType MatrixType;
  typedef typename SparseQRType::Scalar Scalar;
  typedef typename SparseQRType::Index Index;
  // Get the references 
  SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) : 
  m_qr(qr),m_other(other),m_transpose(transpose) {}
  inline Index rows() const { return m_transpose ? m_qr.rows() : m_qr.cols(); }
  inline Index cols() const { return m_other.cols(); }
  
  // Assign to a vector
  template<typename DesType>
  void evalTo(DesType& res) const
  {
    Index n = m_qr.cols();
    res = m_other;
    if (m_transpose)
    {
      eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
      //Compute res = Q' * other column by column
      for(Index j = 0; j < res.cols(); j++){
        for (Index k = 0; k < n; k++)
        {
          Scalar tau = Scalar(0);
          tau = m_qr.m_Q.col(k).dot(res.col(j));
          tau = tau * m_qr.m_hcoeffs(k);
          res.col(j) -= tau * m_qr.m_Q.col(k);
        }
      }
    }
    else
    {
      eigen_assert(m_qr.m_Q.cols() == m_other.rows() && "Non conforming object sizes");
      // Compute res = Q' * other column by column
      for(Index j = 0; j < res.cols(); j++)
      {
        for (Index k = n-1; k >=0; k--)
        {
          Scalar tau = Scalar(0);
          tau = m_qr.m_Q.col(k).dot(res.col(j));
          tau = tau * m_qr.m_hcoeffs(k);
          res.col(j) -= tau * m_qr.m_Q.col(k);
        }
      }
    }
  }
  
  const SparseQRType& m_qr;
  const Derived& m_other;
  bool m_transpose;
};

template<typename SparseQRType>
struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<SparseQRType> >
{  
  typedef typename SparseQRType::Index Index;
  typedef typename SparseQRType::Scalar Scalar;
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {}
  template<typename Derived>
  SparseQR_QProduct<SparseQRType, Derived> operator*(const MatrixBase<Derived>& other)
  {
    return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(),false);
  }
  SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const
  {
    return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
  }
  inline Index rows() const { return m_qr.rows(); }
  inline Index cols() const { return m_qr.cols(); }
  // To use for operations with the transpose of Q
  SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
  {
    return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
  }
  template<typename Dest> void evalTo(MatrixBase<Dest>& dest) const
  {
    dest.derived() = m_qr.matrixQ() * Dest::Identity(m_qr.rows(), m_qr.rows());
  }
  template<typename Dest> void evalTo(SparseMatrixBase<Dest>& dest) const
  {
    Dest idMat(m_qr.rows(), m_qr.rows());
    idMat.setIdentity();
    // Sort the sparse householder reflectors if needed
    const_cast<SparseQRType *>(&m_qr)->sort_matrix_Q();
    dest.derived() = SparseQR_QProduct<SparseQRType, Dest>(m_qr, idMat, false);
  }

  const SparseQRType& m_qr;
};

template<typename SparseQRType>
struct SparseQRMatrixQTransposeReturnType
{
  SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {}
  template<typename Derived>
  SparseQR_QProduct<SparseQRType,Derived> operator*(const MatrixBase<Derived>& other)
  {
    return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(), true);
  }
  const SparseQRType& m_qr;
};

} // end namespace Eigen

#endif